RICHARDS RANCH PROJECT CITY OF SANTA MARIA, CALIFORNIA

UPDATED TRAFFIC AND CIRCULATION STUDY

October 7, 2022 ATE #21069

MD3 Investments San Luis Obispo, CA

ASSOCIATED TRANSPORTATION ENGINEERS

100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110 ● (805) 687-4418 ● FAX (805) 682-8509

Since 1978

Richard L. Pool, P.E. Scott A. Schell

October 7, 2022 21069R03

Michael Stoltey MD3 Investments San Luis Obispo, CA

UPDATED TRAFFIC AND CIRCULATION STUDY FOR THE RICHARDS RANCH PROJECT, CITY OF SANTA MARIA

Associated Transportation Engineers (ATE) has prepared the following updated traffic and circulation study for the Richards Ranch Project, located in the City of Santa Maria. The study evaluates Existing + Project and Cumulative + Project traffic conditions in order to determine the Project's consistency with the City's transportation policies; and determines the Project's potential CEQA traffic impacts based on the City's adopted "Vehicle Miles Traveled" (VMT) impact criteria.

We appreciate the opportunity to assist you with the project.

Jut A Sl

Associated Transportation Engineers

Scott A. Schell

Principal Transportation Planner

CONTENTS

INTRODUCTION	1
PROJECT DESCRIPTION	1
TRAFFIC ANALYSIS SCENARIOS	5
EXISTING CONDITIONS	5
Existing Street Network	5
Intersection Operations	10
TRAFFIC POLICY STANDARDS	12
City of Santa Maria Standard	13
Santa Barbara County Standard	13
EXISTING + PROJECT CONDITIONS	13
Project Trip Generation	13
Internal Capture Trip Analysis	15
Commercial Pass-By/Primary Trip Analysis	15
Project Trip Distribution	17
Existing + Project Intersection Operations	19
CUMULATIVE CONDITIONS	21
Cumulative Traffic Volumes	21
Cumulative Intersection Operations	21
Roadway Segment Operations	25
SITE ACCESS AND CIRCULATION	25
Driveway Operations	35
UVP/Parcel 2 Easterly & Parcel 4 Driveways	39
UVP QUEUING ANALYSIS	41
ACCIDENT ANALYSIS	
SIGNAL WARRANT ANALYSIS	45
RECOMMENDED IMPROVEMENTS	46
UVP/Hummel Drive Intersection	46
VMT ANALYSIS	48
TECHNICAL APPENDIX	54

TABLES

Table 1	Assumed Land Use Statistics	1
Table 2	Existing Levels of Service	12
Table 3	Project Trip Generation	14
Table 4	Project Trip Generation – Internal & External Trip Breakdown	15
Table 5	Project Trip Generation - Commercial Trip Breakdown	16
Table 6	Project Trip Generation – External Trip Summary	16
Table 7	Project Trip Distribution	17
Table 8	Existing + Project Levels of Service - AM Peak Hour	19
Table 9	Existing + Project Levels of Service – PM Peak Hour	19
Table 10	Cumulative + Project Levels of Service - AM Peak Hour	24
Table 11	Cumulative + Project Levels of Service - PM Peak Hour	
Table 12	AM Peak Hour Project Driveway Operations	
	Cumulative + Project Conditions	35
Table 13	PM Peak Hour Project Driveway Operations	
	Cumulative + Project Conditions	
Table 14	AM Peak Hour Driveway Queues - Cumulative + Project Conditions	38
Table 15	PM Peak Hour Driveway Queues - Cumulative + Project Conditions	39
Table 16	Cumulative + Project AM Peak Hour	
	Storage Length and Left-Turn Queues and Storage Requirements	
Table 17	Cumulative + Project PM Peak Hour	
	Storage Length and Left-Turn Queues and Storage Requirements	43
Table 18	UVP Intersections - Accident Rates	44
Table 19	Signal Warrant Analysis Results – UVP/Hummel Drive	45
Table 20	Intersection Levels of Service With Improvements	
Table 21	Residential Component VMT Comparison to City Threshold	
Table 22	Retail Component – Net Change in VMT	52
Table 22		

FIGURES

Figure 1	Project Site Location	2
Figure 2a	Project Site Plan - Commercial	3
Figure 2b	Project Site Plan - Residential	4
Figure 3	Existing Street Network	6
Figure 4a	Santa Maria Bikeway Master Plan	8
Figure 4b	Santa Maria Pedestrian Master Plan	9
Figure 5	Existing Traffic Volumes	11
Figure 6	Project Trip Distribution and Assignment (Primary and Pass-By)	18
Figure 7	Existing + Project Traffic Volumes	20
Figure 8	Cumulative Traffic Volumes	22
Figure 9	Cumulative + Project Traffic Volumes	23
Figure 10	Parcel 1 and Parcel 2 – Orcutt Road Driveways	27
Figure 11	Parcel 2 and Parcel 4A – Union Valley Parkway Driveways	28
Figure 12a	UVP Interim Transition Plan	
Figure 12b	UVP Long Term Transition Plan	31
Figure 13	Parcel 3 – Orcutt Road Driveways	32
Figure 14	Parcel 4A and Parcel 4B – Orcutt Road Driveway	34
Figure 15	Cumulative + Project Driveway Traffic Volumes	36
Figure 16	Storage Length, Cumulative + Project Traffic Volumes, and LOS at	
	UVP/Parcel 2 Easterly & Parcel 4 Driveways	40
Figure 17	Left Turn Channels at UVP/Orcutt Road and Orcutt Expressway	42
Figure 18	Union Valley Parkway/Hummel Drive - Future Intersection Design	47

INTRODUCTION

The following updated report contains analyses of the traffic and circulation issues associated with the Richards Ranch Project (the "Project"), proposed in the City of Santa Maria. The report evaluates existing and future traffic operations within the Project study area and assesses the Project's consistency with City's adopted transportation policies. An analysis of site access and circulation is also provided. The roadways and intersections analyzed in the study were determined based on input provided by City of Santa Maria staff. An evaluation of the Project's potential CEQA impacts is also provided based on the City's CEQA requirements for Vehicle Miles Traveled (VMT) adopted under Senate Bill 743. The updated study addresses the comments provided in the January 20, 2022 and August 23, 2022 comment letters submitted by City Public Works staff (Mr. Mark Mueller) and Central Coast Transportation Consulting.

PROJECT DESCRIPTION

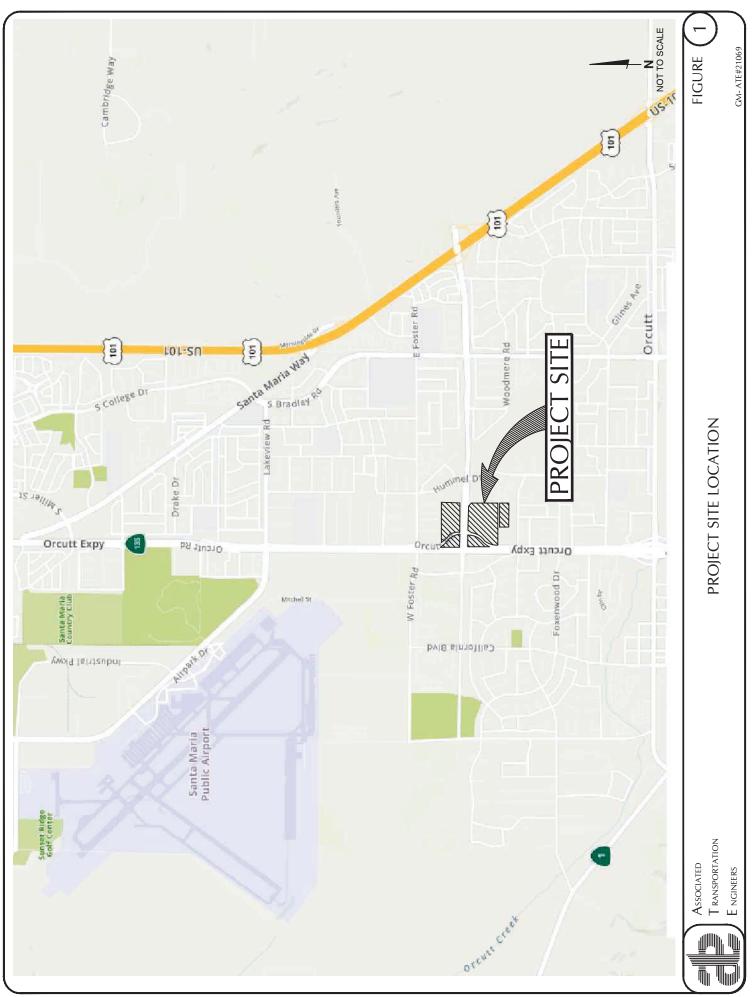

The Project consists of 4 separate parcels located adjacent to the Union Valley Parkway/Orcutt Road and Union Valley Parkway/Orcutt Expressway intersections in the southwestern portion of the City of Santa Maria. Figure 1 shows the location of the 4 parcels. The parcels are currently located within Santa Barbara County and would be annexed to the City of Santa Maria. The proposed zoning for three parcels would be C-2 commercial and the proposed zoning for the remaining parcel would be R-3 residential.

Figure 2a presents the preliminary site plan for the commercial parcels and Figure 2b presents the preliminary site plan for the residential parcel. As shown, the two smaller parcels located west of Orcutt Road would be zoned C-2 commercial and would contain auto service uses and a restaurant. The larger parcel located north of the Union Valley Parkway (UVP) would be zoned C-2 commercial and would contain a shopping center, restaurants, and a mini-storage. The two parcels located south of the UVP would be zoned R-3 Residential and would contain apartments and townhomes. Table 1 provides a summary of the land uses assumed for each parcel for this study.

Table 1
Assumed Land Use Statistics

Parcel	Zoning	Land Use	Size
Parcel 1	C-2 Commercial Gas Station with Mart(a)		10 Fueling Positions
(Northwest)	C-2 Commercial	Lube Station(b)	3 Bays
		Shopping Center	55,500 SF
Parcel 2		Sit-Down Restaurant	5,000 SF
(Northeast)	C-2 Commercial	Fast-Food Restaurant w/DT (5)	15,250 SF
(Northeast)		Fast Casual Restaurant (2)	6,000 SF
		Mini Storage	39,500 SF
Parcel 3	C-2 Commercial	Car Wash-Automated	1 Tunnel
(Southwest)	C-2 Commerciai	Fast-Food Restaurant w/DT	3,500 SF
Parcel 4A	R-3 Residential	Three Stary Apartments	400 Units
(Southeast)	K-5 Kesideililai	Three-Story Apartments	400 011118
Parcel 4B	R-3 Residential	Tura Starry Taurahamas	95 Units
(Southeast)	K-5 Kesidentiai	Two-Story Townhomes	95 Units

- (a) Gas Station Convenience Market contains 3,950 SF of building area.
- (b) Lube Station contains 2,400 SF of building area.

PROJECT SITE PLAN - RESIDENTIAL

FIGURE

GM- ATE#21069

TRAFFIC ANALYSIS SCENARIOS

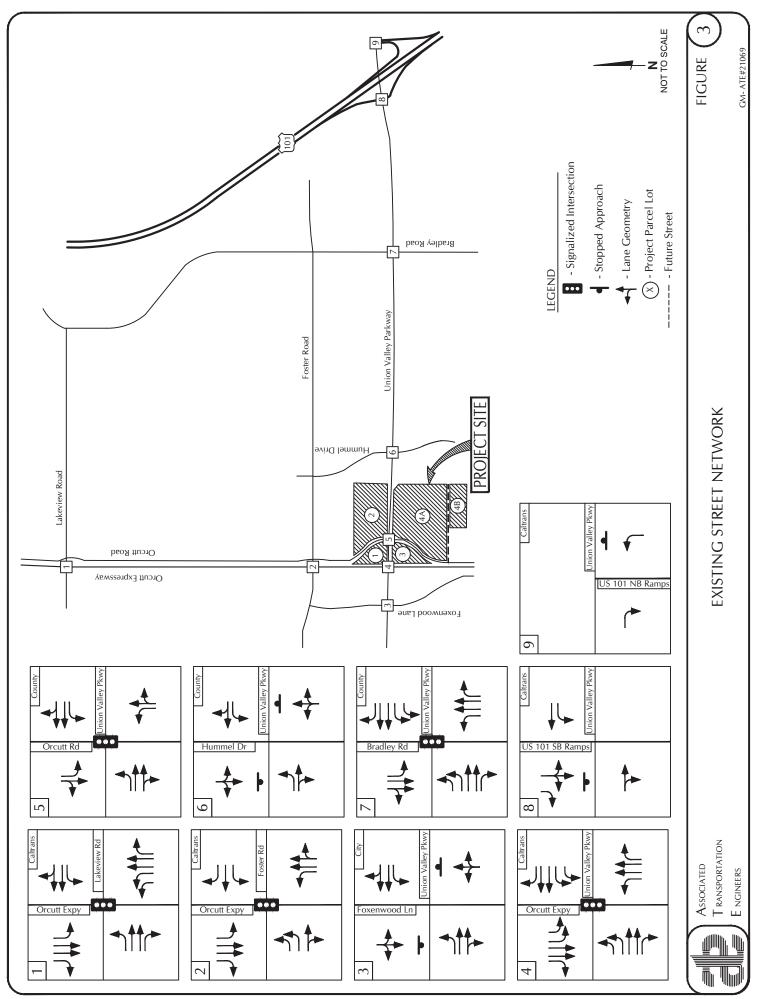
The following scenarios are included in the traffic and circulation analysis.

Existing Conditions: This scenario describes the existing street network and evaluates peak hour operations at the key study-area intersections identified for analyses.

Existing + Project: This scenario evaluates traffic operations assuming Existing + Project traffic forecasts. The Project's consistency with City transportation policies is evaluated for this scenario.

Cumulative Conditions: This scenario evaluates traffic operations assuming the additional traffic that will be generated by approved and pending developments located in the adjacent areas of the City and the County of Santa Barbara. Traffic volumes generated by the approved and pending projects are layered onto the Existing baseline traffic forecasts for analyses.

Cumulative + Project: This scenario evaluates operations assuming the Cumulative conditions plus the traffic generated by the Project. The Project's consistency with City transportation policies is evaluated for this scenario.


EXISTING CONDITIONS

Existing Street Network

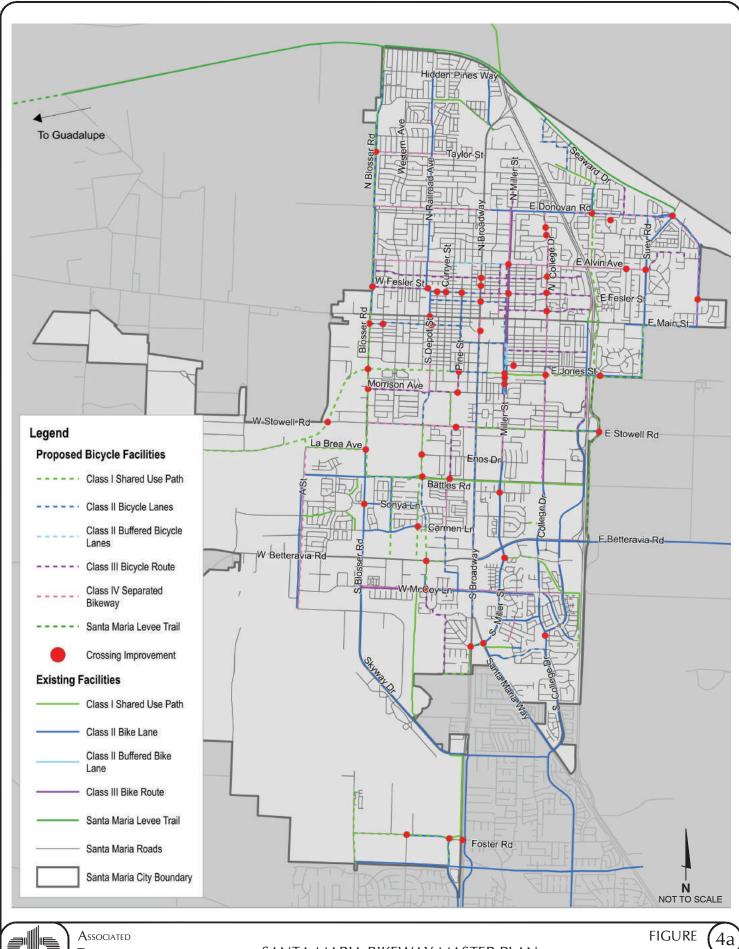
The Project site is served by a network of highways, arterial, and collector streets, as shown on Figure 3. The following text provides a brief discussion of the major components of the street network in the study area.

<u>US 101</u>, located east of the Project site, is a freeway that serves as the major north-south link through the Santa Maria Valley and is the principal inter-city route along the Pacific Coast. US 101 is a 6-lane freeway within the Santa Maria area, with 4 lanes provided north and south of the City. Access to the Project site from US 101 is provided via the UVP interchange.

Orcutt Expressway (State Route 135), located west of the Of the Project site, is an arterial roadway that extends from US 101 on the north end of the City to its junction with State Route 1 south of the Orcutt community. Within the study-area, Orcutt Expressway is a 4-lane arterial street north of UVP with turn lanes provided at intersections. South of the UVP, Orcutt Expressway becomes a 4-lane freeway. There are no bikeways or sidewalks on the Orcutt Expressway and vehicle access is limited (no driveways or access connections).

<u>Union Valley Parkway</u>, extends easterly from Blosser Road as a 2-lane arterial roadway to Foxenwood Lane where it widens to 4 lanes. The UVP passes mid-way through the Project site where it transitions from 4 lanes back to 2 lanes. The UVP extends east of the site Project site to its terminus at the US 101 interchange. The UVP provides access between the western areas of the City and Orcutt and US 101. The UVP would provide access to several of the Project parcels via new driveway connections. Within the Project study-area, Class II bike lanes are provided on both sides of the UVP. Additional bicycle improvements proposed in the study-area are shown on Figure 4a, the City's Bicycle Master Plan.

Orcutt Road (Orcutt Frontage Road), located on the west side of the Project site, is a two-lane north-south frontage road that parallels the east side of Orcutt Expressway. Orcutt Road extends from Goodwin Road on the north to Rice Ranch Road on the south. Orcutt Road would provide access to several of the Project parcels via new driveway connections. Class II bikeways are provided on both sides of Orcutt Road adjacent to the Project site.

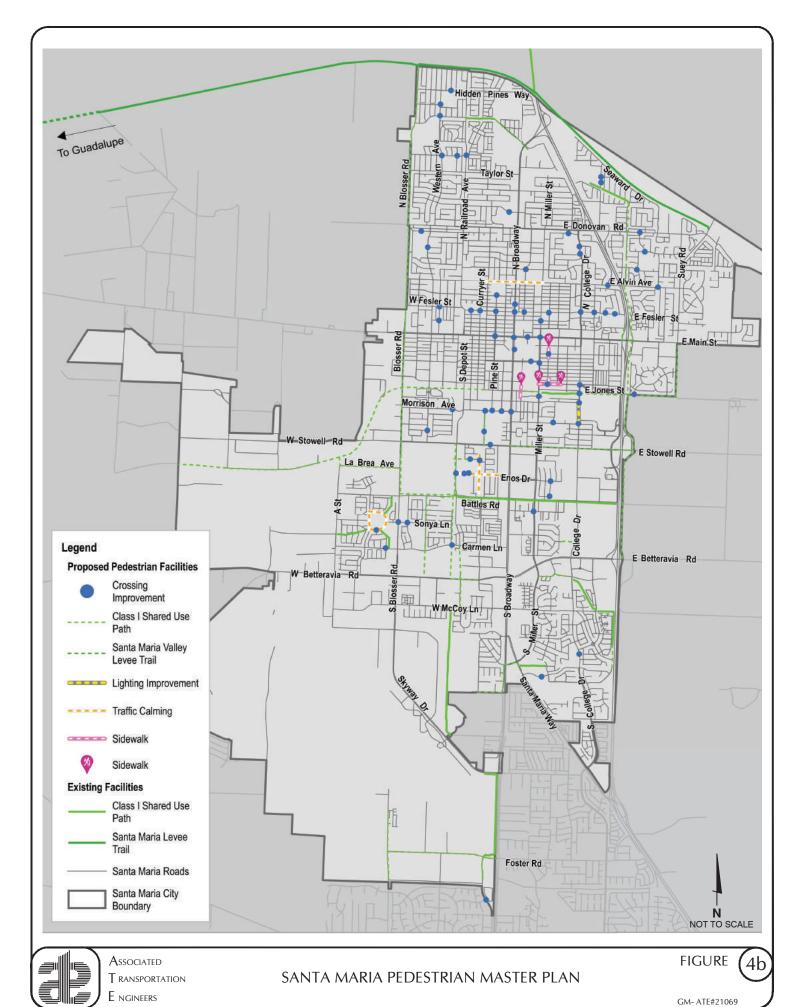

<u>Foxenwood Lane</u>, located west of the Project site, is a two-lane north-south frontage road that parallels the west side of Orcutt Expressway. Foxenwood Lane extends from Foster Road on the north to Clark Avenue on the south. Foxenwood Lane provides access to the residential subdivisions located south of UVP. Class II bike lanes are provided on both sides of the roadway and a Class I bike path extends from the Foster Road terminus north to Skyway Drive.

<u>Foster Road</u>, located north of the Project site is a two-lane east-west collector street within the study area. Foster Road serves primarily institutional and industrial uses west of the Orcutt Expressway and residential uses east of the Orcutt Expressway. No bike lanes are currently provided on Foster Road. The City of Santa Maria Bicycle Master Plan indicates that Class I bike lanes will be provided on Foster Road from the Orcutt Expressway to Blosser Road.

<u>Hummel Drive</u>, located east of the Project site, is a two-lane north-south collector road that extends north from the UVP to Foster Road where it becomes Dartmouth Street; and south from the UVP to its terminus at Patterson Road. Within the Project study-area, no bike lanes are provided on Hummel Drive. It is noted that Hummel Drive is located in Santa Barbara County and would not be annexed to the City as part of the Project.

Existing Pedestrian Facilities

Within the Project study area, sidewalks are currently provided on the south side of the UVP and the east side of Orcutt Road. On the north side of the UVP, sidewalks are provided from the Orcutt Expressway to Orcutt Road; and no sidewalks are provided on the west side of Orcutt Road. ADA accessible crosswalks with pedestrian signals heads are provided on all four legs of the UVP/Orcutt Road intersection and three of the four legs of the UVP/Orcutt Expressway intersection. At the UVP/Hummel Drive intersection, a "continental" style crosswalk with flashing beacons is provided on the east leg of the intersection (across the UVP) and standard crosswalks are provided on the north and south legs. Figure 4b shows the pedestrian improvements proposed in the Project study-area in the City's Pedestrian Master Plan.



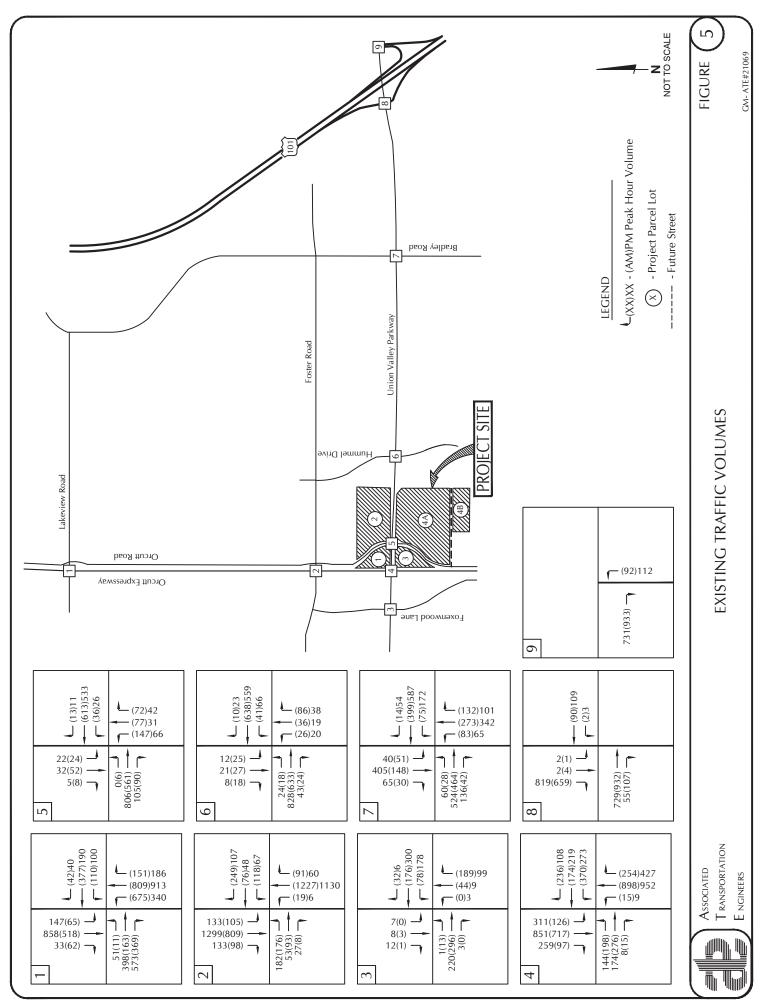
T RANSPORTATION E NGINEERS

SANTA MARIA BIKEWAY MASTER PLAN

Existing Transit Facilities

Transit service in the City of Santa Maria and the community of Orcutt is provided by the Santa Maria Regional Transit (SMRT) service. SMRT Route 6 provides weekday and weekend bus service with 45-minute headways starting at the Crossroads Shopping Center and traveling through Orcutt. The closest transit stops to the Project site are located on Foster Road west of Foxenwood Lane and east of Orcutt Road. The Breeze Bus operates commuter services between the City of Santa Maria, Vandenberg AFB, the City of Lompoc, the community of Los Alamos, the City of Buellton, and the City of Solvang. Breeze Route 100 is a weekday bus service between the Santa Maria and Lompoc Transit Centers with seven trips per day in each direction. The closest stops to the Project site are on Orcutt Road south of Foster Road.

The Clean Air Express bus service, administered by the Santa Barbara Council of Associated Governments (SBCAG), provides service for commuters traveling between northern Santa Barbara County and the Cities of Goleta and Santa Barbara. The closest stop to the project is the Santa Maria Hagerman Softball Complex, where three trips depart each morning to Goleta, and two trips depart each morning to Santa Barbara, with the same number of trips returning in the afternoon. Connections to other services are available at both the Santa Maria and Lompoc Transit Centers.


Intersection Operations

Because traffic flow on urban arterials is most constrained at intersections, detailed traffic flow analyses focus on the operating conditions of critical intersections during peak travel periods. "Levels of Service" (LOS) A through F are used to rate intersection operations, with LOS A indicating very good operation and LOS F indicating poor operation (more complete definitions are contained in the Technical Appendix for reference). The City of Santa Maria considers LOS D as the performance standard for intersections (maintain LOS D or better), and the County of Santa Barbara considers LOS C as the minimum acceptable operating standard for most intersections (LOS D acceptable for selected locations). Caltrans no longer applies LOS standards in their Transportation Impact Study Guide; instead, they apply VMT thresholds.

Existing traffic volumes were obtained from traffic count data contained in the Santa Maria Airport Business Park Specific Plan Rezone Transportation Impact Study¹ and the Traffic Impact Study for the Orcutt Community Plan General Plan Amendment Project² (see Technical Appendix for count data). New Counts were conducted in 2022 at the UVP/Hummel Drive intersection after the area schools were open. Counts were conducted during the AM peak commuter period (7:00-9:00 AM) and PM peak commuter period (4:00-6:00 PM). The peak 1-hour volumes were then identified for the analysis. Figure 5 presents the existing peak hour traffic volumes for the study-area intersections.

Santa Maria Airport Business Park Specific Plan Rezone Transportation Impact Study, Central Coast Transportation Consulting, October, 2020.

² <u>Traffic Impact Study for the Ocrutt Community Plan General Plan Amendment Project,</u> Psomas, May, 2020.

Levels of service for the signalized intersections were calculated using the intersection capacity utilization (ICU) methodology adopted by both the City of Santa Maria and the County of Santa Barbara. Levels of service for the STOP-Sign controlled intersections were calculated using the operations methodology outlined in the Highway Capacity Manual.³ The levels of service for the stop sign controlled intersections are reported as the average weighted delay in seconds for the movements that are required to wait for a gap (rather than for the highest movement or the highest approach), which is the method adopted by both the City and the County. Table 2 lists the existing traffic control, levels of service, and jurisdiction for the study-area intersections identified for the analysis.

Table 2
Existing Levels of Service

			AM Peak Hour		PM Peak Hour	
Intersection	Jurisdiction	Control	ICU or Delay	LOS	ICU or Delay	LOS
Orcutt Expressway/Lakeview Rd	Caltrans	Signal	0.61	LOS B	0.66	LOS B
Orcutt Expressway /Foster Rd	Caltrans	Signal	0.71	LOS C	0.64	LOS B
UVP/Foxenwood Ln(a)	City	STOP-Sign	14.3 sec.	LOS B	9.9 sec.	LOS A
UVP/ Orcutt Expressway	Caltrans	Signal	0.62	LOS B	0.63	LOS B
UVP/Orcutt Road	County	Signal	0.46	LOS A	0.47	LOS A
UVP/Hummel Drive(a)	County	STOP-Sign	34.7 sec.	LOS D	34.3 sec.	LOS D
UVP/Bradley Road(a)	County	Signal	0.39	LOS A	0.51	LOS A
UVP/US 101 SB Ramps(a)	Caltrans	STOP-Sign	12.4 sec.	LOS B	15.0 sec.	LOS B
UVP/US 101 NB Ramps(a)	Caltrans	STOP-Sign	9.3 sec.	LOS A	9.4 sec.	LOS A

Bolded Values exceed City/County LOS policy standards.

The data presented in Table 2 show that the UVP/Hummel Drive intersection currently operates in the LOS D range during the AM and PM peak hours, which exceeds the County's LOS C standard in this area. The remaining study-area intersections currently operate in the LOS A-C range during the AM and PM peak hours, which meet the City's LOS D operating standard and the County's LOS C - D operating standard.

TRAFFIC POLICY STANDARDS

As noted in Table 2, several of the study-area intersections area located in the City of Santa Maria and several of the intersections are located in the County of Santa Barbara. Both the City and County traffic consistency standards were therefore utilized to assess the Project's traffic additions. There are additional intersections that are under Caltrans' jurisdiction. The current Caltrans Transportation Impact Study Guide is based on VMT and not LOS, thus the VMT section of this report addresses the Caltrans requirements.

⁽a) Unsignalized intersection. LOS based on average weighted control delay per vehicle in seconds.

³ Highway Capacity Manual, Transportation Research Board, 6th Edition, 2016.

These standards are outlined below.

City of Santa Maria Standard

The City of Santa Maria Circulation Element considers LOS D acceptable for roadway and intersection operations, with improvements required for LOS E and F.

Santa Barbara County Standard

The County thresholds are based on the policies and standards contained in the Orcutt Community Plan (OCP). These thresholds are outlined below.

Policy CIRC-O-3:

The County shall maintain a minimum Level of Service C or better on roadways and intersections within the Orcutt Planning Area, except that Minimum LOS shall be "D" for the following roadway segments and intersections:

- Foster Road and Highway 135 intersection
- Lakeview Road and Skyway Drive intersection
- Stillwell Road and Lakeview Road intersection
- All Clark Avenue roadway segments and intersections between Blosser Road on the west and Foxenwood Lane on the east.

EXISTING + PROJECT CONDITIONS

Project Trip Generation

Trip generation estimates were calculated for the Project using the rates contained in the ITE Trip Generation Manual, 11th edition.⁴ Table 3 summarizes the trip generation estimates for the Project and lists the specific ITE rates used for each Project component. Worksheets showing the detailed calculations for each parcel are contained in the Technical Appendix.

⁴ <u>Trip Generation</u>, Institute of Transportation Engineers, 11th Edition, 2021.

Table 3 Project Trip Generation

		ADT		AM Peak		PM Peak	
Land Use	Size	Rate	Trips	Rate	Trips	Rate	Trips
Parcel 1							
Gas Station with Mart (a)	10 Fueling	200.80	2,008	16.06	161	18.42	184
	Positions						
Lube Station (b)	3 Bays	40.00	120	3.00	9	4.85	15
Parcel 2							
Shopping Center (c)	55,000 SF	94.49	5,197	3.53	194	9.84	541
Sit-Down Restaurant (d)	5,000 SF	107.20	536	9.57	48	9.05	45
Fast-Food Restaurant w/DT (5) (e)	15,250 SF	467.48	7,129	44.61	681	33.03	505
Fast Casual Restaurant (2) (f)	6,000 SF	97.14	582	1.43	8	12.55	76
Mini Storage (g)	39,500 SF	1.45	57	0.09	4	0.15	6
Parcel 3							
Car Wash-Automated (h)	1 Tunnel	249.00	249	8.50	9	23.70	24
Fast-Food Restaurant w/DT (e)	3,500 SF	467.48	1,636	44.61	156	33.03	116
Parcel 4A							
Apartments (i)	400 Units	6.60	2,639	0.37	147	0.48	193
Parcel 4B							
Townhomes (i)	95 Units	6.60	627	0.37	35	0.48	46
Totals			20,780		1,452		1,751

⁽a) Trip generation based on ITE Code #945 (Convenience Store/Gas Station).

As shown in Table 3, the Project is forecast to generate 20,780 ADT, with 1,452 AM peak hour trips and 1,751 PM peak hour trips.

⁽b) Trip generation based on ITE Code #941 (Quick Lubrication Vehicle Shop).

⁽c) Trip generation based on ITE Code #821 (Shopping Plaza).

⁽d) Trip generation based on ITE Code #932 (High-Turnover (Sit-Down) Restaurant).

⁽e) Trip generation based on ITE Code #934 (Fast-Food Restaurant with Drive-Through Window).

⁽f) Trip generation based on ITE Code #930 (Fast Casual Restaurant).

⁽g) Trip generation based on ITE Code #151 (Mini-Warehouse).

⁽h) Trip generation for Car Wash-Automated derived from local studies.

⁽i) Trip generation based on ITE Code #220 (Multi-Family Housing - Low Rise).

Internal Capture Trip Analysis

Given the mix of land uses, there will be some trips that travel between the various parcels that comprise the site and not affect the off-site street network. "Internal Capture" trips include trip interactions between the commercial uses as well as between the commercial uses and residential uses. The ITE mixed-use traffic model was used to estimate the number of trips that would be captured within the site (a copy of the mixed-use model is contained in the Technical Appendix for reference). Based on the results of the model, internal factors of 30% for ADT, 13% for the AM peak hour, and 45% for the PM peak hour were used. The traffic study assumes 45% of the automated carwash customers would come from the service station or convenience market. The 45% capture rate was determined based on data collected at two local service station sites in the Santa Barbara-Goleta area: 1) Mesa Fuel Depot located at 1929 Cliff Drive in Santa Barbara, and 2) Walnut Shell located at 5097 Hollister Avenue in Goleta. Worksheets showing the detailed calculations are contained in the Technical Appendix. Table 4 summarizes the internal/external trip generation estimates for the Project (also see trip generation worksheets in Technical Appendix for details).

Table 4
Project Trip Generation – Internal & External Trip Breakdown

Trip Type	ADT	AM Peak	PM Peak
Internal (30% ADT, 13% AM, 45% PM)	6,272	192	787
External (70% ADT, 87% AM, 55% PM)	14,509	1,260	961
Totals	20,781	1,452	1,748

The data presented in Table 4 show that 6,234 ADT, 189 AM peak hour trips, and 787 PM peak hour trips would be internal to the Project site. The remaining 14,547 daily trips, 1,263 AM peak hour trips, and 961 PM peak hour trips would be external to the Project site.

Commercial Pass-By/Primary Trip Analysis

Pursuant to ITE recommendations, the trip generation analysis also accounts for "Pass-By" trips and "Primary" trips that would be generated by the retail and restaurant uses. Pass-By trips are trips that would come from the existing traffic streams on Orcutt Expressway, the UVP, and Orcutt Road; and would not affect the study-area street network beyond the Project site. Primary trips are trips with the sole purpose of patronizing the commercial center (i.e., from home to the store and then return home). Based on the data presented in the ITE Trip Generation manual, the Pass-By trip percentages for the shopping center and restaurant uses range between 40% - 55%, the Pass-By trip percentage for the gas station is 75%, and the Pass-By trip percentage for the car wash is 20%. The trip generation worksheets contained in the Technical Appendix show the specific pass-by adjustments applied to each of the uses. Table 5 shows the breakdown of the retail/restaurant Pass-By and Primary trips.

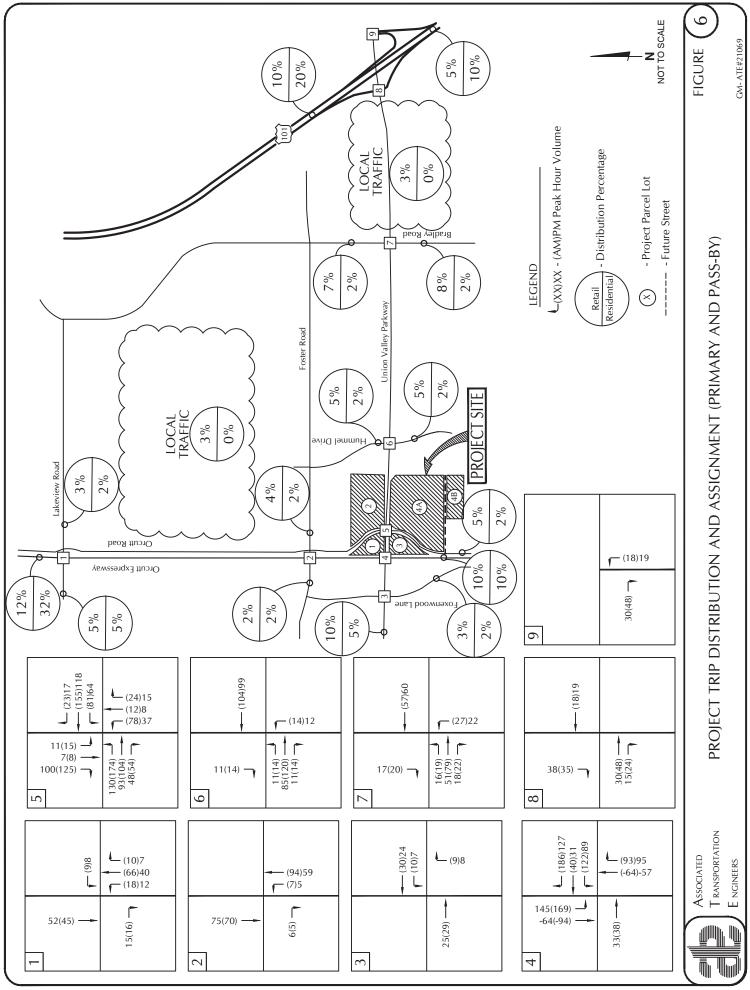
Table 5
Project Trip Generation – Commercial Trip Breakdown

		ADT		AM Peak Trips		PM Peak Trips	
	Pass-By	Pass-By	Primary	Pass-By	Primary	Pass-By	Primary
Land Use	Percentage	Trips	Trips	Trips	Trips	Trips	Trips
Shopping Center	40%	1,455	2,183	68	101	119	179
Sit Down Restaurants	43%	337	446	21	28	28	38
Fast Food Restaurants w/DT	55%	3,375	2,761	400	328	188	153
Gas Station	75%	1,055	352	105	35	76	25
Car Wash	20%	27	110	1	4	3	10
Totals		6,249	5,852	595	496	414	405

The data in Table 5 show that the commercial uses would generate 6,249 daily, 595 AM peak hour, and 414 PM peak hour Pass-By trips. The remaining 5,852 daily, 496 AM peak hour, and 405 PM peak hour trips generated by the commercial uses would be the Primary trips.

Table 6 summarizes the total Primary trips that would be external to the site – the trips that would affect the intersections in the study area.

Table 6
Project Trip Generation – External Trip Summary


Land use	ADT	AM Peak Trips	PM Peak Trips
Shopping Center	2,183	101	179
Sit Down Restaurants	446	28	38
Fast Food Restaurants w/DT	2,761	328	153
Gas Station	352	35	25
Car Wash	110	4	10
Lube Station	84	8	8
Mini-Storage	40	3	3
Residential	2,286	158	131
Total	8,262	665	547

Project Trip Distribution

The distribution pattern developed for the Project is based on existing traffic counts as well as general knowledge of the population, employment, and commercial centers in the Santa Maria area. Given that the traffic generated by the retail uses would be more locally oriented than the traffic generated by the residential uses, two different distribution patterns were developed for these Project components. The retail pass-by trips were assigned to the driveways and the adjacent intersections based on the existing AM and PM peak hour traffic flows. Table 7 presents trip distribution patterns developed for the Project components and Figure 6 illustrates the distribution and assignment of Project traffic at the study-area intersections.

Table 7
Project Trip Distribution

Origin/Destination	Direction	Retail Percentage	Residential Percentage
US Highway 101	North	10%	20%
	South	5%	10%
Orcutt Expressway n/o Lakeview Rd	North	12%	32%
Orcutt Expressway s/o UVP	South	10%	10%
Orcutt Road	North (Local)	3%	0%
	South	5%	2%
Hummel Drive	North	5%	2%
Hummer Drive	South	5%	2%
Foxenwood Lane	South	3%	2%
D D	North	7%	2%
Bradley Road	South	8%	2%
Lakeview Road w/o Orcutt Expressway	West	5%	5%
Lakeview Road e/o Orcutt Expressway	East	3%	2%
Foster Road	East	2%	2%
	West	4%	2%
UVP	East (local)	3%	0%
	West	10%	5%
Totals		100%	100%

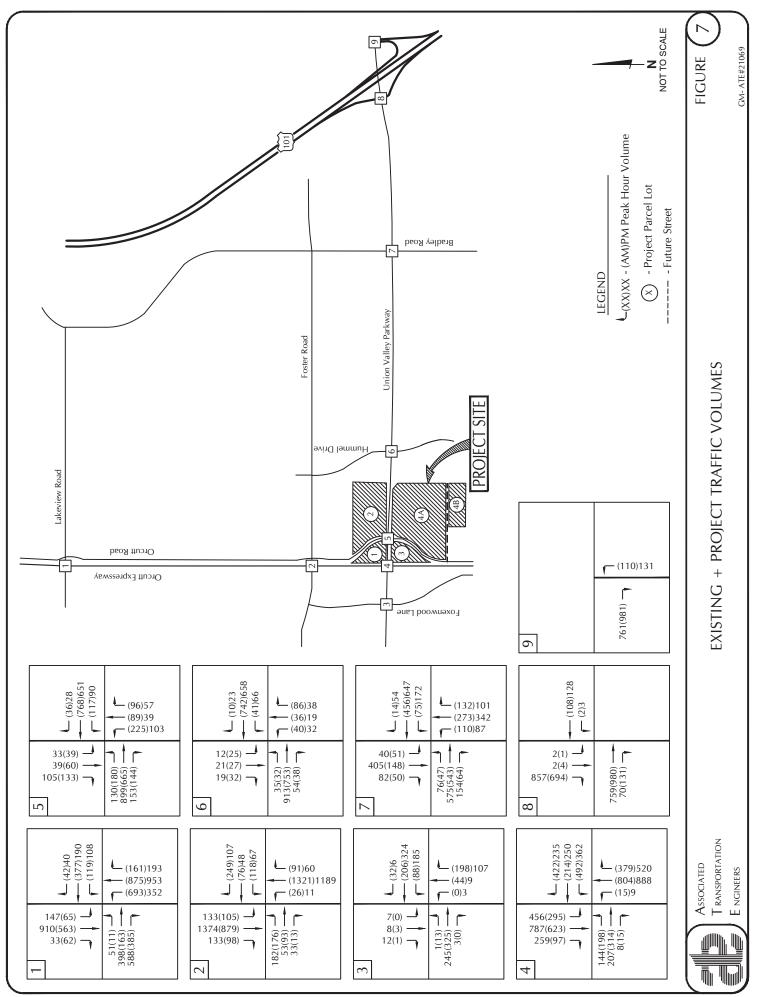
Existing + Project Intersection Operations

Levels of service were calculated for the study-area intersections assuming the Existing + Project traffic volumes shown on Figure 7. Tables 8 and 9 compare the Existing and Existing + Project level of service forecasts and identify the Project's consistency with the City's LOS D standard and the County's LOS C – D standard.

Table 8
Existing + Project Levels of Service - AM Peak Hour

	Existing		Existing + F		
Intersection	ICU or Delay	LOS	ICU or Delay	LOS	Consistent?
Orcutt Expressway/Lakeview Rd	0.61	LOS B	0.63	LOS B	Yes
Orcutt Expressway /Foster Rd	0.71	LOS C	0.74	LOS C	Yes
UVP/Foxenwood Ln (a)	14.3 sec.	LOS B	15.8 sec.	LOS B	Yes
UVP/ Orcutt Expressway	0.62	LOS B	0.67	LOS B	Yes
UVP/Orcutt Road	0.46	LOS A	0.73	LOS C	Yes
UVP/Hummel Drive (a)	34.7 sec.	LOS D	>50.0 sec.	LOS F	No
UVP/Bradley Road	0.39	LOS A	0.42	LOS A	Yes
UVP/US 101 SB Ramps (a)	12.4 sec.	LOS B	13.2 sec.	LOS B	Yes
UVP/US 101 NB Ramps(a)	9.3 sec.	LOS A	9.4 sec.	LOS A	Yes

Bolded Values exceed City/County LOS policy standards.


Table 9
Existing + Project Levels of Service - PM Peak Hour

	Existing		Existing + Project		
Intersection	ICU or Delay	LOS	ICU or Delay	LOS	Consistent?
Orcutt Expressway/Lakeview Rd	0.66	LOS B	0.69	LOS B	Yes
Orcutt Expressway /Foster Rd	0.64	LOS B	0.66	LOS B	Yes
UVP/Foxenwood Ln (a)	9.9 sec.	LOS A	10.2 sec.	LOS B	Yes
UVP/ Orcutt Expressway	0.63	LOS B	0.70	LOS B	Yes
UVP/Orcutt Road	0.47	LOS A	0.64	LOS B	Yes
UVP/Hummel Drive (a)	34.3 sec.	LOS D	>50.0 sec.	LOS F	No
UVP/Bradley Road	0.51	LOS A	0.54	LOS A	Yes
UVP/US 101 SB Ramps (a)	15.0 sec.	LOS B	16.6 sec.	LOS C	Yes
UVP/US 101 NB Ramps(a)	9.4 sec.	LOS A	9.5 sec.	LOS A	Yes

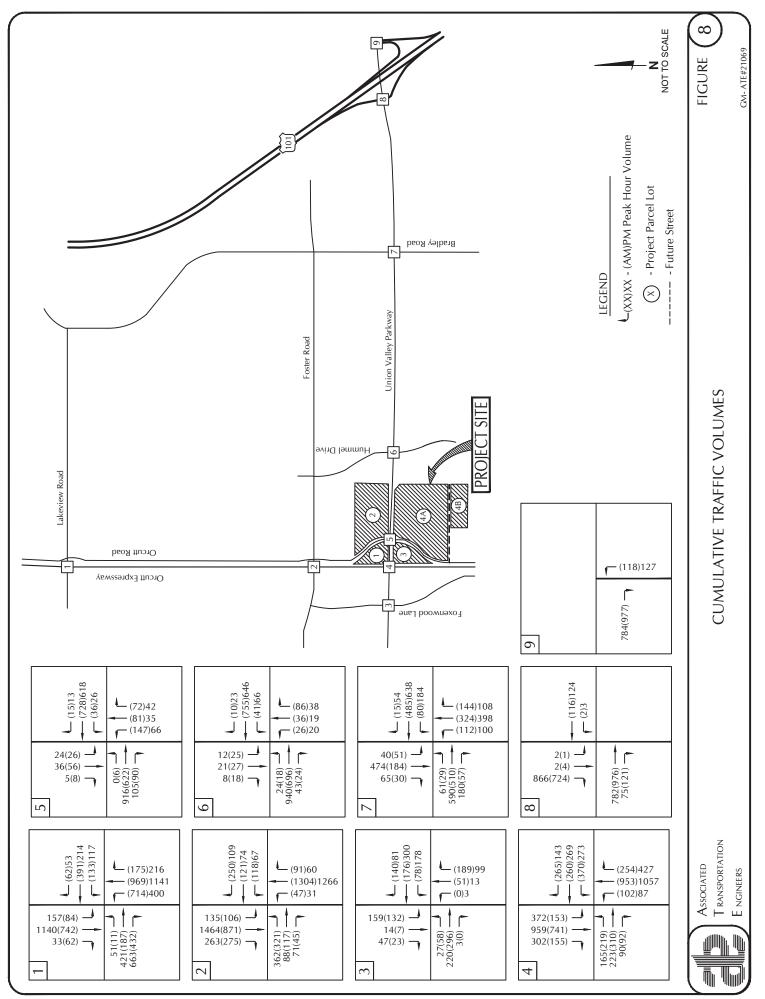
Bolded Values exceed City/County LOS policy standards.

⁽a) Unsignalized intersection. LOS based on average weighted control delay per vehicle in seconds.

⁽a) Unsignalized intersection. LOS based on average weighted control delay per vehicle in seconds.

The data presented in Tables 8 and 9 indicate that the UVP/Hummel Drive intersection is forecast to operate in the LOS F range during the AM and PM peak hours with the addition of Project traffic, which exceeds the County's LOS C standard. The remaining intersections are forecast to operate in the LOS A-C range during the AM and PM peak hours with Existing + Project traffic, which meet the City's LOS D operating standard and the County's LOS C - D operating standard. Improvements for the UVP/Hummel Drive intersection are presented in the Recommended Improvements section of this report.

CUMULATIVE CONDITIONS


Cumulative Traffic Volumes

Cumulative traffic volumes were forecast for the study-area intersections assuming development of the approved and pending projects located in the adjacent portions of the City and the County (list of cumulative projects is contained in the Technical Appendix). Trip generation estimates were developed for the cumulative projects using ITE rates or from traffic studies prepared for the cumulative projects (cumulative trip generation calculations are contained in the Technical Appendix). The traffic generated by the Santa Maria Airport Business Park Rezone Project was included in cumulative traffic forecasts. It is noted that the SEIR prepared for this project required that the traffic signals be installed at the UVP/Foxenwood Lane intersection; this improvement is therefore included in the cumulative analysis. It is also noted that Santa Barbara County approved an amendment to the Orcutt Community Plan to provide a local road connection between the UVP/US 101 interchange and the adjoining frontage road on the east side of US 101. This Project is not scheduled or funded at this time and thus is not included in the Cumulative analysis.

Traffic generated by the cumulative projects was then added to the Existing volumes to produce the Cumulative traffic forecasts. Figure 8 shows the Cumulative traffic volumes and Figure 9 shows the Cumulative + Project volumes.

Cumulative Intersection Operations

Levels of service were calculated for the study-area intersections assuming the Cumulative and Cumulative + Project traffic volumes presented on Figures 8 and 9. Tables 10 and 11 compare the Cumulative and Cumulative + Project levels of service forecasts and identify the Project's consistency with the City's LOS D standard and the County's LOS C - D standard.

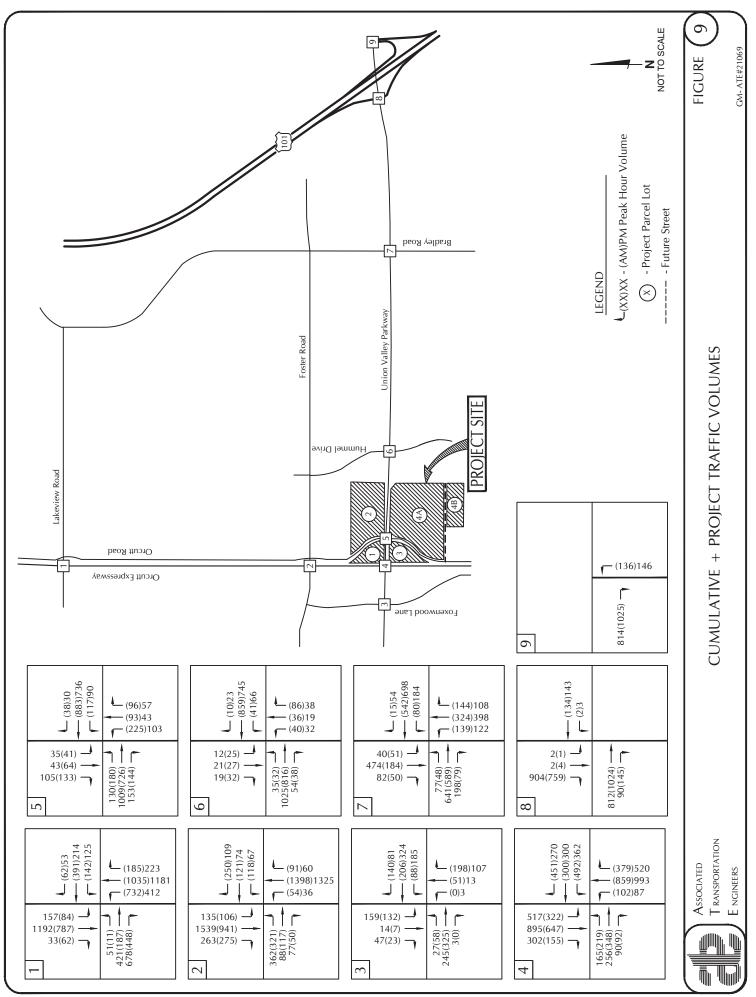


Table 10
Cumulative + Project Levels of Service - AM Peak Hour

	Cumulative		Cumulative +		
Intersection	ICU or Delay	LOS	ICU or Delay	LOS	Consistent?
Orcutt Expressway/Lakeview Rd	0.70	LOS B	0.72	LOS C	Yes
Orcutt Expressway /Foster Rd	0.78	LOS C	0.81	LOS D	Yes
UVP/Foxenwood Ln (a)	0.48	LOS A	0.50	LOS A	Yes
UVP/ Orcutt Expressway	0.66	LOS B	0.73	LOS C	Yes
UVP/Orcutt Road	0.48	LOS A	0.77	LOS C	Yes
UVP/Hummel Drive (b)	>50.0 sec.	LOS F	>50.0 sec.	LOS F	No
UVP/Bradley Road	0.42	LOS A	0.47	LOS A	Yes
UVP/US 101 SB Ramps (b)	13.8 sec.	LOS B	14.8 sec.	LOS B	Yes
UVP/US 101 NB Ramps(b)	9.4 sec.	LOS A	9.5 sec.	LOS A	Yes

Bolded Values exceed City/County LOS policy standards.

- (a) Cumulative analysis assumes installation of traffic signals by Airport Business Park Specific Plan.
- (b) Unsignalized intersection. LOS based on average weighted control delay per vehicle in seconds.

Table 11
Cumulative + Project Levels of Service - PM Peak Hour

	Cumulative		Cumulative + Project		
Intersection	ICU or Delay	LOS	ICU or Delay	LOS	Consistent?
Orcutt Expressway/Lakeview Rd	0.79	LOS C	0.81	LOS D	Yes
Orcutt Expressway /Foster Rd	0.75	LOS C	0.77	LOS C	Yes
UVP/Foxenwood Ln (a)	0.45	LOS A	0.47	LOS A	Yes
UVP/ Orcutt Expressway	0.70	LOS B	0.78	LOS C	Yes
UVP/Orcutt Road	0.50	LOS A	0.68	LOS B	Yes
UVP/Hummel Drive (b)	>50.0 sec.	LOS F	>50.0 sec.	LOS F	No
UVP/Bradley Road	0.57	LOS A	0.61	LOS B	Yes
UVP/US 101 SB Ramps (b)	16.6 sec.	LOS C	18.7 sec.	LOS C	Yes
UVP/US 101 NB Ramps(b)	9.5 sec.	LOS A	9.6 sec.	LOS A	Yes

Bolded Values exceed City/County LOS policy standards.

- (a) Cumulative analysis assumes installation of traffic signals by Airport Business Park Specific Plan.
- (b) Unsignalized intersection. LOS based on average weighted control delay per vehicle in seconds.

As shown in Tables 10 and 11, the UVP/Hummel Drive intersection is forecast to operate in the LOS F range during the AM and PM peak hours with and without the addition of Project traffic, which exceeds the County's LOS C - D standard. The Orcutt Expressway/Lakeview Road intersection is forecast to operate in the LOS D range, which is considered acceptable for this location in OCP Policy CIRC-O-3 (see Transportation Policy Standards section). The remaining intersections are forecast to operate in the LOS A-C range during the AM and PM peak hours with Cumulative + Project traffic, which meet the City's LOS D operating standard and the County's LOS C - D operating standard. Improvements for the UVP/Hummel Drive intersection are presented in the Recommended Improvements section of this report.

County Roadway Segment Operations

The Project is an annexation to the City of Santa Maria, thus the City's Circulation Element policies will be the applicable standards to assess the transportation aspects of the Project.

With respect to the Orcutt Community Plan, the roadway policy applicable to the UVP states that:

"For Primary roadway segments where the Estimated Future Volume exceeds the Acceptable Capacity, a project is considered consistent with this section of the Community Plan if: 1) intersections affected by traffic assigned from the project operate at or above minimum level of service standards, or 2) if the project provides a contribution toward an alternative transportation project (as identified in the OTIP) that is deemed to offset the effects of project-generated traffic."

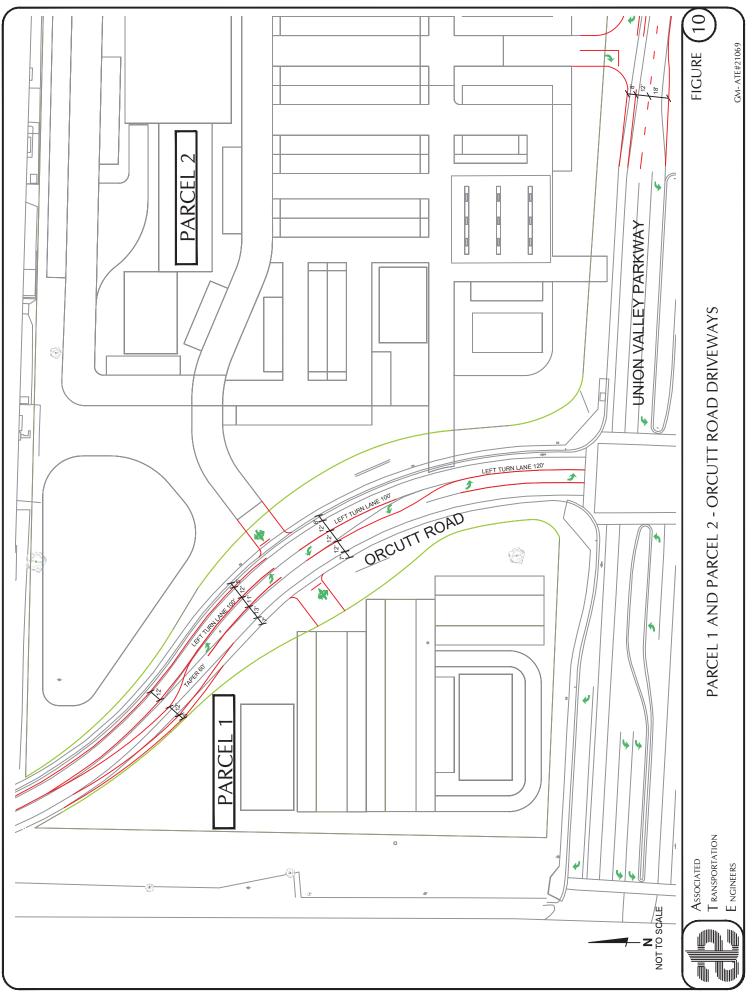
The LOS analysis presented previously in the report shows that the intersections along the UVP from SR 135 to US 101, including Hummel Drive and Bradley Road, are forecast to operate in the LOS A – C range (assumes installation of signals at UVP/Hummel Drive intersection). The Project would therefore be consistent with the County's policies.

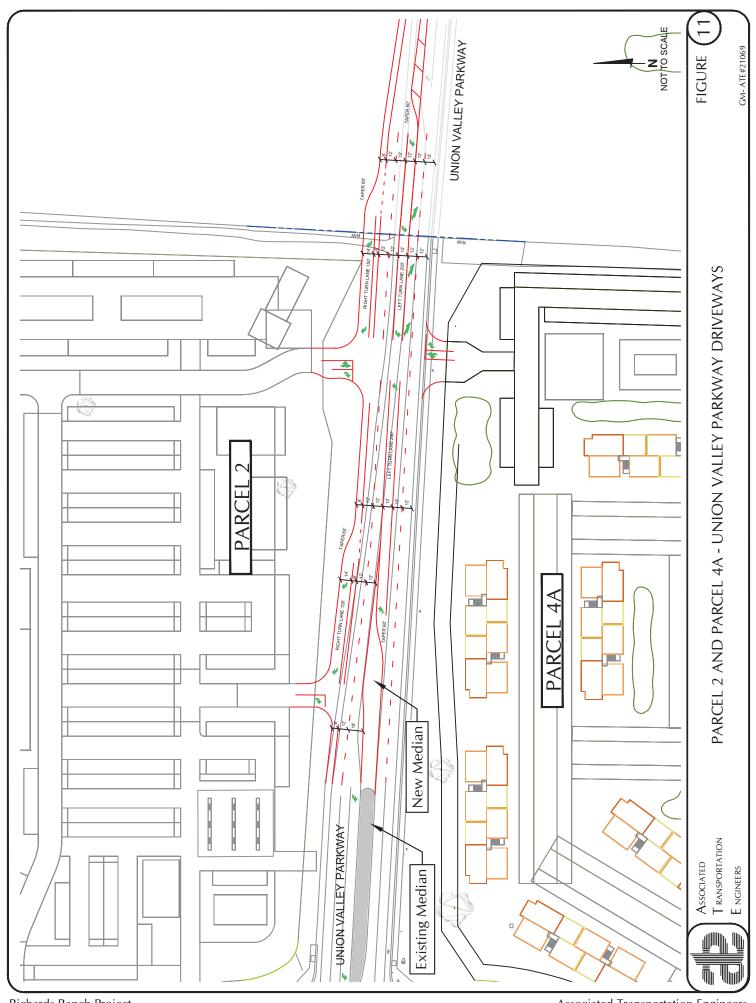
SITE ACCESS AND CIRCULATION

No detailed access plans were developed for the preliminary site plan that was submitted for review. An access and circulation analysis were therefore completed for each parcel, as reviewed review below. It is noted that the design and location of bus turnouts, non-motorized access elements, bike lanes, internal access designs, frontage improvements, streetlights, etc. will be addressed in more detail during the development review stage of the Project. The improvements will conform to City standards.

Parcel 1 Access and Circulation

This parcel is located on the northwest corner of the UVP/Orcutt Road intersection and would contain a gas station with a convenience mart and an auto lube facility. As shown on the retail site plan (see Figure 2a), access to this parcel is proposed via a driveway on the west side of Orcutt Road that would be aligned with a new driveway on the east side of Orcutt Road that would provide access to Parcel 2. Figure 10 shows the access improvements that should be considered for Parcel 1, which are reviewed below.


- 1. Frontage improvements should be implemented on the west side of Orcutt Road including curb, gutter, and sidewalk consistent, with the improvements that have been implemented on the east side of the roadway.
- 2. The driveway for Parcel 1 should be aligned with the driveway proposed for Parcel 2 on the east side of the roadway.
- 3. Orcutt Road should be widened to provide northbound and southbound left-turn lanes at the new driveway intersection.
- 4. The driveway approaches should be controlled by stop signs.
- 5. Pedestrian connections should be provided between the sidewalks on Orcutt Road and the proposed a convenience mart.

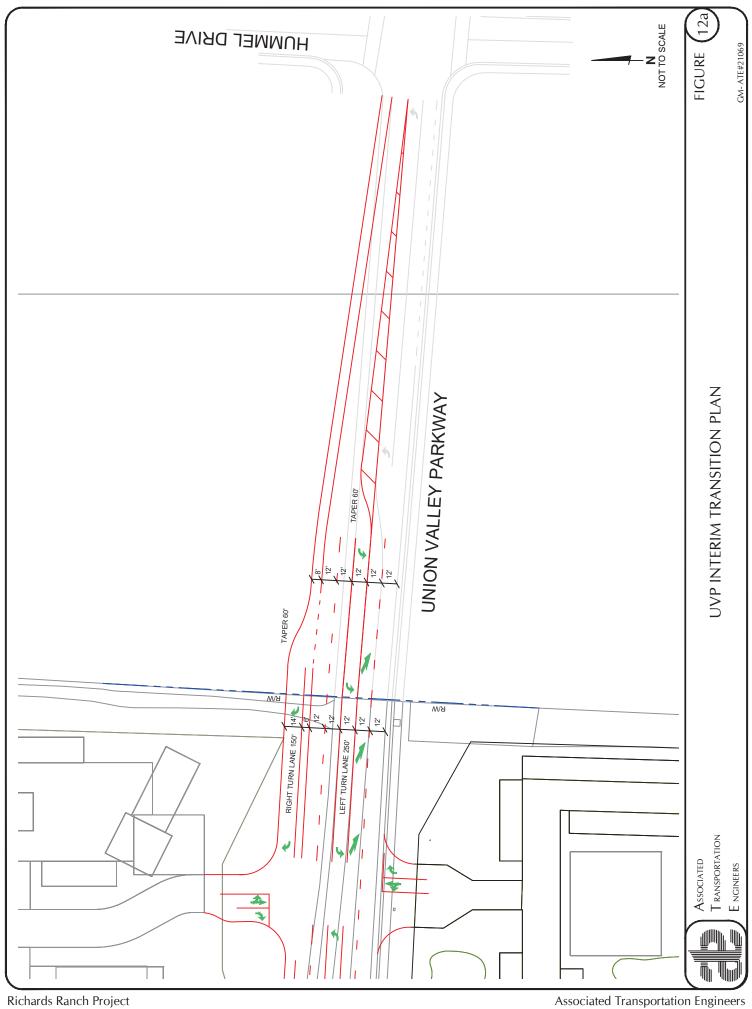

Parcel 2 Access and Circulation

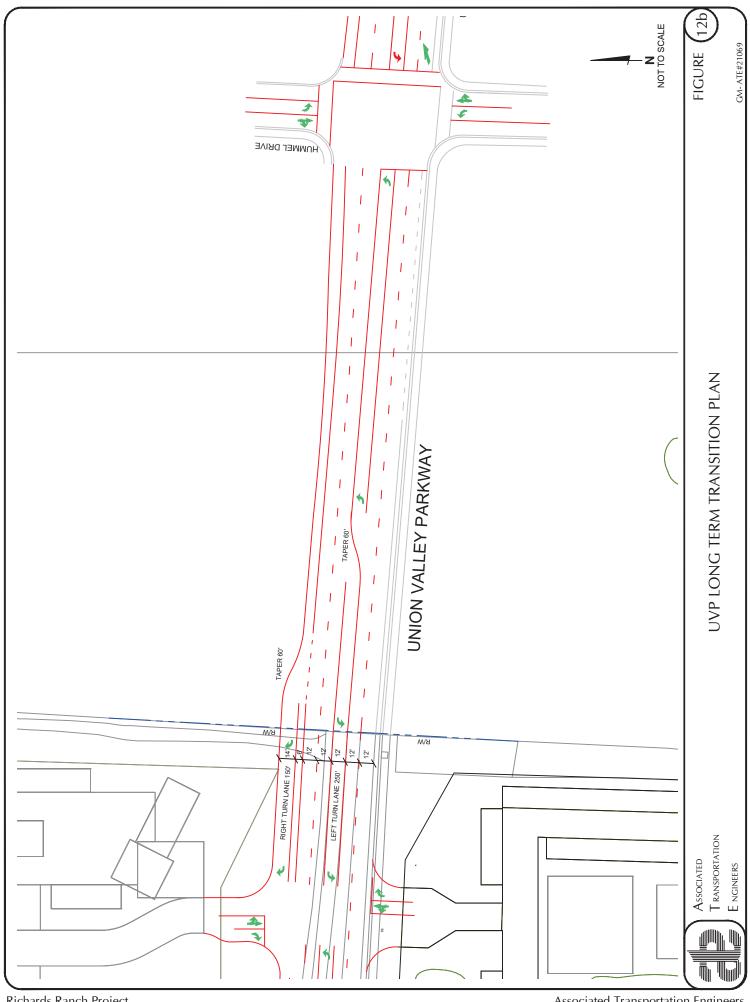
This parcel is located on the north side of the UVP east of Orcutt Road and would contain 8 restaurant buildings, a neighborhood retail center, and a mini-storage facility. As shown on the retail site plan (see Figure 2a), access to the site is proposed via one driveway on the east side of Orcutt Road and two driveways on the north side of the UVP. Figures 10 and 11 show the access improvements that should be considered for Parcel 2, which are reviewed below.

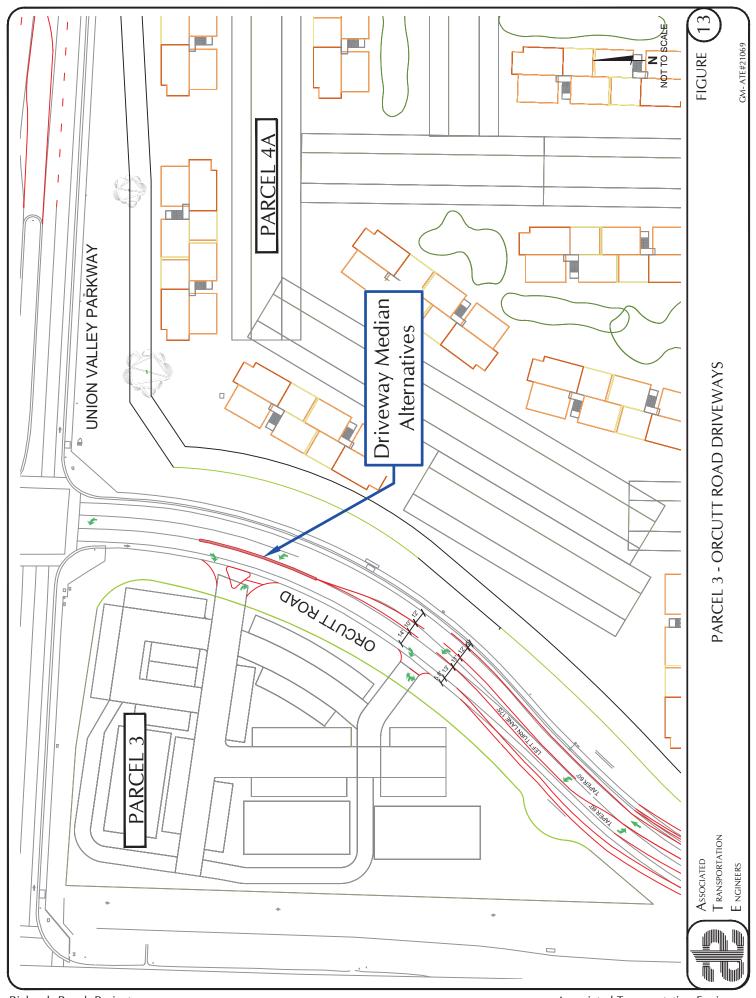
Orcutt Road

- 1. The driveway for Parcel 2 should be aligned with the driveway proposed for Parcel 1 on the west side of the roadway.
- 2. Northbound and southbound left-turn lanes should be provided on Orcutt Road at the new driveway intersection.
- 3. The driveway approaches at the intersection should be controlled by stop signs.
- 4. Pedestrian connections should be provided between the sidewalks on Orcutt Road and the proposed retail buildings.

UVP


- 1. Frontage improvements should be implemented on the north side of the UVP including curb, gutter, and sidewalk, consistent with the improvements that have been implemented on the south side of the UVP.
- 2. The westerly driveway for Parcel 2 should be restricted to right-turns in/right-turns out with the easterly extension of the existing median on the UVP. A westbound right-turn lane should be provided at the driveway.
- 3. The easterly driveway for Parcel 2 should be aligned with the driveway proposed for Parcel 4A on the south side of the UVP. A westbound right-turn lane should be provided at the driveway.
- 4. Eastbound and westbound left-turn lanes should be provided on the UVP at the new easterly driveways
- 5. The easterly driveway should be configured with a through-left-turn lane and a right-turn lane.
- 6. The driveway approaches at the intersection should be controlled by stop signs.
- 7. Adequate vehicle storage should be provided in the proposed drive-through lanes.
- 8. Pedestrian connections should be provided between the sidewalks on the UVP and the proposed retail buildings


Implementation of the proposed frontage improvements on the north side of the UVP will require a transition to the two-lane section of the UVP west of the site and the UVP/Hummel Drive intersection. The interim transition plan, shown on Figure 12a, would transition the UVP back to a two-lane section on the east side of the UVP/Hummel Drive intersection. The long-term transition plan shown on Figure 12b, would provide full width improvements along the UVP through the Hummel Drive intersection and then transition back to the 2-lane section west of the intersection.


Parcel 3 Access and Circulation

This parcel is located on the southwest corner of the UVP/Orcutt Road intersection and would contain a restaurant with a drive-thru lane and an automated carwash. As shown on the retail site plan, access to this parcel is proposed via two driveways on the west side of Orcutt Road. Figure 13 shows the access improvements that should be considered for Parcel 3, which are reviewed below.

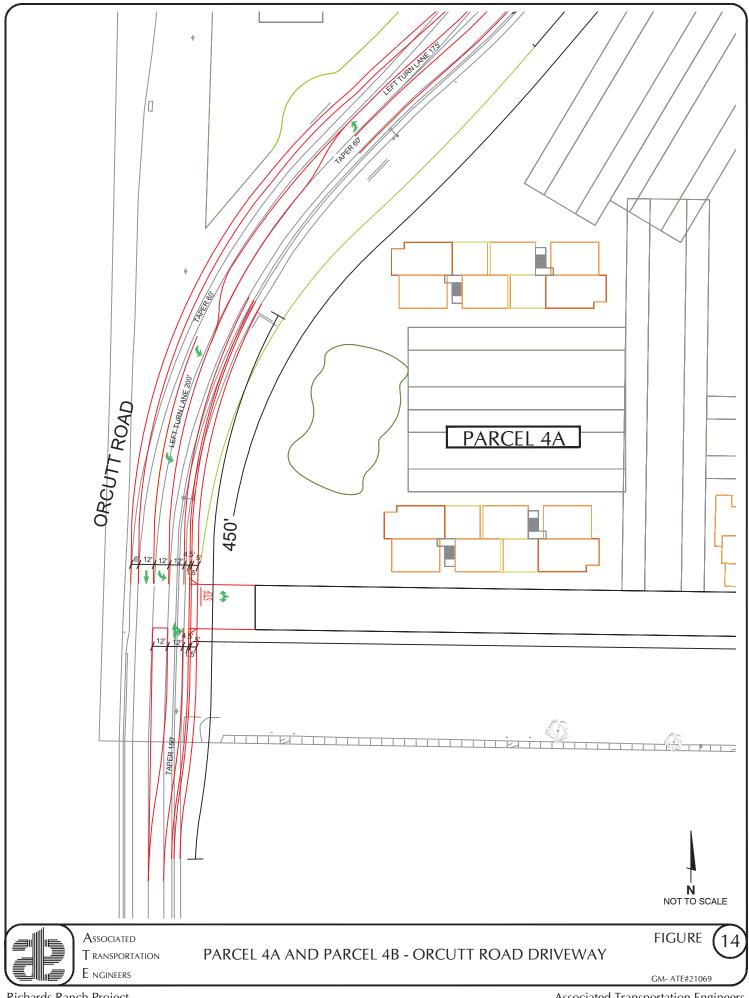
- 1. Frontage improvements should be implemented on the west side of Orcutt Road including curb, gutter, and sidewalk, consistent with the improvements that have been implemented on the east side of the roadway.
- 2. The northerly driveway would be designed with a median island treatment to limit movements to right-turn in/right-turn out (two options shown).
- 3. Orcutt Road should be widened to provide a northbound left-turn lane at the southerly driveway intersection.
- 4. The driveway approaches should be controlled by stop signs.
- 5. Pedestrian connections should be provided between the sidewalks on Orcutt Road and the proposed restaurant.

Parcel 4A Access and Circulation

This parcel is located on the south side of the UVP east of Orcutt Road and would contain 400 apartments. As shown on the residential site plan (see Figure 2b), access to the site is proposed via a driveway on the UVP and a connection to a new east-west access road that would extend easterly from Orcutt Road between Parcels 4A and 4B. Figure 14 shows the access improvements that should be considered for Parcel 4A, which are reviewed below.

UVP

- 1. The driveway for Parcel 4A should be aligned with the easterly driveway for Parcel 2 on the north side of the UVP.
- 2. Eastbound and westbound left-turn lanes should be provided on the UVP at the new easterly driveways
- 3. The driveway should be configured with a through-left-turn lane and a right-turn lane.
- 4. The driveway approaches at the intersection should be controlled by stop signs.
- 5. Pedestrian connections should be provided between the sidewalks on the UVP and the proposed apartment buildings


Orcutt Road

- 1. Orcutt Road should be widened north and south of the driveway to provide a southbound left-turn lane at the new roadway connection.
- 2. The new roadway approach should be controlled by stop signs.
- 3. Pedestrian connections should be provided between the sidewalks on Orcutt Road and the proposed apartment buildings.

Parcel 4B Access and Circulation

This parcel is located south of Parcel 4A and east of the Gloria Dei Lutheran Church on Orcutt Road. Parcel 4B would contain 95 townhome units. As shown on residential site plan (see Figure 2b) access to the site is proposed via a new east-west access road that would extend easterly from Orcutt Road between Parcels 4A and 4B. Secondary access would be provided through the internal road system in the adjacent Parcel 4A which provides access to the UVP. Figure 14 shows the access improvements that should be considered for Parcel 4B, which are reviewed below.

- 1. Orcutt Road should be widened north and south of the driveway to provide a southbound left-turn lane at the new roadway connection.
- 2. The new roadway approach should be controlled by stop signs.
- 3. Pedestrian connections should be provided between the sidewalks on Orcutt Road and the proposed apartment buildings.

Driveway Operations

Levels of service were calculated for the Project's driveways using the methodology outlined in the Highway Capacity Manual for 2-way stop-sign controlled intersections. Levels of service were calculated for the project driveways assuming the Cumulative + Project traffic volumes presented on Figure 15 (level of service calculations are contained in the Technical Appendix). Tables 12 and 13 present the Cumulative + Project levels of service for the project driveway intersections and identify locations that are forecast to exceed the City's LOS D standard and the County's LOS C – D standard.

Table 12
AM Peak Hour Project Driveway Operations - Cumulative + Project Conditions

	Delay / LOS	
Intersection	Cumulative + Project	Consistent?
Orcutt Road/Parcel 1&2 Driveways		
EB Parcel 1 Driveway Left + Thru + Right	9.1 Sec/LOS A	
WB Parcel 2 Driveway Left+Thru+Right	12.3 Sec./LOS B	V
SB Orcutt Road Left	7.6 Sec./LOS A	Yes
NB Orcutt Road Left	7.5 Sec./LOS A	
Average Weighted Delay	9.7 Sec./LOS A	
Union Valley Parkway/Parcel 2 Easterly & Parcel 4 Driveways		
EB Union Valley Parkway Left	10.9 Sec./LOS B	
WB Union Valley Parkway Left	9.5 Sec./LOS A	
SB Parcel 2 Easterly Driveway Left and Right	29.5 Sec./LOS D	Yes
NB Parcel 4 Driveway Left and Right	23.1 Sec./LOS C	
Average Weighted Delay	18.7 Sec./LOS C	
Union Valley Parkway/Parcel 2 Westerly Driveway		V
SB Parcel 2 Westerly Driveway Right	14.5 Sec./ LOS B	Yes
Orcutt Road/Parcel 3 Northerly Driveway		V
EB Parcel 3 Northerly Driveway Right	9.5 Sec./LOS A	Yes
Orcutt Road/Parcel 3 Southerly Driveway		
EB Parcel 3 Southerly Driveway Left + Right	12.2 Sec./LOS B	V
NB Orcutt Road Left	7.7 Sec./LOS A	Yes
Average Weighted Delay	11.2 Sec./LOS B	
Orcutt Road/Parcel 5 Driveway		
WB Parcel 5 Driveway Left + Right	10.4 Sec./LOS B	V
SB Orcutt Road Left	7.9 Sec./LOS A	Yes
Average Weighted Delay	9.8 Sec./LOS A	

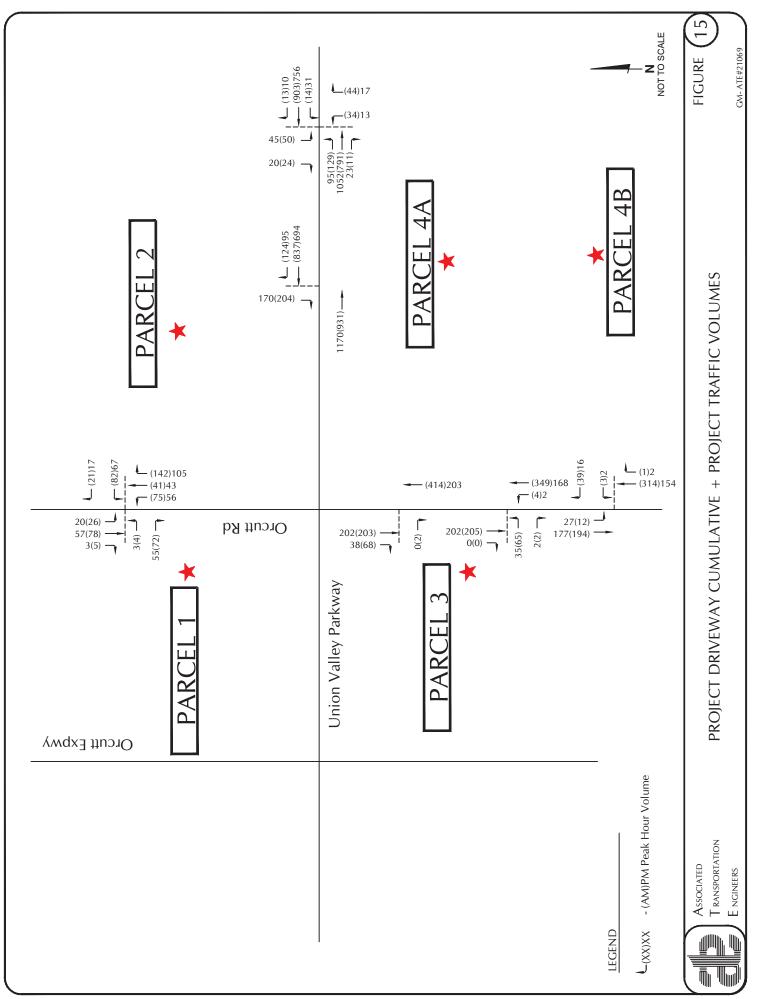


Table 13
PM Peak Hour Project Driveway Operations - Cumulative + Project Conditions

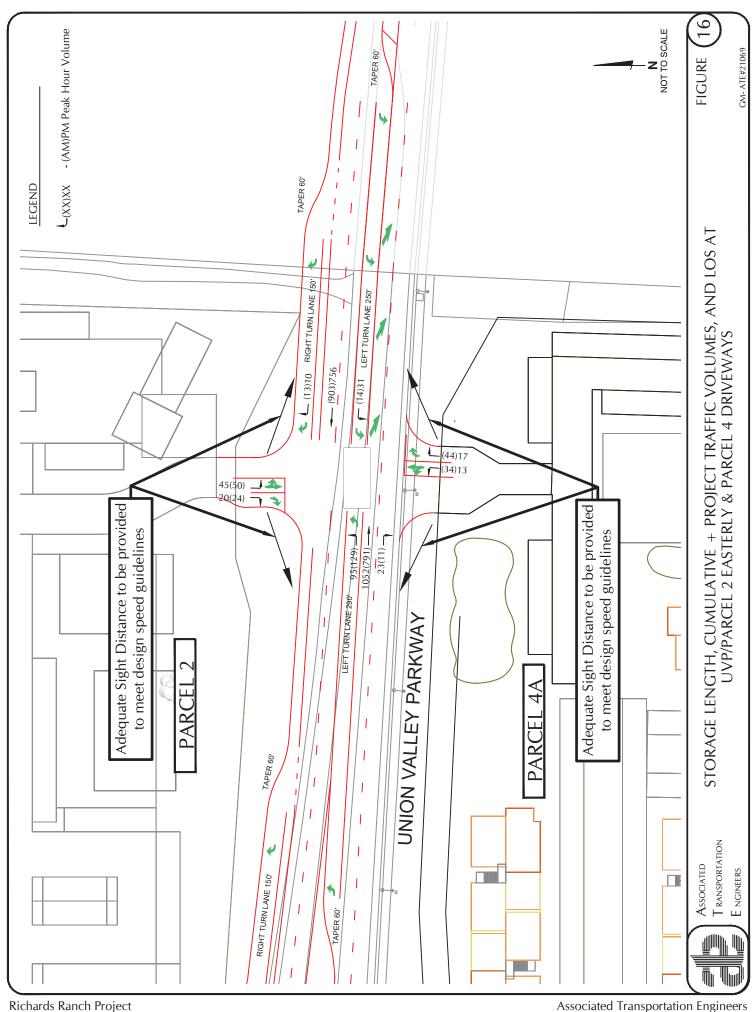
	Delay / LOS	
Intersection	Cumulative + Project	Consistent?
Orcutt Road/Parcel 1&2 Driveways		
EB Parcel 1 Driveway Left+Thru+Right	8.9 Sec/LOS A	
WB Parcel 2 Driveway Left+Thru+Right	11.2 Sec./LOS B	V
SB Orcutt Road Left	7.6 Sec./LOS A	Yes
NB Orcutt Road Left	7.4 Sec./LOS A	
Average Weighted Delay	9.3 Sec./LOS A	
Union Valley Parkway/Parcel 2 Easterly & Parcel 4 Driveways		
EB Union Valley Parkway Left	9.9 Sec./LOS A	
WB Union Valley Parkway Left	10.9 Sec./LOS B	V
SB Parcel 2 Easterly Driveway Left and Right	26.7 Sec./LOS D	Yes
NB Parcel 4 Driveway Left and Right	23.6 Sec./LOS C	
Average Weighted Delay	16.8 Sec./LOS C	
Union Valley Parkway/Parcel 2 Westerly Driveway		V
SB Parcel 2 Westerly Driveway Right	12.5 Sec./ LOS B	Yes
Orcutt Road/Parcel 3 Northerly Driveway		V
EB Parcel 3 Northerly Driveway Right	9.4 Sec./LOS A	Yes
Orcutt Road/Parcel 3 Southerly Driveway		
EB Parcel 3 Southerly Driveway Left + Right	10.6 Sec./LOS B	V
NB Orcutt Road Left	7.6 Sec./LOS A	Yes
Average Weighted Delay	10.4 Sec./LOS B	
Orcutt Road/Parcel 5 Driveway		
WB Parcel 5 Driveway Left + Right	9.3 Sec./LOS A	V
SB Orcutt Road Left	7.6 Sec./LOS A	Yes
Average Weighted Delay	8.3 Sec./LOS A	

As shown in Tables 12 and 13, the project driveway intersections are forecast to operate in the LOS A - C range under Cumulative + Project conditions during the AM and PM peak hours, which meet the City's LOS D standard and the County's LOS C – D standard.

City staff requested a queueing analysis for the Project driveways to determine the future vehicle queues. The analysis assumes the lane geometry shown in Figures 10 – 14. Tables 14 and 15 summarize the peak (95th) queue forecasts for the Project driveways.

Table 14
AM Peak Hour Driveway Queues - Cumulative + Project Conditions

	95 th Queue Length
Intersection	Cumulative + Project
Orcutt Road/Parcel 1&2 Driveways	
EB Parcel 1 Driveway Left + Thru + Right	1 Vehicle
WB Parcel 2 Driveway Left+Thru+Right	1 Vehicle
SB Orcutt Road Left	1 Vehicle
NB Orcutt Road Left	1 Vehicle
Union Valley Parkway/Parcel 2 Easterly & Parcel 4 Driveways	
EB Union Valley Parkway Left	1 Vehicle
WB Union Valley Parkway Left	1 Vehicle
SB Parcel 2 Easterly Driveway Left	1 Vehicle
SB Parcel 2 Easterly Driveway Right	1 Vehicle
NB Parcel 4 Driveway Left	1 Vehicle
NB Parcel 4 Driveway Right	1 Vehicle
Union Valley Parkway/Parcel 2 Westerly Driveway	
SB Parcel 2 Westerly Driveway Right	2 Vehicles
Orcutt Road/Parcel 3 Northerly Driveway	
EB Parcel 3 Northerly Driveway Right	0 Vehicle
Orcutt Road/Parcel 3 Southerly Driveway	
EB Parcel 3 Southerly Driveway Left + Right	1 Vehicle
NB Orcutt Road Left	0 Vehicle
Orcutt Road/Parcel 5 Driveway	
WB Parcel 5 Driveway Left + Right	1 Vehicle
SB Orcutt Road Left	0 Vehicle


Table 15
PM Peak Hour Driveway Queues - Cumulative + Project Conditions

	95 th Queue Length
Intersection	Cumulative + Project
Orcutt Road/Parcel 1&2 Driveways	
EB Parcel 1 Driveway Left + Thru + Right	1 Vehicle
WB Parcel 2 Driveway Left+Thru+Right	1 Vehicle
SB Orcutt Road Left	0 Vehicle
NB Orcutt Road Left	1 Vehicle
Union Valley Parkway/Parcel 2 Easterly & Parcel 4 Driveways	
EB Union Valley Parkway Left	1 Vehicle
WB Union Valley Parkway Left	1 Vehicle
SB Parcel 2 Easterly Driveway Left	1 Vehicle
SB Parcel 2 Easterly Driveway Right	1 Vehicle
NB Parcel 4 Driveway Left	1 Vehicle
NB Parcel 4 Driveway Right	1 Vehicle
Union Valley Parkway/Parcel 2 Westerly Driveway	
SB Parcel 2 Westerly Driveway Right	1 Vehicles
Orcutt Road/Parcel 3 Northerly Driveway	
EB Parcel 3 Northerly Driveway Right	0 Vehicle
Orcutt Road/Parcel 3 Southerly Driveway	
EB Parcel 3 Southerly Driveway Left + Right	1 Vehicle
NB Orcutt Road Left	0 Vehicle
Orcutt Road/Parcel 5 Driveway	
WB Parcel 5 Driveway Left + Right	1 Vehicle
SB Orcutt Road Left	1 Vehicle

The data presented in Tables 14 and 15 show that all the approaching movements at the Project driveways are forecast to have less than 2 vehicles in queue.

UVP/Parcel 2 Easterly & Parcel 4 Driveways

As requested by City staff, the UVP/Parcel 2 Easterly & Parcel 4 Driveway intersection was analyzed. Figure 16 presents the storage length, Cumulative + Project traffic volumes, and LOS at this intersection. As shown, the driveways are forecast to operate in the LOS C range and there is adequate left-turn storage on UVP for the full access driveway. Sight distances at the driveways will be assessed in more detail during the development review stage of the Project to ensure that the minimum requirements meet the Caltrans minimum sight distance standard for the 50 MPH design speed on UVP (430 feet).

UVP QUEUING ANALYSIS

City staff and the peer review traffic consultant requested a queueing analysis for the UVP intersections adjacent to the Project site to determine if future vehicle queues will be accommodated in the available storage. The analysis assumes improvements to the median on UVP as shown in Figure 17. These median improvements increase the eastbound left-turn lane storage to 185 feet at the UVP/Orcutt Road intersection and the overall storage provided for the westbound dual left-turn lanes to 445 feet at the UVP/Orcutt Expressway intersection. The analysis also assumes a protected overlap westbound right-turn at the UVP/Orcutt Expressway intersection. The analysis reviews queue forecasts for the left-turn lanes and the adjacent through lanes under Cumulative + Project scenarios.

The queueing analysis was completed using the SYNCHRO software program. The SYNCHRO software implements the Highway Capacity Manual (HCM) operations methodology and predicts both "50th Percentile" and "95th Percentile" queue forecasts for the peak period. The 50th percentile queue forecasts represent the average queues during the peak period. The 95th percentile queue forecasts represent the peak queues during the peak period and are recommended for design purposes. Worksheets showing the queue forecasts are contained in the Technical Appendix. Tables 16 and 17 summarize the storage along with the average (50th) and peak (95th) queue forecasts for UVP intersections adjacent to the site.

Table 16
Cumulative + Project AM Peak Hour
Storage Length and Left-Turn Queues and Storage Requirements

Intersection	Storage Length	50 [™] % Queue	95 th % Queue
UVP/Orcutt Expressway			
WB Left-Turn #1	445 Feet	124 Feet	207 Feet
WB Left-Turn #2	4431661	130 Feet	188 Feet
 WB Through #1 	335 Feet	73 Feet	113 Feet
• WB Through #2	335 Feet	65 Feet	140 Feet
SB Left-Turn #1	615 Feet	142 Feet	211 Feet
SB Left-Turn #2	615 Feet	174 Feet	231 Feet
UVP/Orcutt Road			
EB Left-Turn	185 Feet	90 Feet	114 Feet
• EB Through #1	390 Feet	105 Feet	155 Feet
• EB Through #2	390 Feet	184 Feet	289 Feet
WB Left-Turn	270 Feet	49 Feet	109 Feet
NB Left-Turn	245 Feet	102 Feet	156 Feet
SB Left-Turn	175 Feet	24 Feet	60 Feet

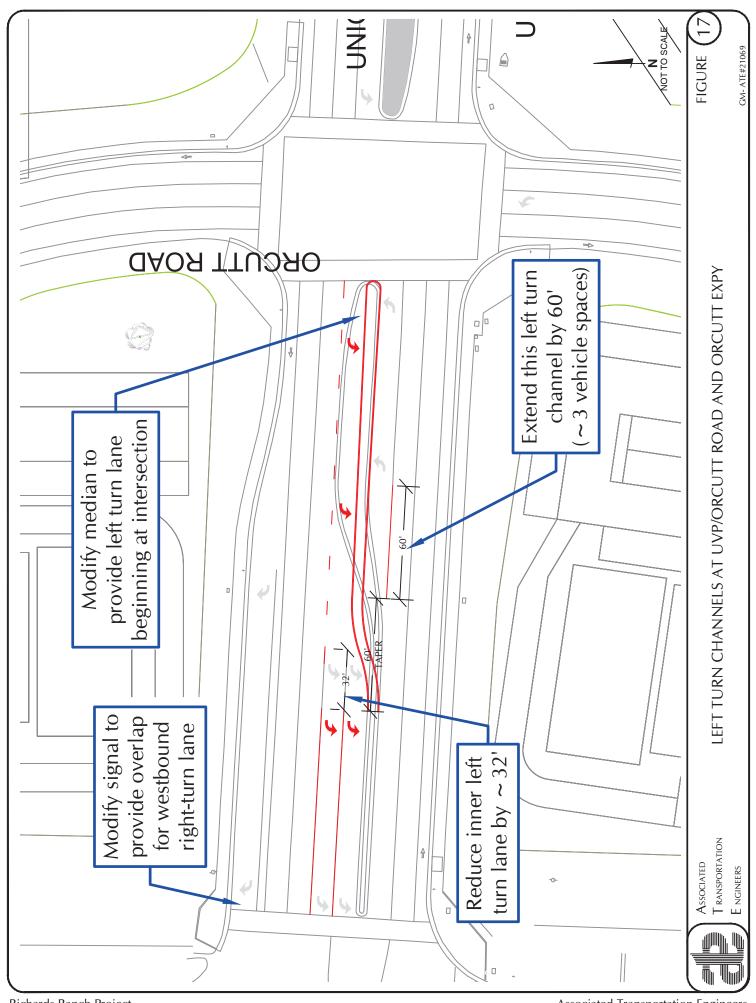


Table 17
Cumulative + Project PM Peak Hour
Storage Length and Left-Turn Queues and Storage Requirements

Intersection	Storage Length	50 [™] % Queue	95 th % Queue
UVP/Orcutt Expressway			
WB Left-Turn #1	445 Feet	96 Feet	155 Feet
WB Left-Turn #2	4431661	95 Feet	121 Feet
 WB Through #1 	335 Feet	53 Feet	120 Feet
• WB Through #2	335 Feet	59 Feet	110 Feet
SB Left-Turn #1	615 Feet	204 Feet	314 Feet
SB Left-Turn #2	615 Feet	246 Feet	339 Feet
UVP/Orcutt Road			
EB Left-Turn	185 Feet	104 Feet	135 Feet
• EB Through #1	390 Feet	209 Feet	369 Feet
• EB Through #2	390 Feet	253 Feet	384 Feet
WB Left-Turn	270 Feet	39 Feet	56 Feet
NB Left-Turn	245 Feet	77 Feet	118 Feet
SB Left-Turn	175 Feet	27 Feet	66 Feet

The data presented in Tables 16 and 17 indicate that all of the storage lengths at the intersections meet the 50th and 95th percentile queue forecasts with the proposed improvements of the median and the protected overlap movement.

ACCIDENT ANALYSIS

An accident analysis was completed to evaluate the accident rates at the key intersections within the UVP corridor adjacent to the Project site, which include UVP/Foxenwood Lane, UVP/Orcutt Expressway, UVP/Orcutt Road, UVP/Hummel Drive, and UVP/Bradley Road. Accident data was obtained from the City of Santa Maria for the most current 3-year period of accident records available (copy of 2018-2020 accident data is attached).

It is important to note that accident data is used as a screening tool to identify potential safety problems. The rate of accidents was calculated for each intersection and then compared to California statewide averages for similar facilities to identify potential safety issues. By nature, accident rates experienced on a facility are often higher than the statewide average rate for similar facilities since the statewide averages are comprised of lower-than-average rates + higher-than-average rates (lower + higher = average).

If the accident rate experienced on a facility is higher than the statewide average, the Caltrans significance test is performed to determine if the number of accidents that occurred on the facility is statistically significant. If the number of accidents experienced is statistically significant, more detailed safety investigations are performed to determine if there are accident patterns that can be corrected by changing design features of the facility (e.g., widen traffic lanes, widen roadway shoulders, change roadway curvatures, add signs, install traffic signals, etc.).

Accident rates were calculated for the each of the UVP intersections adjacent to the Project stie using the 3-year accident histories. The "area of influence" for each intersection is defined as within 250 feet of the intersection. The rate of accidents was calculated and then compared to California statewide average for similar facilities. Table 18 lists the actual rate of accidents for the 3-year period and compares the rates to the California statewide averages for similar intersections (see attached accident rate calculations for more details).

Table 18
UVP Intersections - Accident Rates

			Statewide
Location	# Accidents	Accident Rate(a)	Average Rate(a)
UVP Foxenwood Lane	1 Accident	0.12 per mev	0.24 per mev
UVP/Orcutt Expressway	12 Accidents	0.35 per mev	0.42 per mev
UVP/Orcutt Road	9 Accidents	0.53 per mev	0.42 per mev
UVP/Hummel Drive	5 Accidents	0.31 per mev	0.24 per mev
UVP/Bradley Road	4 Accidents	0.15 per mev	0.42 per mev

⁽a) Accident rates per million entering vehicles (mev).

<u>UVP/Foxenwood Lane</u>. As shown in Table 18, there was 1 accident at this intersection within the 3-year period. The rate of accidents was 0.12 accidents per million entering vehicles and the California statewide average for similar intersections is 0.24 accidents per million entering vehicles. Thus, the rate of accidents is below the statewide average and further investigation is not required.

<u>UVP/Orcutt Expressway</u>. As shown in Table 18, there were 12 accidents at this intersection within the 3-year period. The rate of accidents was 0.35 accidents per million entering vehicles and the California statewide average for similar intersections is 0.42 accidents per million entering vehicles. Thus, the rate of accidents is below the statewide average and further investigation is not required.

<u>UVP/Orcutt Road.</u> As shown in Table 18, there were 9 accidents at this intersection within the 3-year period. The rate of accidents was 0.53 accidents per million entering vehicles and the California statewide average for similar intersections is 0.42 accidents per million entering vehicles. Thus, the rate of accidents is slightly higher that the statewide average. The Caltrans significance test was performed to determine if the number of accidents that occurred is statically significant (a worksheet showing the Caltrans formula and the significance test is included in the Technical Appendix). The results show that the number of accidents required to be statistically significant is 15 accidents within the 3-year period. The number of accidents that occurred during the 3-year period was 9, which is statistically insignificant. Thus, further investigation of the accident history is not warranted.

<u>UVP/Hummel Drive</u>. As shown in Table 18, there were 5 accidents at this intersection within the 3-year period. The rate of accidents was 0.31 accidents per million entering vehicles and the California statewide average for similar intersections is 0.24 accidents per million entering vehicles. Thus, the rate of accidents is slightly higher that the statewide average. The Caltrans significance test was performed to determine if the number of accidents that occurred is statically significant (a worksheet showing the Caltrans formula and the significance test is included in the Technical Appendix). The results show that the number of accidents required to be statistically significant is 10 accidents within the 3-year period. The number of accidents that occurred during the 3-year period was 5, which is statistically insignificant. Thus, further investigation of the accident history is not warranted.

<u>UVP/Bradley Road</u>. As shown in Table 18, there were 4 accidents at this intersection within the 3-year period. The rate of accidents was 0.15 accidents per million entering vehicles and the California statewide average for similar intersections is 0.42 accidents per million entering vehicles. Thus, the rate of accidents is below the statewide average and further investigation is not required.

SIGNAL WARRANT ANALYSIS

As requested by City Staff, a signal warrant analysis was conducted at the UVP/Hummel Drive intersection. The California Manual on Uniform Traffic Control Devices (CA MUTCD) warrants were applied using Cumulative + Project volumes. The posted speed limit on UVP is 50 MPH, therefore the rural warrants were utilized (traffic signal warrant worksheets contained in the Technical Appendix).

The UVP/Hummel Drive intersection is STOP-sign controlled on the Hummel Drive approaches and free flow on the UVP approaches. As noted above, the signal warrant analysis was completed using the Existing and Cumulative + Project volumes. Table 19 presents the results of the traffic signal warrant analysis.

Table 19
Signal Warrant Analysis Results – UVP/Hummel Drive

Scenario	Warrant #	Туре	Warrant Satisfied?
Existing	3	Peak Hour Count and Cumulative Forecast	Yes
Cumulative + Project	3	Peak Hour Count and Cumulative Forecast	Yes

The data presented in Table 19 show that the existing volumes at the UVP/Hummel Drive intersection meet the Peak Hour warrant. It is also noted that the intersection currently operates at LOS D, which exceeds the County's LOS C policy. The data indicates that signals are required without the addition of the Project's traffic.

The data presented in Table 19 also show that the Cumulative + Project volumes at the intersection meet the Peak Hour warrant. The intersection is forecast to operate at LOS F under Cumulative + Project conditions further indicating that traffic signals should be considered for this location.

RECOMMENDED IMPROVEMENTS

The traffic analysis presented in Tables 8-11 found that the UVP/Hummel Drive intersection would operate in the LOS D - F range which exceeds the County's LOS C Standard. As noted previously, the intersection meets the Peak Hour warrant for the Existing and Cumulative + Project conditions. The following section review improvement measures that have been identified for the UVP/Hummel Drive intersection.

UVP/Hummel Drive Intersection

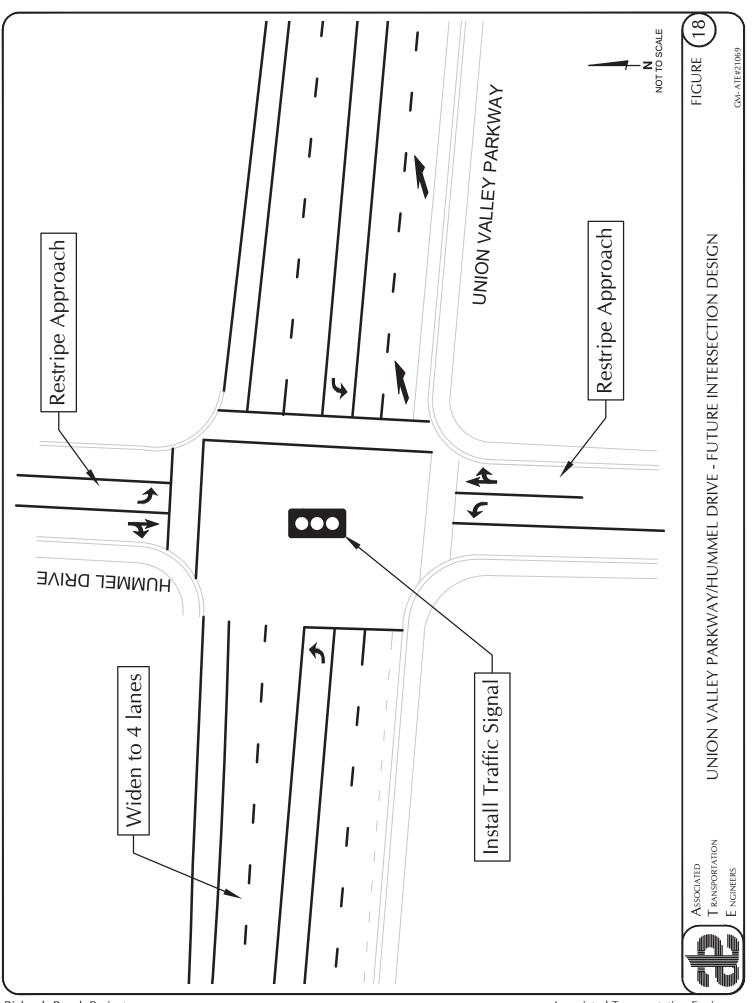

County staff have indicated that the ultimate plan for the UVP adjacent to the Hummel Drive intersection is to widen UVP from two lanes to four lanes with left-turn channelization. This widening will occur west of Hummel Drive to match the four lanes in front of the Project site. In addition, County staff indicated that traffic signals may be installed at the UVP/Hummel Drive intersection in the future. Figure 18 provides a schematic illustration of the future intersection design with the widening. Table 20 presents the Existing + Project and Cumulative + Project levels of service forecasts for the intersection assuming implementation of the improvements.

Table 20 Intersection Levels of Service With Improvements

	Existing + Project		Cumulative -	⊦ Project
	With			With
Intersection	Existing Geometry	Improvements	Existing Geometry	Improvements
UVP/Hummel Drive AM(a)	>50.0 sec. / LOS F	0.47 / LOS A	> 50.0 sec / LOS F	0.49 / LOS A
UVP/Hummel Drive PM(a)	>50.0 sec. / LOS F	0.49 / LOS A	> 50.0 sec / LOS F	0.52 / LOS A

⁽a) Assumes UVP widening and traffic signal installation.

The data presented in Table 20 show that with the planned improvements, the UVP/Hummel Drive intersection will operate in the LOS A range.

VMT ANALYSIS

Per the State's Natural Resource Agency Updated Guidelines for the Implementation of the CEQA adopted in 2018, Vehicle Miles Traveled (VMT) has been designated as the most appropriate measure of transportation impacts. "Vehicle Miles Traveled" refers to the amount and distance of automobile travel attributable to a project. Other relevant considerations may include the effects of the project on transit and non-motorized travel. For land use projects, vehicle miles traveled exceeding an applicable threshold of significance may indicate a significant impact.

The Governor's Office of Planning and Research (OPR) published a Technical Advisory on Transportation that includes recommendations regarding assessment of VMT, thresholds of significance, and mitigation measures⁵. The Technical Advisory provides screening tools to determine when a project may have a significant VMT impacts. The City of Santa Maria's adopted Environmental Procedures and Guidelines manual contain thresholds and methodologies for assessing potential VMT impacts for Project located in the City.

Criteria For Mixed-Use Developments

The City's Environmental Procedures and Guidelines manual ("CEQA Guidelines") provides the following guidance for mixed-use projects:

"For mixed use projects, the CEQA Guidelines recommend either analyzing each component of the proposed project separately or focusing on the predominant land use."

Given that the residential portion of the Project accounts for approximately 29% of the primary trips generated at the site, each component of the Project is analyzed separately.

VMT Analysis - Residential

The potential VMT impacts associated with the residential portion of the Project are reviewed below.

VMT Thresholds

Consistent with CEQA Guidelines Section 15064.7, Thresholds of Significance, the City of Santa Maria has adopted the countywide baseline average of home-based VMT per population for residential projects and thresholds set at 85% of these countywide baseline averages for determining whether a project's VMT will be significant. The thresholds will be periodically updated as necessary during normal updates of the model baseline (approximately every five years).

⁵ <u>Technical Advisory on Evaluating Transportation Impacts in CEQA</u>, Governor's Office of Planning and Research, December 2018.

New residential projects (single family, multi-family, mobile home) are required to generate less than 6.17 VMT per person (one-way trip). Projects that exceed this threshold may have a significant effect on the environment and will require project revisions and/or mitigation measures may be implemented to reduce the impact to less than significant. Mitigation strategies would be specific to the particular project and could include introducing mixed-use components, alternative transportation opportunities, pedestrian and/or transit network improvements, and traffic calming measures.

VMT Analysis

City staff indicated that the City's VMT calculator was not available for the VMT analysis as the Project is currently located outside of the City limits. The City's CEQA Guidelines, however, contain screening maps to determine the VMT generation of residential projects located in different zones within the City and the adjacent County areas (screening map contained in the Technical Appendix). The screening map indicates that the residential portion of the Project would generate up to the countywide average home based VMT per population of 7.26. As discussed in the trip generation section of this report, there will be some internal trips that travel between the various parcels that comprise the site and would not generate new VMT. The internal capture trips include trip interactions between the residential uses and the adjacent commercial uses. The ITE mixed-use traffic model shows that up to 40% of the trips generated by the residential component of the Project would be internal to the site. To be conservative, the traffic study assumes that 25% of the Project-generated trips are internal. This 25% mixed-use factor was applied to the City's VMT screening map forecasts to determine if the Project would exceed the City's VMT impact thresholds. Table 21 presents the results of the analysis.

Table 21
Residential Component VMT Comparison to City Threshold

City of Santa Maria Screening	VMT Estimate with Mixed-	City of Santa Maria	Potential
Map VMT Estimate	Use Reduction	VMT Threshold	Impact?
7.26 VMT Per Population	5.45 VMT per Population	6.17 VMT Per Capita	NO

The data presented in Table 21 indicate that the residential component of the Project would generate 7.26 VMT per population (as shown on CEQA Guidelines screening map) which would exceed the City's threshold of 6.17 VMT per capita. With the mixed-use adjustments, the residential component VMT would be reduced to 5.45 VMT per population which would be below the City's impact threshold. This portion of the mixed-use project would therefore have a less than significant impact based on City thresholds.

VMT Analysis Mini-Storage

The potential VMT impacts associated with the mini-storage portion of the Project are reviewed below.

Screening Criteria

Consistent with the recommendations in the OPR Technical Advisory, Section 4.3.1 of the City of Santa Maria's CEQA Guidelines establishes screening criteria for certain projects that are exempt from performing a detailed VMT analysis and may be presumed to have a less than significant VMT impact. Section 4.3.1-A states that:

"The following discretionary development projects are not subject to VMT analysis:

3. Small discretionary projects that would generate or attract fewer than 110 daily trips (per CEQA)."

VMT Analysis

The mini-storage component of the Project consists of approximately 25,000 SF of development that is forecast to generate 36 ADT, which is less than the 110 ADT screening criteria. This component of the Project therefore satisfies the screening criteria for small discretionary projects and may be presumed to result in less than significant VMT impacts in accordance with the City of Santa Maria CEQA Guidelines.

VMT Analysis – Retail

The potential VMT impacts associated with the retail portion of the Project are reviewed below.

Screening Criteria

Consistent with the recommendations in the OPR Technical Advisory, Section 4.3.1 of the City of Santa Maria's CEQA Guidelines establishes screening criteria for certain projects that are exempt from performing a detailed VMT analysis and may be presumed to have a less than significant VMT impact. Section 4.3.1-A states that:

"The following discretionary development projects are not subject to VMT analysis:

1. A discretionary retail development project that is 50,000 square feet or less. Does not apply to regional shopping centers that predominately serve customers that live outside of the City limits.

The retail portion of the Project is greater than 50,000 SF thus a VMT analysis is required.

VMT Thresholds

The Governor's Office of Planning and Research (OPR) published a Technical Advisory on Transportation that includes recommendations regarding assessment of VMT, thresholds of significance, and mitigation measures. The Technical Advisory provides the following guidance for analyzing mixed-use projects:

"Mixed-Use Projects

Lead agencies can evaluate each component of a mixed-use project independently and apply the significance threshold for each project type included (e.g., residential and retail). Alternatively, a lead agency may consider only the project's dominant use. In the analysis of each use, a project should take credit for internal capture. Combining different land uses and applying one threshold to those land uses may result in an inaccurate impact assessment."

The City of Santa Maria has updated their Environmental Procedures and Guidelines manual to provide thresholds and methodologies for assessing potential VMT impacts for Project's located in the City. Pursuant to guidance set forth in CEQA Guidelines Section 15064.3, for retail development projects, redevelopment projects, medical development projects, and infrastructure projects that require a VMT analysis, the City has adopted "net change" in VMT as the applicable threshold for determining a significant impact (i.e., if the with-project VMT).

VMT Modeling

DKS Associates was retained to prepare a VMT analysis for the retail portion of the Project using the SBCAG model. The SBCAG model is considered the most appropriate tool for the analysis given that the City of Santa Maria SB 743 thresholds were developed using the SBCAG 2010 baseline. The net VMT change associated with the retail portion of the Project was analyzed by comparing daily origin-destination VMT with and without the Project. It is noted that the baseline model was updated to include the residential portion of the Project in order to account for the internal capture of trips that would occur in the mixed-use development, as directed in the OPR Technical Advisory.

VMT Analysis Results

Table 22 presents the VMT results of the "Baseline" and "Baseline With Project" model runs and shows the net VMT change associated with the retail portion of the Project.

Table 22 Retail Component – Net Change in VMT

Geography	Baseline VMT	Baseline With Retail VMT	Net VMT
Countywide (a)	11,051,821 (b)	11,008,518	-43,303

- (a) Includes trips to, from, and within Santa Barbara County.
- (b) Includes residential portion of the proposed project.

The data presented in Table 22 show that the retail portion of the Project would result in a net decrease of 43,303 VMT. Based on the City of Santa Maria's VMT thresholds, retail projects that result in a negative change in VMT indicate no VMT impacts. The results of the model analysis confirm the qualitative analysis contained in the ATE traffic study which concluded that the retail portion of the Project would result in a reduction in VMT due to the lack of retail services in the area and the mixed-use nature of the Project.

REFERENCES AND PERSONS CONTACTED

Associated Transportation Engineers

Scott A. Schell, Principal Transportation Planner Glenn Manaois, Transportation Engineer I Richard Pool, Principal Engineer Jiho Ha, Transportation Engineer II

Persons Contacted

Mark Mueller, PE, City of Santa Maria Dana Eady, City of Santa Maria

References

Santa Maria Airport Business Park Specific Plan Rezone Transportation Impact Study, Central Coast Transportation Consulting, October 2020.

Traffic Impact Study for the Ocrutt Community Plan General Plan Amendment Project, Psomas, May, 2020.

Highway Capacity Manual, Transportation Research Board, 6th Edition, 2016.

<u>Trip Generation</u>, Institute of Transportation Engineers, 11th Edition, 2021.

Assessing the Effects of a Dual-Service Left-Turn Phase, Turner, Hainen, Taylor, December 2020.

<u>Improving Intersection Performance with Left Turn Phase Reservice Strategies</u>, Corey, Xin, Lao, Wang, 2012.

<u>Technical Advisory on Evaluating Transportation Impacts in CEQA</u>, Governor's Office of Planning and Research, December 2018.

TECHNICAL APPENDIX

CONTENTS:

LEVEL OF SERVICE DEFINITIONS

TRAFFIC COUNT DATA

PROJECT TRIP GENERATION CALCULATION WORKSHEETS

CAR-WASH TRIP GENERATION CALCULATION WORKSHEETS

ITE MIXED – USE MODEL

CITY OF SANTA MARIA APPROVED AND PENDING PROJECTS LIST

COUNTY OF SANTA BARBARA APPROVED AND PENDING PROJECTS LIST

UVP QUEUE ANALYSIS WORKSHEETS

ACCIDENT DATA AND CALCULATION WORKSHEETS

SIGNAL WARRANT WORKSHEETS

VMT SCREENING MAP – RESIDENTIAL PROJECTS

INTERSECTION LEVEL OF SERVICE CALCULATION WORKSHEETS

Reference 1 - Orcutt Expressway/Lakeview Road

Reference 2 - Orcutt Expressway/Foster Road

Reference 3 - UVP/Foxenwood Lane

Reference 4 - UVP/Orcutt Expressway

Reference 5 - UVP/Orcutt Road

Reference 6 - UVP/Hummel Drive

Reference 7 - UVP/Bradley Road

Reference 8 - UVP/US 101 SB Ramps

Reference 9 - UVP/US 101 NB Ramps

PROJECT DRIVEWAYS - LEVEL OF SERVICE CALCULATION WORKSHEETS

ASSOCIATED TRANSPORTATION ENGINEERS

100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110 • (805)687-4418 • FAX (805)682-8509 • main@atesb.com

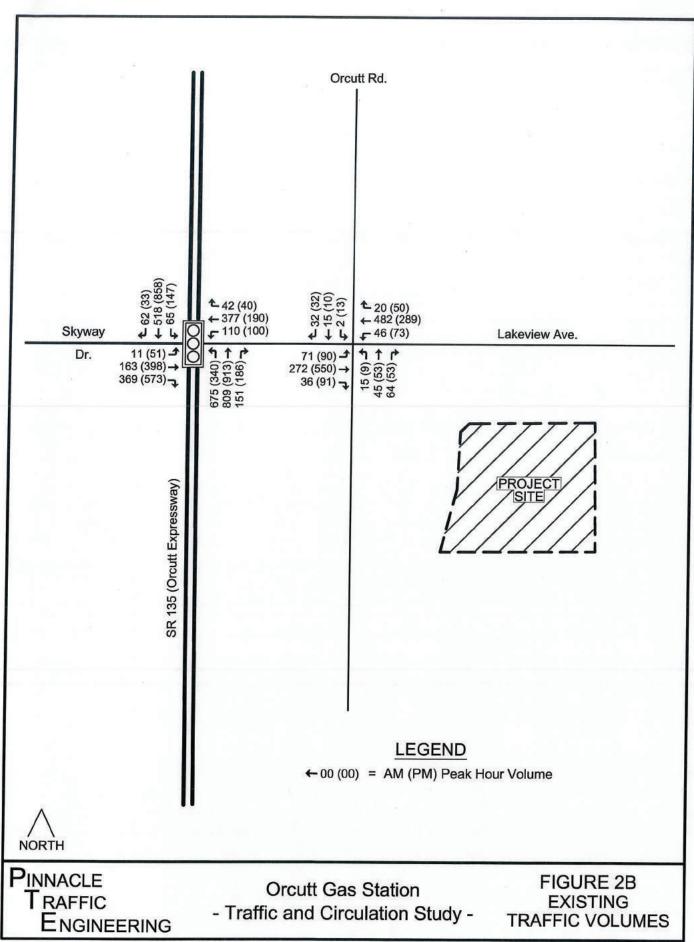
Since 1978

Richard L. Pool, P.E. Scott A. Schell

Signalized Intersection Level of Service Definitions

LOS	Delay (a)	V/C Ratio	Definition
А	< 10.0	< 0.60	Progression is extremely favorable. Most vehicles arrive during the green phase. Many vehicles do not stop at all.
В	10.1 - 20.0	0.61 - 0.70	Good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.
С	20.1 - 35.0	0.71 - 0.80	Only fair progression, longer cycle lengths, or both, result in higher cycle lengths. Cycle lengths may fail to serve queued vehicles, and overflow occurs. Number of vehicles stopped is significant, though many still pass through intersection without stopping.
D	35.1 - 55.0	0.81 - 0.90	Congestion becomes more noticeable. Unfavorable progression, long cycle lengths and high v/c ratios result in longer delays. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.
Е	55.1 - 80.0	0.91 - 1.00	High delay values indicate poor progression, long cycle lengths and high v/c ratios. Individual cycle failures are frequent
F	> 80.0	> 1.00	Considered unacceptable for most drivers, this level occurs when arrival flow rates exceed the capacity of lane groups, resulting in many individual cycle failures. Poor progression and long cycle lengths may also contribute to high delay levels.

⁽a) Average control delay per vehicle in seconds.


Unsignalized Intersection Level of Service Definitions

The HCM¹ uses *control delay* to determine the level of service at unsignalized intersections. Control delay is the difference between the travel time actually experienced at the control device and the travel time that would occur in the absence of the traffic control device. Control delay includes deceleration from free flow speed, queue move-up time, stopped delay and acceleration back to free flow speed.

LOS	Control Delay Seconds per Vehicle
Α	< 10.0
В	10.1 - 15.0
С	15.1 - 25.0
D	25.1 - 35.0
E	35.1 - 50.0
F	> 50.0

Highway Capacity Manual, National Research Board, 2016.

Metro Traffic Data Inc.

310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:
Central Coast Transportation Consulting
895 Napa Avenue, Suite A-6
Morro Bay, CA 93442

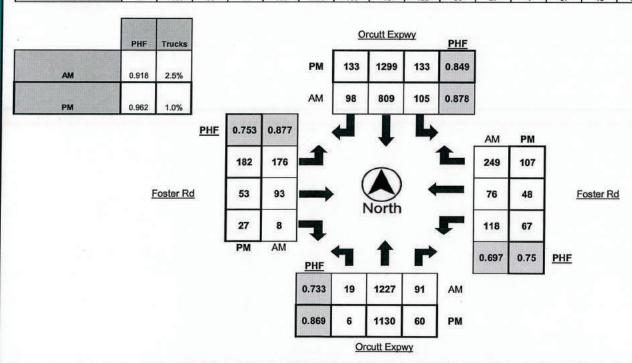
Page 1 of 3

LOCATION Foster Rd @ Orcutt Expwy

COUNTY Santa Barbara

COLLECTION DATE Tuesday, December 17, 2019

LATITUDE 34.8831


LONGITUDE -120.4366

WEATHER Clear

		North	bound			South	bound			Eastl	oound	1000	Westbound				
Time	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	
7:00 AM - 7:15 AM	2	164	20	8	39	171	13	9	22	26	Ö	3	24	13	48	5	
7:15 AM - 7:30 AM	5	234	41	7	52	195	18	9	35	42	2	3	35	25	88	3	
7:30 AM - 7:45 AM	2	290	15	5	21	248	19	11	40	21	1	2	47	27	85	2	
7:45 AM - 8:00 AM	4	432	20	7	15	194	32	9	53	13	2	3	19	13	39	1	
3:00 AM - 8:15 AM	8	271	15	3	17	172	29	8	48	17	3	2	17	11	37	- 1	
3:15 AM - 8:30 AM	4	248	18	5	42	160	31	13	47	17	1	1	12	9	55	3	
8:30 AM - 8:45 AM	5	223	14	6	16	152	22	9	18	4	2	3	25	12	37	2	
8:45 AM - 9:00 AM	4	247	7	10	16	156	30	9	38	18	0	2	20	14	37	3	
TOTAL	34	2109	150	51	218	1448	194	77	301	158	11	19	199	124	426	20	

		North	bound			South	bound			East	oound			West	bound	
Time	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
2:00 PM - 2:15 PM	0	248	15	10	41	222	12	4	37	14	3	2	31	23	60	7
2:15 PM - 2:30 PM	1	217	6	12	25	217	29	6	27	7	3	1	12	15	30	3
2:30 PM - 2:45 PM	3	229	13	4	35	231	29	14	26	10	5	2	8	8	21	0
2:45 PM - 3:00 PM	0	232	18	11	53	243	30	6	26	20	9	3	10	13	24	2
3:00 PM - 3:15 PM	3	237	17	9	23	255	32	10	39	11	3	2	27	29	59	4
3:15 PM - 3:30 PM	2	280	21	9	28	233	30	7	31	17	5	1	22	14	32	2
3:30 PM - 3:45 PM	2	272	18	11	28	260	24	8	54	12	1	4	23	13	35	1
3:45 PM - 4:00 PM	3	315	19	7	35	275	42	5	34	21	4	1	13	12	32	2
4:00 PM - 4:15 PM	2	262	25	7	37	295	42	2	48	16	6	1	11	12	16	0
4:15 PM - 4:30 PM	3	297	14	7	33	301	35	4	31	11	3	1	16	7	30	2
4:30 PM - 4:45 PM	2	291	12	2	24	258	33	0	44	15	11	1	12	10	18	1
4:45 PM - 5:00 PM	2	323	19	5	35	319	36	6	38	12	5	0	12	15	22	0
5:00 PM - 5:15 PM	1	279	18	4	34	334	31	4	60	19	8	0	23	13	23	0
5:15 PM - 5:30 PM	1	237	11	3	40	388	33	6	40	7	3	0	20	10	44	1
5:30 PM - 5:45 PM	1	222	14	6	27	315	22	4	31	9	4	1	11	8	24	0
5:45 PM - 6:00 PM	1	209	15	4	27	239	35	3	26	18	3	0	10	9	24	1
TOTAL	27	4150	255	111	525	4385	495	89	592	219	76	20	261	211	494	26

		North	bound			South	bound			Eastl	oound			West	bound	1100
PEAK HOUR	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
7:15 AM - 8:15 AM	19	1227	91	22	105	809	98	37	176	93	8	10	118	76	249	7
4:30 PM - 5:30 PM	6	1130	60	14	133	1299	133	16	182	53	27	4	67	48	107	2

Metro Traffic Data Inc.

310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

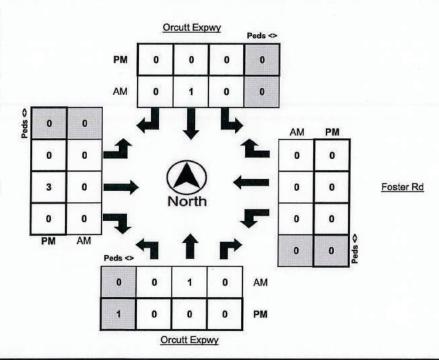
Clear

Prepared For:
Central Coast Transportation Consulting
895 Napa Avenue, Suite A-6 Morro Bay, CA 93442

Page 2 of 3

LOCATION Foster Rd @ Orcutt Expwy LATITUDE 34.8831 LONGITUDE COUNTY Santa Barbara -120.4366

Tuesday, December 17, 2019 COLLECTION DATE WEATHER


	Nor	thbound E	Bikes	N.Leg	Sou	thbound I	Bikes	S.Leg	Eas	thound B	ikes	E.Leg	We	stbound E	Bikes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:00 AM - 7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM - 7:30 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
7:30 AM - 7:45 AM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM - 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM - 8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM - 8:30 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
8:30 AM - 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM - 9:00 AM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
TOTAL	0	1	0	0	0	1	1	1	0	0	0	0	0	0	0	0

	Nort	thbound E	Bikes	N.Leg	Sou	thbound E	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	Wes	stbound E	likes	W.Lea
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
2:00 PM - 2:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:15 PM - 2:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:30 PM - 2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM - 3:00 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
3:00 PM - 3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:15 PM - 3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:30 PM - 3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:45 PM - 4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
4:00 PM - 4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM - 4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM - 4:45 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
4:45 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
5:15 PM - 5:30 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
5:30 PM - 5:45 PM	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM - 6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	2	0	0	0	1	0	4	0	0	0	1	0	0

	Nort	hbound E	Bikes	N.Leg	Sou	thbound I	Bikes	S.Leg	Eas	stbound B	ikes	E.Leg	Wes	stbound E	Bikes	W.Leg
PEAK HOUR	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:15 AM - 8:15 AM	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0
4:30 PM - 5:30 PM	0	0	0	0	0	0	0	1	0	3	0	0	0	0	0	0

	SERVE I	
	Bikes	Peds
AM Peak Total	2	0
PM Peak Total	3	1

Foster Rd

Metro Traffic Data Inc.

310 N. Irwin Street - Suite 20

Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

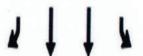
Central Coast Transportation Consulting

895 Napa Avenue, Suite A-6 Morro Bay, CA 93442

COUNTY Santa Barbara

COLLECTION DATE _____ Tuesday, December 17, 2019

CYCLE TIME 102 Seconds


 N/S STREET
 Orcutt Expwy / Orcutt Expwy

 E/W STREET
 Foster Rd / Foster Rd

 WEATHER
 Clear

 CONTROL TYPE
 Signal

COMMENTS All approaches have protected left turns.

310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For: Central Coast Transportation Consulting 895 Napa Avenue, Suite A-6 Morro Bay, CA 93442

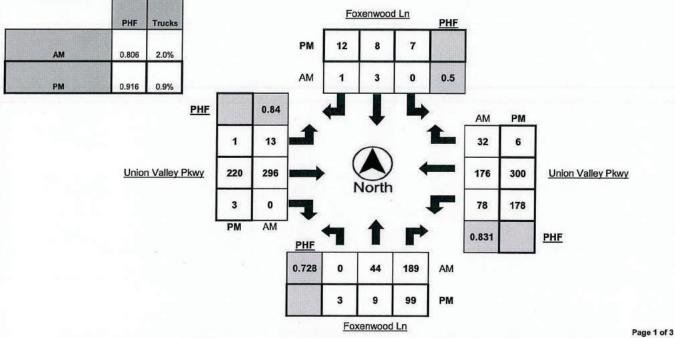
LOCATION Union Valley Pkwy @ Foxenwood Ln

COUNTY Santa Barbara

COLLECTION DATE Tuesday, December 17, 2019

LATITUDE 34.8796

LONGITUDE -120.4388


WEATHER Clear

	THORSE AND	North	bound			South	bound			East	bound			West	bound	
Time	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
7:00 AM - 7:15 AM	0	7	42	0	0	0	0	0	2	49	0	0	- 8	27	2	1
7:15 AM - 7:30 AM	0	5	47	0	0	0	0	0	5	84	0	1	17	32	7	3
7:30 AM - 7:45 AM	0	12	45	2	0	2	0	0	3	76	0	2	17	39	6	0
7:45 AM - 8:00 AM	0	18	62	1	0	0	0	0	4	88	0	2	26	48	12	4
8:00 AM - 8:15 AM	0	9	35	0	0	1	1	0	1	48	0	1	18	57	7	1
8:15 AM - 8:30 AM	0	9	34	0	0	2	0	0	2	58	1	0	17	53	2	0
8:30 AM - 8:45 AM	0	2	35	0	0	1	0	0	1	44	0	2	22	55	3	1
8:45 AM - 9:00 AM	0	3	35	1	2	1	5	0	1	62	0	0	14	29	5	1
TOTAL	0	65	335	4	2	7	6	0	19	509	1	8	139	340	44	11

	ECHIPA PRO	North	bound			South	bound			East	oound		THE REAL PROPERTY.	West	bound	
Time	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
2:00 PM - 2:15 PM	0	3	31	0	0	7	0	0	2	51	2	1	40	63	0	2
2:15 PM - 2:30 PM	0	2	21	0	0	3	2	0	1	64	1	0	37	50	0	2
2:30 PM - 2:45 PM	0	3	31	1	0	4	0	0	4	59	0	1	26	84	1	4
2:45 PM - 3:00 PM	0	3	29	0	0	5	1	0	2	47	0	1	35	67	1	2
3:00 PM - 3:15 PM	3	3	31	0	1	7	0	0	1	70	0	2	39	73	2	4
3:15 PM - 3:30 PM	0	4	37	0	0	7	3	0	3	45	0	1	35	77	3	1
3:30 PM - 3:45 PM	2	3	30	0	1	2	2	0	2	53	0	0	38	58	2	1
3:45 PM - 4:00 PM	0	2	22	0	1	3	2	0	0	57	1	1	30	68	0	1
4:00 PM - 4:15 PM	0	5	23	1	0	4	1	0	0	45	0	0	53	57	1	2
4:15 PM - 4:30 PM	0	2	21	0	0	2	2	0	0	62	0	0	37	76	0	1
4:30 PM - 4:45 PM	2	3	17	0	0	3	2	0	1	59	0	0	36	56	2	0
4:45 PM - 5:00 PM	0	2	33	1	1	2	1	0	0	48	0	0	38	77	1	2
5:00 PM - 5:15 PM	0	2	23	0	6	0	1	0	0	61	1	1	51	84	2	1
5:15 PM - 5:30 PM	1	2	26	1	0	3	8	0	0	52	2	1	53	83	1	1
5:30 PM - 5:45 PM	0	2	30	1	0	3	1	0	1	46	2	2	41	85	0	1
5:45 PM - 6:00 PM	0	1	25	0	5	2	0	0	2	42	2	0	39	57	1	2
TOTAL	8	42	430	5	15	57	26	0	19	861	11	11	628	1115	17	27

	Service Inc.	North	bound			South	bound		VEN IN INC.	East	ound			West	bound	
PEAK HOUR	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
7:15 AM - 8:15 AM	0	44	189	3	0	3	1	0	13	296	0	6	78	176	32	8
4:30 PM - 5:30 PM*	3	9	99	2	7	8	12	0	1	220	3	2	178	300	6	1

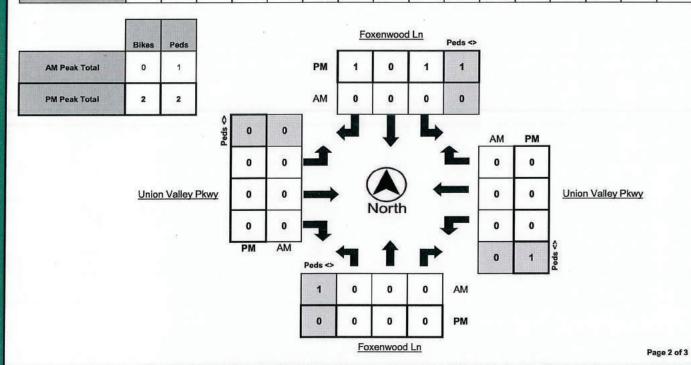
*Uniform peak hour

310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:
Central Coast Transportation Consulting
895 Napa Avenue, Suite A-6 Morro Bay, CA 93442


LOCATION_	Union Valley Pkwy @ Foxenwood Ln	LATITUDE	34.8796	
COUNTY	Santa Barbara	LONGITUDE	-120.4388	
		18		

COLLECTION DATE_ WEATHER Tuesday, December 17, 2019 Clear

	Nort	hbound E	Bikes	N.Leg	Sou	thbound I	Bikes	S.Leg	Eas	tbound B	ikes	E.Leg	We	stbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:00 AM - 7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM - 7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:30 AM - 7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM - 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM - 8:15 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
8:15 AM - 8:30 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
8:30 AM - 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM - 9:00 AM	0	0	0	0	0	0	1	0	0	0	0	0	0	0	1	1
TOTAL	0	0	0	0	0	0	1	2	0	0	0	0	0	0	1	1

	Nor	hbound E	Bikes	N.Lea	Sou	thbound I	Bikes	S.Leq	Eas	tbound B	ikes	E.Leg	Wes	stbound E	likes	W.Lea
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
2:00 PM - 2:15 PM	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0	0
2:15 PM - 2:30 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
2:30 PM - 2:45 PM	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
2:45 PM - 3:00 PM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
3:00 PM - 3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:15 PM - 3:30 PM	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0
3:30 PM - 3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:45 PM - 4:00 PM	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
4:00 PM - 4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2
4:15 PM - 4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM - 4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	- 0	. 0	0	0
4:45 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM - 5:15 PM	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
5:15 PM - 5:30 PM	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0
5:30 PM - 5:45 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM - 6:00 PM	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	1	2	3	2	4	1	0	0	1	0	0	0	2

	Nort	thbound E	Bikes	N.Leg	Sou	thbound E	3ikes	S.Lea	Eas	tbound B	ikes	E.Leg	We	stbound E	ikes	W.Lec
PEAK HOUR	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:15 AM - 8:15 AM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
4:45 PM - 5:45 PM	0	0	0	1	1	0	1	0	0	0	0	1	0	0	0	0

310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

Two-Way Stop

Central Coast Transportation Consulting

895 Napa Avenue, Suite A-6 Morro Bay, CA 93442

LOCATION Union Valley Pkwy @ Foxenwood Ln COUNTY Santa Barbara

COLLECTION DATE Tuesday, December 17, 2019

CYCLE TIME

N/S STREET_	Foxenwood Ln / Foxenwood Ln
E/W STREET_	Union Valley Pkwy / Union Valley Pkwy
WEATHER_	Clear

COMMENTS

CONTROL TYPE

310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

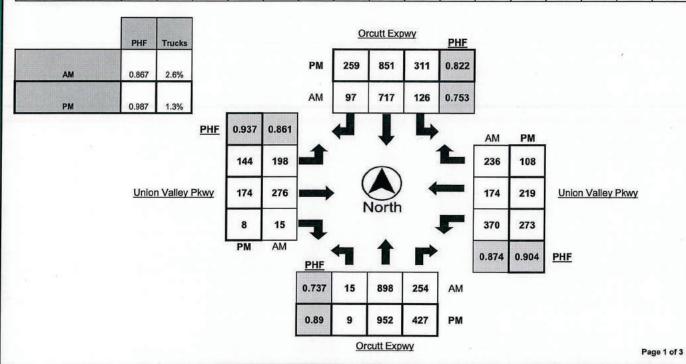
Prepared For:
Central Coast Transportation Consulting
895 Napa Avenue, Suite A-6
Morro Bay, CA 93442

LOCATION Union Valley Pkwy @ Orcutt Expwy

COUNTY Santa Barbara

COLLECTION DATE Tuesday, December 17, 2019

LATITUDE 34.8796


LONGITUDE -120.4366

WEATHER Clear

		North	bound			South	bound		HEAD IS	Eastl	oound			West	bound	
Time	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
7:00 AM - 7:15 AM	1	125	44	9	13	166	16	6	44	44	1	0	98	21	33	3
7:15 AM - 7:30 AM	1	172	47	4	23	177	22	8	57	76	3	1	107	32	48	9
7:30 AM - 7:45 AM	4	225	78	3	39	251	22	11	36	77	5	3	113	37	59	4
7:45 AM - 8:00 AM	4	317	75	5	28	153	31	12	62	77	3	3	95	52	76	6
8:00 AM - 8:15 AM	6	184	54	4	36	136	22	7	43	46	4	1	55	53	53	6
8:15 AM - 8:30 AM	1	178	62	3	30	111	29	10	48	39	2	0	37	42	31	3
8:30 AM - 8:45 AM	4	161	35	8	31	109	32	8	44	40	3	2	57	42	42	6
8:45 AM - 9:00 AM	- 0	179	33	4	33	119	23	10	45	47	3	1	40	18	38	8
TOTAL	21	1541	428	40	233	1222	197	72	379	446	24	11	602	297	380	45

		North	bound			South	bound		Total Line	Eastl	oound			West	bound	
Time	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
2:00 PM - 2:15 PM	0	179	42	8	49	138	65	5	26	56	1	0	41	36	38	3
2:15 PM - 2:30 PM	0	177	56	8	67	132	39	7	37	37	2	2	50	46	35	6
2:30 PM - 2:45 PM	3	159	44	5	54	138	40	7	43	47	3	2	44	67	37	8
2:45 PM - 3:00 PM	3	174	59	6	44	172	54	5	43	37	0	0	51	49	30	7
3:00 PM - 3:15 PM	3	172	51	8	52	174	56	8	41	59	2	3	52	51	48	6
3:15 PM - 3:30 PM	1	205	80	7	31	170	55	7	42	44	2	0	60	62	45	7
3:30 PM - 3:45 PM	3	238	82	6	66	165	61	6	36	38	3	0	52	35	32	6
3:45 PM - 4:00 PM	1	261	97	10	57	186	45	5	48	31	0	1	63	49	29	7
4:00 PM - 4:15 PM	1	217	113	4	48	192	61	3	31	42	0	0	53	46	23	6
4:15 PM - 4:30 PM	3	255	101	9	72	191	61	4	35	47	0	2	69	53	27	4
4:30 PM - 4:45 PM	2	270	118	4	73	185	51	3	27	43	2	0	64	43	26	1
4:45 PM - 5:00 PM	2	257	128	6	64	190	60	5	46	34	3	0	74	46	39	4
5:00 PM - 5:15 PM	4	229	94	6	74	225	67	3	33	54	0	1	68	73	25	1
5:15 PM - 5:30 PM	1	196	87	4	100	251	81	6	38	43	3	2	67	57	18	3
5:30 PM - 5:45 PM	0	178	81	3	49	185	70	2	44	30	2	3	54	58	20	- 3
5:45 PM - 6:00 PM	4	152	65	4	49	153	54	3	36	24	1	0	60	44	29	1
TOTAL	31	3319	1298	98	949	2847	920	79	606	666	24	16	922	815	501	73

		North	bound			South	bound	THE REAL PROPERTY.	O PRINCIPAL OF	East	bound		The Court	West	bound	of the same
PEAK HOUR	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
7:15 AM - 8:15 AM	15	898	254	16	126	717	97	38	198	276	15	8	370	174	236	25
4:30 PM - 5:30 PM	9	952	427	20	311	851	259	17	144	174	8	3	273	219	108	9

310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

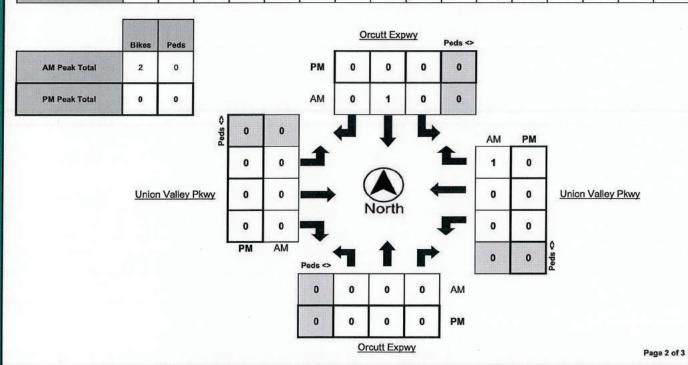
Prepared For: Central Coast Transportation Consulting 895 Napa Avenue, Suite A-6 Morro Bay, CA 93442

LOCATION	Union Valley Pkwy @ Orcutt Expwy
3.0	

COUNTY Santa Barbara

COLLECTION DATE Tuesday, December 17, 2019

LATITUDE 34.8796


LONGITUDE -120.4366

WEATHER Clear

	Nor	thbound E	Bikes	N.Leg	Sou	thbound I	Bikes	S.Leg	Eas	tbound B	ikes	E.Leq	Wes	stbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
7:00 AM - 7:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM - 7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
7:30 AM - 7:45 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
7:45 AM - 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:00 AM - 8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM - 8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM - 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM - 9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0

	Nort	hbound E	Bikes	N.Leg	Sou	thbound I	Bikes	S.Leg	Eas	tbound B	likes	E.Leg	Wes	stbound B	likes	W.Leg
Time	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds	Left	Thru	Right	Peds
2:00 PM - 2:15 PM	0	0	1	0	0	0	0	2	0	0	0	0	0	0	0	0
2:15 PM - 2:30 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
2:30 PM - 2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM - 3:00 PM	0	0	0	0	0	0	0	0	0	0	0	2	0	0	0	0
3:00 PM - 3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:15 PM - 3:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:30 PM - 3:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0
3:45 PM - 4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:00 PM -4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM - 4:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:30 PM - 4:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:45 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:15 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM - 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM - 6:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	0	1	0	0	0	0	3	0	0	0	2	0	0	0	0

	Nort	thbound E	Bikes	N.Leg	Sou	thbound I	3ikes	S.Leg	Eas	stbound B	ikes	E.Leg	Wes	stbound E	likes	W.Lec
PEAK HOUR	Left	Thru	Right	Peds												
7:15 AM - 8:15 AM	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0
4:30 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

Central Coast Transportation Consulting

895 Napa Avenue, Suite A-6 Morro Bay, CA 93442

LOCATION Union Valley Pkwy @ Orcutt Expwy

COUNTY Santa Barbara

COLLECTION DATE Tuesday, December 17, 2019

CYCLE TIME 105 Seconds

N/S STREET Orcutt Expwy / Orcutt Expwy

E/W STREET Union Valley Pkwy / Union Valley Pkwy

WEATHER Clear

CONTROL TYPE Signal

COMMENTS All approaches have protected left turns.

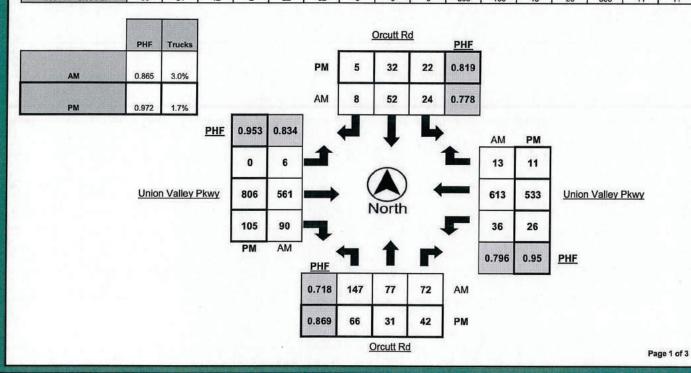
310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

Clear


Central Coast Transportation Consulting 895 Napa Avenue, Suite A-6 Morro Bay, CA 93442

LOCATION Union Valley Pkwy @ Orcutt Rd LATITUDE 34.8795 COUNTY Santa Barbara LONGITUDE -120.4350 **COLLECTION DATE** Tuesday, December 17, 2019 WEATHER

Thru Right Trucks
12 10 0 Right Right Trucks Thru 7:00 AM - 7:15 AM 7:15 AM - 7:30 AM 7:30 AM - 7:45 AM 97 147 16 11 127 145 14 162 152 16 10 189 7:45 AM - 8:00 AM 8:00 AM - 8:15 AM 8:15 AM - 8:30 AM 49 33 19 156 123 20 121 103 11 15 11 8:45 AM - 9:00 AM 16 10 8 207 120 TOTAL 107 133

		North	bound			South	bound			Eastl	bound	CON GA	ERON:	West	bound	N S D
Time	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
2:00 PM - 2:15 PM	16	6	10	0	9	15	1	2	0	105	31	3	12	96	2	4
2:15 PM - 2:30 PM	31	24	7	3	1	10	2	0	0	139	29	6	6	103	2	5
2:30 PM - 2:45 PM	24	10	19	3	4	5	0	0	0	129	10	6	1	123	2	5
2:45 PM - 3:00 PM	13	9	7	3	3	8	5	1	0	127	19	2	9	111	2	7
3:00 PM - 3:15 PM	33	12	23	3	4	8	3	1	0	145	19	6	14	127	3	6
3:15 PM - 3:30 PM	25	13	11	1	14	16	1	1	0	132	18	5	5	122	5	6
3:30 PM - 3:45 PM	17	12	12	1	2	9	0	0	0	161	29	4	10	106	4	5
3:45 PM - 4:00 PM	15	5	5	1	5	6	2	1	0	159	23	4	7	130	5	6
4:00 PM - 4:15 PM	15	12	3	0	8	11	4	1	0	193	16	2	14	103	6	5
4:15 PM - 4:30 PM	13	14	7	1	6	8	0	1	0	194	18	4	9	132	1	2
4:30 PM - 4:45 PM	13	6	12	0	2	8	1	0	0	222	17	2	9	123	1	2
4:45 PM - 5:00 PM	20	7	13	0	7	4	2	0	0	194	28	3	5	135	5	5
5:00 PM - 5:15 PM	22	6	8	1	7	9	1	0	0	190	28	5	5	134	3	1
5:15 PM - 5:30 PM	11	12	9	1	6	11	1	0	0	200	32	5	7	141	2	3
5:30 PM - 5:45 PM	9	7	12	1	5	11	1	1	0	153	18	3	10	136	3	2
5:45 PM - 6:00 PM	10	10	5	0	9	10	0	0	0	113	16	0	19	109	10	2
TOTAL	287	165	163	19	92	149	24	9	0	2556	351	60	142	1931	56	66

	A STORY	North	bound	SUIT OF SECTION	BOY OF	South	bound		Manager 18	East	bound	and a sale		West	bound	
PEAK HOUR	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks	Left	Thru	Right	Trucks
7:15 AM - 8:15 AM	147	77	72	7	24	52	8	3	6	561	90	20	36	613	13	21
4:30 PM - 5:30 PM	66	31	42	2	22	32	5	0	0	806	105	15	26	533	11	11

Metro Traffic Data Inc. 310 N. Irwin Street - Suite 20 Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Turning Movement Report

Prepared For:

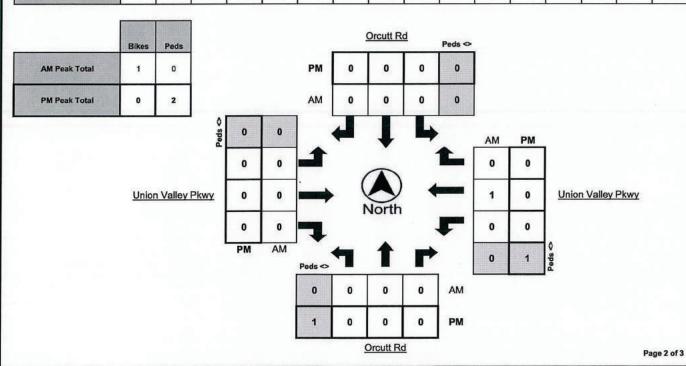
Central Coast Transportation Consulting
895 Napa Avenue, Suite A-6
Morro Bay, CA 93442

LOCATION Union Valley Pkwy @ Orcutt Rd

COUNTY Santa Barbara

COLLECTION DATE Tuesday, December 17, 2019

LATITUDE 34.8795


LONGITUDE -120.4350

WEATHER Clear

	Nor	thbound E	Bikes	N.Leg	Sou	thbound E	Bikes	S.Leg	Eas	stbound B	ikes	E.Leq	Wes	stbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds												
7:00 AM - 7:15 AM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:15 AM - 7:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
7:30 AM - 7:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
7:45 AM - 8:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0 +
8:00 AM - 8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:15 AM - 8:30 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:30 AM - 8:45 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8:45 AM - 9:00 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
TOTAL	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0

	Nor	thbound E	likes	N.Leg	Sou	thbound E	Bikes	S.Leg	Eas	stbound B	ikes	E.Leg	We:	stbound B	ikes	W.Leg
Time	Left	Thru	Right	Peds												
2:00 PM - 2:15 PM	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
2:15 PM - 2:30 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
2:30 PM - 2:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2:45 PM - 3:00 PM	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
3:00 PM - 3:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:15 PM - 3:30 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
3:30 PM - 3:45 PM	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3:45 PM - 4:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:00 PM - 4:15 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4:15 PM - 4:30 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
4:30 PM - 4:45 PM	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
4:45 PM - 5:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:00 PM - 5:15 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
5:15 PM - 5:30 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:30 PM - 5:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5:45 PM - 6:00 PM	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
TOTAL	0	1	0	1	0	0	0	5	0	0	0	3	0	0	0	0

	Nor	thbound E	Bikes	N.Leg	Sou	thbound I	Bikes	S.Leg	Eas	stbound B	ikes	E.Leg	We	stbound B	lkes	W.Leg
PEAK HOUR	Left	Thru	Right	Peds												
7:15 AM - 8:15 AM	0	0	0	0	0	0	0	0	0	0	0	0	0	.1	0	0
4:30 PM - 5:30 PM	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0

LOCATION

CYCLE TIME

COLLECTION DATE

COUNTY

Metro Traffic Data Inc.

310 N. Irwin Street - Suite 20

Hanford, CA 93230

800-975-6938 Phone/Fax www.metrotrafficdata.com

Santa Barbara

Tuesday, December 17, 2019

89 Seconds

Turning Movement Report

Prepared For:

Central Coast Transportation Consulting

895 Napa Avenue, Suite A-6 Morro Bay, CA 93442

Union Valley Pkwy @ Orcutt Rd Orcutt Rd / Orcutt Rd

CONTROL TYPE

E/W STREET Union Valley Pkwy / Union Valley Pkwy

WEATHER Clear

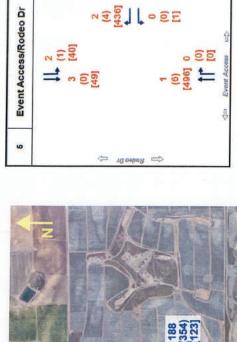
Signal

COMMENTS All approaches have protected left turns.

ASSOCIATED TRANSPORTATION ENGINEERS

INTERSECTION TURNING MOVEMENT SUMMARY

	RICHA	RDS RANCH			PROJEC	T #: 210	69	COUNT DA	TE: 4-27	7-22		FILE NAME	: 06_AM		
N-S Approach	:	HUMMEL D	RIVE					COUNT TIM	ΛE:	07:00 AM	TO	8:30	0		
-W Approach	:	UNION VAI	LLEY PA	ARKWAY				CITY: SANT	A MARI	IA		WEATHER:		SUNNY	
								Λ							
PEAK HO	UR:	07:15 AM	то	08:15 AM				/ \							
												_			1
		ı		UMMEL DRIVE				NORTH							
		l	18	27	25]
			1	1	<u> </u>		7				1				-
			l I	! 	l I				 						
		^	<	,	>	^			I						
Г		┨ .		V	,		10			CONTROL TYPE	PE:	NONE			
L	18			TOTAL			10			ΔRRIVΔI	. / DFI	PARTURE	VOLU	MFS	
1		-		TOTAL				UNION V	ALLEY	AKKIYAI	L / DLI	ARTORL	VOLU	VILS	
l	633	>		1,582		<	638	PARKW	/AY					1	
Г		-										70	64		
L	24	, v	<		>	, V	41					 \ /	/ \		
		, The state of the		1		•			 	682	<	///	I	<	689
														•	
				'			_			675	>			>	744
			26	36	86						-	1	/ \		
												\ /		1	
												92	148		
					i										i
	AE PER	i		NORTHBOUND	I		SOUTHBO			EASTBOUND		1	STBOUND	D: 14	TOTAL
From		То	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	VOLUME
						\mathbf{C}	UNT	D A 7	ΙΑ						
									• / •						
07:00 AM		07:15 AM	1	3	15	9	3	2	3	103	6	3	154	2	30
07:00 AM 07:15 AM		07:15 AM 07:30 AM	7	12	30	9 14	3	2 6	3 12	246	7	13	306	6	66
		i	7 12	12 19	30 55	14 24	3 9 22	2 6 9	3 12 15	246 422	<i>7</i> 16	13 24	306 512	6 7	66 113
07:15 AM		07:30 AM 07:45 AM 08:00 AM	7 12 20	12 19 30	30 55 83	14 24 28	3 9 22 26	2 6 9 15	3 12 15 17	246 422 595	7 16 25	13 24 39	306 512 673	6 7 8	66 113 155
07:15 AM 07:30 AM 07:45 AM 08:00 AM	_	07:30 AM 07:45 AM 08:00 AM 08:15 AM	7 12 20 27	12 19 30 39	30 55 83 101	14 24 28 34	3 9 22 26 30	2 6 9 15 20	3 12 15 17 21	246 422 595 736	7 16 25 30	13 24 39 44	306 512 673 792	6 7 8 12	66 113 155 188
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM	 	07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM	7 12 20 27 29	12 19 30 39 43	30 55 83 101 119	14 24 28 34 36	3 9 22 26 30 34	2 6 9 15 20 21	3 12 15 17 21 27	246 422 595 736 863	7 16 25 30 35	13 24 39 44 50	306 512 673 792 905	6 7 8 12 14	66 113 155 188 217
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM	 	07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM	7 12 20 27 29 0	12 19 30 39 43 0	30 55 83 101 119 0	14 24 28 34 36 0	3 9 22 26 30 34 0	2 6 9 15 20 21 0	3 12 15 17 21 27 0	246 422 595 736 863 0	7 16 25 30 35 0	13 24 39 44 50	306 512 673 792 905 0	6 7 8 12 14 0	66 113 155 188 217
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM	 	07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM	7 12 20 27 29	12 19 30 39 43 0	30 55 83 101 119 0	14 24 28 34 36 0	3 9 22 26 30 34 0	2 6 9 15 20 21 0	3 12 15 17 21 27 0 0	246 422 595 736 863	7 16 25 30 35	13 24 39 44 50	306 512 673 792 905	6 7 8 12 14	66 113 155 188
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM	 	07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM	7 12 20 27 29 0	12 19 30 39 43 0	30 55 83 101 119 0	14 24 28 34 36 0	3 9 22 26 30 34 0	2 6 9 15 20 21 0	3 12 15 17 21 27 0 0	246 422 595 736 863 0	7 16 25 30 35 0	13 24 39 44 50	306 512 673 792 905 0	6 7 8 12 14 0	66 113 155 188
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM	 	07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM	7 12 20 27 29 0	12 19 30 39 43 0	30 55 83 101 119 0	14 24 28 34 36 0	3 9 22 26 30 34 0	2 6 9 15 20 21 0	3 12 15 17 21 27 0 0	246 422 595 736 863 0	7 16 25 30 35 0	13 24 39 44 50	306 512 673 792 905 0	6 7 8 12 14 0	66 113 155 188 217
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM	 	07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 09:00 AM	7 12 20 27 29 0	12 19 30 39 43 0 0	30 55 83 101 119 0 0	14 24 28 34 36 0 0	3 9 22 26 30 34 0 0	2 6 9 15 20 21 0 0	3 12 15 17 21 27 0 0	246 422 595 736 863 0	7 16 25 30 35 0	13 24 39 44 50 0	306 512 673 792 905 0	6 7 8 12 14 0	66 113 155 188 217
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM		07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 09:00 AM	7 12 20 27 29 0 0	12 19 30 39 43 0 0	30 55 83 101 119 0 0 O T A	14 24 28 34 36 0 0	3 9 22 26 30 34 0 0	2 6 9 15 20 21 0 0	3 12 15 17 21 27 0 0	246 422 595 736 863 0 0	7 16 25 30 35 0 0	13 24 39 44 50 0	306 512 673 792 905 0	6 7 8 12 14 0 0	666 113 155 188 217 30 36
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 07:00 AM 07:15 AM		07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 09:00 AM	7 12 20 27 29 0 0	12 19 30 39 43 0 0 T	30 55 83 101 119 0 0 O T A	14 24 28 34 36 0 0	3 9 22 26 30 34 0 0 B Y	2 6 9 15 20 21 0 0	3 12 15 17 21 27 0 0 0	246 422 595 736 863 0 0	7 16 25 30 35 0 0	13 24 39 44 50 0 0	306 512 673 792 905 0 0	6 7 8 12 14 0 0	666 113 155 188 217 30 36 46
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 07:00 AM 07:15 AM		07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:45 AM 09:00 AM 07:15 AM 07:30 AM	7 12 20 27 29 0 0	12 19 30 39 43 0 0 T	30 55 83 101 119 0 0 O T A	14 24 28 34 36 0 0 L 9 5	3 9 22 26 30 34 0 0 B Y	2 6 9 15 20 21 0 0 PERIC	3 12 15 17 21 27 0 0 0 D	246 422 595 736 863 0 0	7 16 25 30 35 0 0	13 24 39 44 50 0 0	306 512 673 792 905 0 0	6 7 8 12 14 0 0	30 36 46 42
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 07:00 AM 07:15 AM 07:30 AM 07:45 AM		07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 09:00 AM 07:15 AM 07:30 AM 07:45 AM	7 12 20 27 29 0 0	12 19 30 39 43 0 0 T	30 55 83 101 119 0 0 O T A	14 24 28 34 36 0 0 L 9 5 10 4	3 9 22 26 30 34 0 0 0 B Y	2 6 9 15 20 21 0 0 PERIC	3 12 15 17 21 27 0 0 0 D	246 422 595 736 863 0 0	7 16 25 30 35 0 0	13 24 39 44 50 0 0	306 512 673 792 905 0 0	6 7 8 12 14 0 0	30 30 46 42 32
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 07:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM		07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 09:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM	1 20 27 29 0 0	12 19 30 39 43 0 0 7 11 9	30 55 83 101 119 0 0 O T A	14 24 28 34 36 0 0 L 9 5 10 4 6	3 9 22 26 30 34 0 0 B Y	2 6 9 15 20 21 0 0 PERIC	3 12 15 17 21 27 0 0 0 D	246 422 595 736 863 0 0	7 16 25 30 35 0 0	13 24 39 44 50 0 0 0	306 512 673 792 905 0 0	6 7 8 12 14 0 0	30 30 36 46 42 29
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM		07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:45 AM 09:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM	1 12 20 27 29 0 0	12 19 30 39 43 0 0 T	30 55 83 101 119 0 0 O T A	14 24 28 34 36 0 0 1 10 4 6 2	3 9 22 26 30 34 0 0 B Y	2 6 9 15 20 21 0 0 PERIC	3 12 15 17 21 27 0 0 0 D	246 422 595 736 863 0 0	7 16 25 30 35 0 0	13 24 39 44 50 0 0 0	306 512 673 792 905 0 0	6 7 8 12 14 0 0	30 36 46 42 29
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 07:15 AM 07:30 AM 07:45 AM 08:15 AM 08:15 AM		07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:45 AM 09:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM	1 20 27 29 0 0	12 19 30 39 43 0 0 7 11 9 4 -43 0	30 55 83 101 119 0 0 O T A 15 15 25 28 18 18 -119 0	14 24 28 34 36 0 0 1 10 4 6 2 -36 0	3 9 22 26 30 34 0 0 0 B Y	2 6 9 15 20 21 0 0 PERIC 2 4 3 6 5 1 -21 0	3 12 15 17 21 27 0 0 D 3 9 3 2 4 6 -27 0	246 422 595 736 863 0 0	7 16 25 30 35 0 0	13 24 39 44 50 0 0 0	306 512 673 792 905 0 0	6 7 8 12 14 0 0	30 36 46 42 29
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM		07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:45 AM 09:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM	1 20 27 29 0 0	12 19 30 39 43 0 0 T 3 9 7 11 9 4 -43 0	30 55 83 101 119 0 0 O T A 15 25 28 18 18 -119 0	14 24 28 34 36 0 0 1 1 10 4 6 2 -36 0	3 9 22 26 30 34 0 0 0 B Y 3 6 13 4 4 4 -34 0 Y T	2 6 9 15 20 21 0 0 PERIC 2 4 3 6 5 1 -21 0	3 12 15 17 21 27 0 0 D D 3 9 3 2 4 6 -27 0	246 422 595 736 863 0 0 0	7 16 25 30 35 0 0	13 24 39 44 50 0 0 0	306 512 673 792 905 0 0	6 7 8 12 14 0 0	30 36 46 42 22 -217
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 07:15 AM 07:15 AM 07:15 AM 07:45 AM 08:30 AM 08:45 AM 08:45 AM 08:45 AM		07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:30 AM 08:45 AM 09:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:30 AM 08:45 AM 09:00 AM	1 20 27 29 0 0 1 6 5 8 7 2 -29 0	12 19 30 39 43 0 0 T 3 9 7 11 9 4 -43 0	30 55 83 101 119 0 0 O T A 15 15 25 28 18 18 -119 0 H O U	14 24 28 34 36 0 0 1 10 4 6 2 -36 0	3 9 22 26 30 34 0 0 B Y 3 6 13 4 4 4 -34 0 Y T	2 6 9 15 20 21 0 0 PERIC 2 4 3 6 5 1 -21 0 O O TAL	3 12 15 17 21 27 0 0 0 D D	246 422 595 736 863 0 0 103 143 176 173 141 127 -863 0	7 16 25 30 35 0 0 0	13 24 39 44 50 0 0 0 3 10 11 15 5 6 -50 0	306 512 673 792 905 0 0 154 152 206 161 119 113 -905 0	6 7 8 12 14 0 0	30 30 36 46 42 29 -217
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:45 AM 07:15 AM 07:15 AM 07:45 AM 08:45 AM 08:45 AM 08:45 AM 08:15 AM 08:45 AM 08:45 AM		07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:45 AM 09:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:45 AM 08:00 AM 08:45 AM	1 20 27 29 0 0 1 6 5 8 7 2 -29 0	12 19 30 39 43 0 0 T 3 9 7 11 9 4 -43 0	30 55 83 101 119 0 0 O T A 15 15 25 28 18 18 -119 0 H O U	14 24 28 34 36 0 0 1 5 10 4 6 2 -36 0 0 J R L	3 9 22 26 30 34 0 0 B Y 3 6 13 4 4 4 -34 0 Y T	2 6 9 15 20 21 0 0 PERIO 2 4 3 6 5 1 -21 0 O TAL	3 12 15 17 21 27 0 0 D D 3 9 3 2 4 6 -27 0 S	246 422 595 736 863 0 0 103 143 176 173 141 127 -863 0	7 16 25 30 35 0 0 0	13 24 39 44 50 0 0 0 3 10 11 15 5 6 -50 0	306 512 673 792 905 0 0 154 152 206 161 119 113 -905 0	6 7 8 12 14 0 0 0	30 36 46 42 32 -217
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:45 AM 07:15 AM 07:15 AM 07:45 AM 08:45 AM 08:45 AM 08:15 AM 08:15 AM 08:15 AM 08:15 AM 08:15 AM 08:15 AM		07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:45 AM 09:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:45 AM 09:00 AM	1 2 20 27 29 0 0 0	12 19 30 39 43 0 0 T 3 9 7 11 9 4 -43 0	30 55 83 101 119 0 0 OTA 15 15 25 28 18 18 -119 0 HOU	14 24 28 34 36 0 0 1 5 10 4 6 2 -36 0 0 J R L	3 9 22 26 30 34 0 0 B Y 3 6 13 4 4 4 4 -34 0 Y T 26 27 25	2 6 9 15 20 21 0 0 PERIC 2 4 3 6 5 1 -21 0 0 OTAL	3 12 15 17 21 27 0 0 D D 3 9 3 2 4 6 -27 0 S	246 422 595 736 863 0 0 103 143 176 173 141 127 -863 0	7 16 25 30 35 0 0 0	13 24 39 44 50 0 0 0 3 10 11 15 5 6 -50 0	306 512 673 792 905 0 0 154 152 206 161 119 113 -905 0	6 7 8 12 14 0 0 0	30 66 113 155 188 217 30 36 46 42 32 29 -217
07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:45 AM 07:15 AM 07:15 AM 07:45 AM 08:15 AM 08:45 AM 08:45 AM 08:15 AM 08:45 AM 08:15 AM 08:45 AM		07:30 AM 07:45 AM 08:00 AM 08:15 AM 08:45 AM 09:00 AM 07:15 AM 07:30 AM 07:45 AM 08:00 AM 08:45 AM 08:00 AM 08:45 AM	1 20 27 29 0 0 1 6 5 8 7 2 -29 0	12 19 30 39 43 0 0 T 3 9 7 11 9 4 -43 0	30 55 83 101 119 0 0 O T A 15 15 25 28 18 18 -119 0 H O U	14 24 28 34 36 0 0 1 5 10 4 6 2 -36 0 0 J R L	3 9 22 26 30 34 0 0 B Y 3 6 13 4 4 4 -34 0 Y T	2 6 9 15 20 21 0 0 PERIO 2 4 3 6 5 1 -21 0 O TAL	3 12 15 17 21 27 0 0 D D 3 9 3 2 4 6 -27 0 S	246 422 595 736 863 0 0 103 143 176 173 141 127 -863 0	7 16 25 30 35 0 0 0	13 24 39 44 50 0 0 0 3 10 11 15 5 6 -50 0	306 512 673 792 905 0 0 154 152 206 161 119 113 -905 0	6 7 8 12 14 0 0 0	30 36 46 42 32 -217

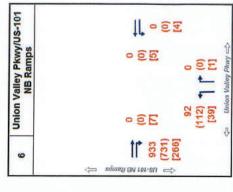

ASSOCIATED TRANSPORTATION ENGINEERS

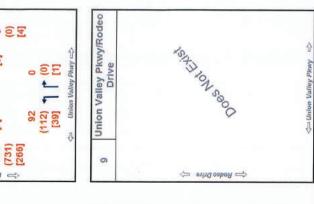
INTERSECTION TURNING MOVEMENT SUMMARY

PROJECT: F	RICHA	RDS RANCH		:	PROJEC	T #: 210	069	COUNT DA	TE: 4-28	3-22		FILE NAME:	06_PM		-
N-S Approach:		HUMMEL D	RIVE					COUNT TIM	IE:	04:00 PM	TO	5:30			
E-W Approach:		UNION VAI	LLEY PA	ARKWAY				CITY: SANT	4 MARI	IA .		WEATHER:		SUNNY	
								Λ	ĺ						
PEAK HO	U R:	04:30 PM	TO	05:30 PM				/ \	1						
										1					1
		г	Н	UMMEL DRIVE				NORTH							
			8	21	12]
							_								-
									CONTROL TVO						
		_				^			CONTROL TYPE NONE						
_		-	<	V	>			7		CONTROL TYP	E:	NONE			
	24	'				'	23								
_				TOTAL				1 IIIII0NIV		<u>ARRIVAI</u>	. / D EF	PARTURE	<u>volu</u>	MES_	
	828	>		1,661		<	559	UNION VA PARKW							
								_				41	66		
L	43	<u> </u>				,	66						/ \		
		V	<		>	V						\ /			
									1	587	<			<	648
									-						
		Г		1 1						895	>			>	878
		<u> </u>	20	19	38							\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	/ \		
									ļ			130	77		
												130	//	l	
TIM	E PER	IOD		NORTHBOUND			SOUTHBO	DUND	<u> </u>	EASTBOUND		WES	TBOUND		TOTAL
From		То	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	VOLUMES
						CO	UNI	DAI	Α						
04:00 PM		04:15 PM	2	3	14	0	2	2	0	197	13	11	123	8	375
04:15 PM		04:30 PM	7	4	26	6	3	5	6	393	24	28	261	16	779
04:30 PM		04:45 PM	13	6	34	9	6	7	14	623	29	42	390	20	1193
04:45 PM		05:00 PM	22	12	41	12	8	10	21	822	43	58	527	26	1602
05:00 PM		05:15 PM	25	17	52	13	15	10	26	1019	52	76	670	34	2009
05:15 PM		05:30 PM	27	23	64	18	24	13	30	1221	67	94	820	39	2440
05:30 PM		05:45 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
05:45 PM		06:00 PM	0	0	0	0	0	0	0	0	0	0	0	0	0
				T	O T A	L	ВΥ	PERIC) D					-	
04:00 PM		04:15 PM	2	3	14	0	2	2	0	197	13	11	123	8	375
04:15 PM		04:30 PM	5	1	12	6	1	3	6	196	11	17	138	8	404
04:30 PM		04:45 PM	6	2	8	3	3	2	8	230	5	14	129	4	414
04:45 PM		05:00 PM	9	6	7	3	2	3	7	199	14	16	137	6	409
04:43 FM 05:00 PM		05:00 PM	3	5	11	1	7	0	5	199	9	18	143	8	407
05:00 PM 05:15 PM		05:13 PM	2	6	12	5	9	3	5 4	202	15	18		5	431
		1											150		-2440
05:30 PM		05:45 PM	-27	-23	-64	-18	-24	-13	-30 0	-1,221	-67	-94	-820	-39	-2440
05:45 PM		06:00 PM	0	0	0	0	0	0		0	0	0	0	0	
					нοι	J K L	Y T	OTAL	5						
04:00 PM		05:00 PM	22	12	41	12	8	10	21	822	43	58	527	26	1602
04:15 PM		05:15 PM	23	14	38	13	13	8	26	822	39	65	547	26	1634
04:30 PM		05:30 PM	20	19	38	12	21	8	24	828	43	66	559	23	1661
04:45 PM		05:45 PM	-13	-6	-34	-9	-6	-7	-14	-623	-29	-42	-390	-20	-1193
05:00 PM		06:00 PM	-22	-12	-41	-12	-8	-10	-21	-822	-43	-58	-527	-26	-1602
		!										!			

64 (96) (12] 328 (339) [46]

263 (213) [156]

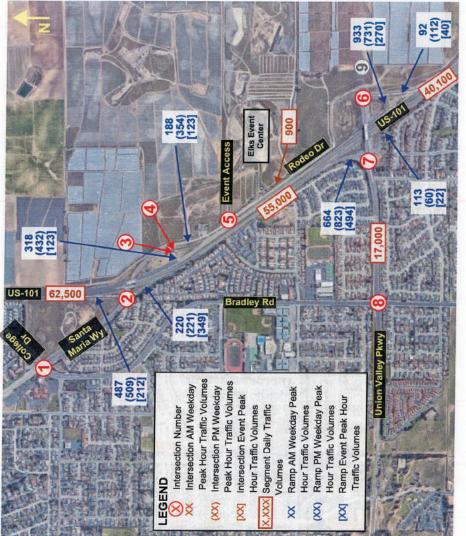

70 (65) (97) 168 (227)


Santa Maria Wy/College Dr/Bradley Rd

92 (70) [24]

(41) [60]

244 (422) [54]



Union Valley Pkwy/US-101 SB Ramps

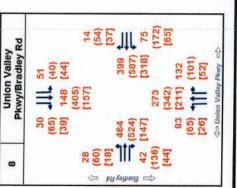
1 (2) [36] 4 8 2

659 (819) [455]

Santa Maria Wy/US-101 SB Ramps

4 (14)

343 1 111 (325) 1 [255] Sante Maria Wy COM

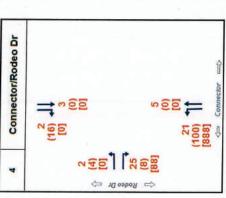

304 (238) [211]

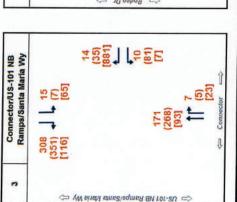
292 (339) [383]

255 (254) [[696] 4 [277]

490 (398) [139]

216 (213)


230


90 (109) [44]

932 (729) [235]

sdury 85 tot-Sn

107

	RICHARDS RANCH - SANTA MARIA (#21069) - PARCEL 1 WITH NO INTERNAL TRIP FACTOR AM PEAK HOUR	NCH - SA Internal	NTA MARIA	RIA (#210	69) - PAI	RCEL 1	WITH NO INTER	INTER	JAL TRIF	FACTC	8		PM PEAK HOUR	(HOUR		
Use	Size	Factor	Rate	Trips	Rate	Trips	% ul	Trips	Ont %	Trips	Rate	Trips	% ul	Trips Out %		Trips
COMMERCIAL																
Gas Station with Mart	10 Fueling Positions	1.00	200.80	2,008	16.06	161	20%	81	20%	80	18.42	184	20%	92	20%	92
ube Station	3 Bays	1.00	40.00	120	3.00	о	%29	9	33%	က	4.85	15	%99	80	44%	7
Totals:	13 SF			2.128		170		87		83		199		100		66

(a) Trip generation based on ITE rates for Convenience Store/Gas Station (ITE #945). Fitted Curve Equation for ADT. Average Rate for AM/PM Peak Hours. (b) Trip generation based on ITE rates for Quick Lubrication Vehicle Shop (ITE #941) Average Rate.

Associated Transportation Engineers Trip Generation Worksheet

RICHARDS RANCH - SANTA MARIA (#21069) - PARCEL 2A WITH NO INTERNAL TRIP FACTOR

		Internal	ADT	T			AM PEAK HOI	K HOUR					PM PEA	K HOUR		
Use	Size	Factor	Rate	Trips	Rate	Trips	ln %	Trips	Out %	Trips	Rate	Trips	% uI	Trips	Ont %	Trips
COMMERCIAL																
Shopping Center(a)	55,000 SF	1.00	94.49	5,197	3.53	194	%29	120	38%	74	9.84	541	48%	260	52%	281
Restaurant - Shopping Center (b)	5,000 SF	1.00	107.20	536	9.57	48	22%	26	45%	22	9.02	45	61%	27	39%	18
Restaurant Pad 1 - Drive Thru (c)	3,750 SF	1.00	467.48	1,753	44.61	167	21%	82	46%	82	33.03	124	52%	64	48%	09
Restaurant Pad 2 - Drive Thru (c)	3,500 SF	1.00	467.48	1,636	44.61	156	21%	80	46%	92	33.03	116	52%	09	48%	26
Restaurant Pad 3 - No Drive Thru	3,000 SF	1.00	97.14	291	1.43	4	%09	2	%09	2	12.55	38	22%	21	45%	17
Restaurant Pad 4 - No Drive Thru	3,000 SF	1.00	97.14	291	1.43	4	%09	2	%09	2	12.55	38	22%	21	45%	17
Restaurant Pad 5 - Drive Thru (c)	2,500 SF	1.00	467.48	1,169	44.61	112	21%	22	46%	22	33.03	83	52%	43	48%	40
Restaurant Pad 6 - Drive Thru (c)	3,000 SF	1.00	467.48	1,402	44.61	134	21%	89	49%	99	33.03	66	52%	51	48%	48
Restaurant Pad 7 - Drive Thru (c)	2,500 SF	1.00	467.48	1,169	44.61	112	21%	22	49%	22	33.03	83	52%	43	48%	40
Totals:	81,250 SF			13,444		931		497		434		1,167		230		211

⁽a) Trip generation based on ITE rates for Shopping Plaza (ITE #821). Average Rate for ADT and AM Peak Hour. Fitted Curve Equation for PM Peak Hour.
(b) Trip generation based on ITE rates for High-Turnover (Sit-Down) Restaurant (ITE #932) Average Rate.
(c) Trip generation based on ITE rates for Fast-Food Restaurant with Drive-Through Window (ITE #934) Average Rate.
(d) Trip generation based on ITE rates for Fast Casual Restaurant (ITE #930) Average Rate.

		bs		~	_
		6 Tri		က	က
	~	Out %		23%	
	K HOUF	Trips		က	ო
	PM PEAK HOUR	% ul		41%	
	4	Trips In % Trips Out % Trips		9	9
CTOR		Rate		0.15	
TRIP F4		Trips		7	7
IERNAL		Ont %		41%	
LNI ON F	HOUR	Trips (7	7
2B WITI	AM PEAK HOUR	In % Trips Out % Trips		%69	
PARCEL	Ā	Trips		4	4
21069) - [Rate		0.09	
IARIA (# <u>;</u>	_	Trips		22	22
ANTA M	ADT	Rate		1.45	
RICHARDS RANCH - SANTA MARIA (#21069) - PARCEL 2B WITH NO INTERNAL TRIP FACTOR	Internal	Factor		1.00	
RICHARDS		Size		39,500 SF	39,500 SF
Trip Generation Worksheet		Use	COMMERCIAL	Mini Storage(c)	Fotals:

(a) Trip generation based on ITE rates for Mini-Warehouse (ITE #151).

Associated Transportation Engineers Trip Generation Worksheet

RICHARDS RANCH - SANTA MARIA (#21069) - PARCEL 3 WITH NO INTERNAL TRIP FACTOR

		Internal	ADT	T(AM PEA	AM PEAK HOUR				_	PM PEAK HOUR	K HOUR		
Use	Size	Factor	Rate	Trips	Rate	Trips	% ul	Trips	Ont %	Trips	Rate	Trips	% ul	Trips	Trips Out % Trips	Trips
COMMERCIAL																
Car Wash-Automated (a)	1 Tunnel	1.00	249.00	249	8.50	6	20%	2	%09	4	23.70	24	20%	12	20%	12
Restaurant Pad 8 - Drive Thru (c)	3,500 SF	1.00	467.48	1,636	44.61	156	51%	80	46%	9/	33.03	116	52%	09	48%	26
Totals:	3,501 SF			1,885		165		82		80		140		72		89

⁽a) Trip generation for Car Wash-Automated derived from local studies. (b) Trip generation based on ITE rates for Fast-Food Restaurant with Drive-Through Window (ITE #934) Average Rate.

on Engineers	tet.
Associated Transportation E	Trin Generation Workshee

RICHARDS RANCH - SANTA MARIA (#21069) - PARCEL 4A WITH NO INTERNAL TRIP FACTOR

		Internal	AL	ADT		•	AM PEAK HOUR	K HOUR				_	PM PEAK HOUR	X HOUR		
Use	Size	Factor	Rate	Trips	Rate	Trips	% ul	Trips	Out % Trips	Trips	Rate	Trips	% ul	Trips	Ont %	Trips
RESIDENTIAL																
Three Story Apartments(a)	400 DU	1.00	09.9	2,639	0.37	147	24%	35	%92	112	0.48	193	63%	122	37%	71
Totals:	400 DU			2,639		147		35		112		193		122		7

(a) Trip generation based on ITE rates for Multifamily Housing (Low-Rise) (ITE #220) Fitted Curve Equation.

(a) Trip generation based on ITE rates for Multifamily Housing (Low-Rise) (ITE #220) Fitted Curve Equation.

Associated Transportation Engineers Trip Generation Worksheet																
	RICHARDS RANCH - SANTA MARIA (#21069) - WITH NO INTERNAL TRIP FACTOR	RANCH -	SANTA M.	ARIA (#2	1069) - W	ON HTI	NTERNA	L TRIP F	-ACTOR							
		Internal	ADT			 	AM PEAK HOUR	HOUR					PM PEAK HOUR	HOUR		
Use	Size	Factor	Rate	Trips	Rate	Trips	L % ul	Trips	Out %	Trips	Rate	Trips	. % ul	Trips Out %		Trips
COMMERCIAL																
High Turnover Sit Down Restaurant (a)	5,000 SF	1.00	107.20	536	9.57	48	22%	26	45%	22	9.05	45	61%	27	39%	18
2 Restaurants without Drive Thru (b)	6,000 SF	1.00	97.14	583	1.43	6	%09	2	20%	4	12.55	75	22%	4	45%	34
6 Drive Thru Restaurants (c)	18,750 SF	1.00	467.48	8,765	44.61	836	51%	426	49%	410	33.03	619	52%	322	48%	297
Shopping Center (d)	55,000 SF	1.00	94.49	5,197	3.53	194	62%	120	38%	74	9.84	541	48%	260	52%	281
Gas Station with Mart (e)	10 Fueling Positions	1.00	200.80	2,008	16.06	161	%09	81	20%	80	18.42	184	20%	95	20%	95
Car Wash-Automated (f)	1 Tunnel	1.00	249.00	249	8.50	6	%09	2	20%	4	23.70	24	%09	12	%09	12
Lube Station (g)	3 Bays	1.00	40.00	120	3.00	6	%19	9	33%	က	4.85	15	%99	∞	44%	7
Mini Storage (h)	39,500 SF	1.00	1.45	22	60.0	4	%69	2	41%	2	0.15	9	47%	က	53%	က
Subtotals:	124,250 SF			17,515		1,270		671		299	•	609,1		292		744
RESIDENTIAL																
Three Story Apartments (i)	400 DU	1.00	09.9	2,639	0.37	147	24%	35	%92	112	0.48	193	63%	122	37%	71
Two Story Townhomes (i)	95 DU	1.00	09.9	627	0.37	35	24%	80	%92	27	0.48	46	%89	29	37%	17
Subtotals:	495 DU			3,266		182		43		139		239		151		88
Totals:				20,781		1,452		714		738	•	1,748		916		832

(a) Trip generation based on ITE rates for High-Turnover (Sit-Down) Restaurant (ITE #932) Average Rate.
(b) Trip generation based on ITE rates for Fast Casual Restaurant (ITE #930) Average Rate.
(c) Trip generation based on ITE rates for Fast-Food Restaurant with Drive-Through Window (ITE #934) Average Rate.
(d) Trip generation based on ITE rates for Shopping Plaza (ITE #821). Average Rate for ADT and AM Peak Hour. Fitted Curve Equation for PM Peak Hour.
(e) Trip generation based on ITE rates for Convenience Store/Gas Station (ITE #945). Fitted Curve Equation for ADT. Average Rate for AM/PM Peak Hours.
(f) Trip generation based on ITE rates for Quick Lubrication Vehicle Shop (ITE #941) Average Rate.
(h) Trip generation based on ITE rates for Mini-Warehouse (ITE #151).

(i) Trip generation based on ITE rates for Multifamily Housing (Low-Rise) (ITE #220) Fitted Curve Equation.

TRIP TYPE	ADT	AM PEAK	PM PEAK
Internal (30% ADT, 13% AM, 45% PM) (45% for Car Wash)	6,272	192	787
External (70% ADT, 87% AM, 55% PM) (45% for Car Wash)	14,509	1,260	961

Associated Transportation Engineer Trip Generation Worksheet

		Trips	50 4 4
		Trips In % Trips Out % Trips	50% 44%
	K HOUR	Trips	5 4 5
	PM PEAK HOUR	% ul	50% 56%
		Trips	101 8 109
		Rate	18.42
δ		Trips	70 73
FACTOR		Trips In % Trips Out % Trips	50% 33%
AL TRIP	4 HOUR	Trips	70 5 75
NTERN	AM PEAK HOUR	% uI	92% 92%
1 МІТН І		Trips	140 8 148
ARCEL		Rate	3.00
1069) - P	-	Trips	1,406 84 1,490
ARIA (#2	ADT	Rate	200.80
SANTA MA	PM nternal		0.55
ICHARDS RANCH - SANTA MARIA (#21069) - PARCEL 1 WITH INTERNAL TRIP FACTORS	ADT AM PM nternal	Factor Factor	0.87
HARDS F	ADT nternal	Factor	0.70
RIC		Size	10 Fueling Positions 3 Bays
		Use	COMMERCIAL Gas Station with Mart Lube Station Totals:

⁽a) Trip generation based on ITE rates for Convenience Store/Gas Station (ITE #945), Fitted Curve Equation for ADT. Average Rate for AM/PM Peak Hours.
(b) Trip generation based on ITE rates for Quick Lubrication Vehicle Shop (ITE #941) Average Rate.

GAS STATION PASS-BY & PRIMARY TRIPS Commercial External Trips - Gas Station 75% Pass-By Trips - Applied to Gas Station 25% Primary Trips - Remainder Gas Station	ADT 1,406 1,055 352	AM Total 140 105 35	AM In 70 53 17	AM Out 70 52 18	PM Total 101 76 25	PM In 51 38 13	PM Out 50 38 12
TOTAL EXTERNAL PRIMARY TRIPS Commercial External Lube Station - External Total External Trips	ADT 352 84 436	AM Total 35 8 43	AM In 17 5 5 22	AM Out 18 3 21	PM Total 25 8 33	PM In 13 4 17	PM Out 12 4 16

Associated Transportation Engineers Trip Generation Worksheet

RICHARDS RANCH - SANTA MARIA (#21069) - PARCEL 2A WITH INTERNAL TRIP FACTORS

		ADT	AM Internal	PM	ADT	Ĕ		⋖	AM PEAK HOUR	HOUR				Δ.	PM PEAK HOUR	HOUR		
Use	Size	Factor	Factor	Factor	Rate	Trips	Rate	Trips	. % ul	Trips	Out % .	Trips	Rate	Trips	% ul	Trips	Ont %	Trips
COMMERCIAL																		
Shopping Center(a)	55,000 SF	0.70	0.87	0.55	94.49	3,638	3.53	169	62%	105	38%		9.84	298	48%	143	25%	155
Restaurant - Shopping Center (b)	5,000 SF	0.70	0.87	0.55	107.20	375	9.57	42	22%	23	45%		9.02	25	61%	15	39%	10
Restaurant Pad 1 - Drive Thru (c)	3,750 SF	0.70	0.87	0.55	467.48	1,227	44.61	146	51%	74	46%		33.03	89	25%	35	48%	33
Restaurant Pad 2 - Drive Thru (c)	3,500 SF	0.70	0.87	0.55	467.48	1,145	44.61	136	51%	69	49%		33.03	49	25%	33	48%	31
Restaurant Pad 3 - No Drive Thru (d)	3,000 SF	0.70	0.87	0.55	97.14	204	1.43	4	20%	2	%09		12.55	21	22%	12	45%	6
Restaurant Pad 4 - No Drive Thru (d)	3,000 SF	0.70	0.87	0.55	97.14	204	1.43	4	20%	2	20%	2	12.55	21	22%	12	45%	6
Restaurant Pad 5 - Drive Thru (c)	2,500 SF	0.70	0.87	0.55	467.48	818	44.61	26	51%	49	46%		33.03	45	25%	23	48%	22
Restaurant Pad 6 - Drive Thru (c)	3,000 SF	0.70	0.87	0.55	467.48	982	44.61	116	51%	26	46%		33.03	75	25%	28	48%	26
Restaurant Pad 7 - Drive Thru (c)	2,500 SF	0.70	0.87	0.55	467.48	818	44.61	26	51%	49	46%		33.03	45	25%	23	48%	22
Totals:	81,250 SF					9,411		811		432		379		641		324		317

(a) Trip generation based on ITE rates for Shopping Plaza (ITE #821). Average Rate for ADT and AM Peak Hour. Fitted Curve Equation for PM Peak Hour. (b) Trip generation based on ITE rates for High-Turnover (Sit-Down) Restaurant (ITE #932) Average Rate.
(c) Trip generation based on ITE rates for Fast-Food Restaurant with Drive-Through Window (ITE #934) Average Rate.
(d) Trip generation based on ITE rates for Fast Casual Restaurant (ITE #930) Average Rate.

SHOPPING CENTER PASS-BY & PRIMARY TRIPS Commercial External Trips - Retail 40% Pass-By Trips - Applied to Retail 60% Primary Trips - Remainder Retail	ADT 3,638 1,455 2,183	AM Total 169 68 101	AM In 105 42 63	AM Out 64 26 38	PM Total 298 119 179	PM In 143 57 86	PM Out 155 62 93
SIT DOWN RESTAURANT PASS-BY & PRIMARY TRIPS Commercial External Trips - Restaurant - Shopping Center and No Drive Thru 43% Pass-By Trips - Applied to Restaurant - Shopping Center and No Drive Thru 57% Primary Trips - Remainder Restaurant - Shopping Center and No Drive Thru	ADT 783 337 446	AM Total 50 21 29	AM In 27 11	AM Out 23 10 13	PM Total 67 29 38	PM In 39 16 23	PM Out 28 13
FAST FOOD RESTAURANT PASS-BY & PRIMARY TRIPS Commercial External Trips - Restaurant Drive Thru 55% Pass-By Trips - Applied to Restaurant Drive Thru 45% Primary Trips - Remainder Restaurant Thru	ADT 4,990 2,745 2,246	AM Total 592 326 266	AM In 300 165 135	AM Out 292 161 131	PM Total 276 152 124	PM In 142 78	PM Out 134 74 60
TOTAL EXTERNAL PRIMARY TRIPS Commercial External Trips	ADT 4,875 4,875	AM Total 397 397	AM In 214 214	AM Out 183 183	PM Total 341 341	PM In 173 173	PM Out 168 168

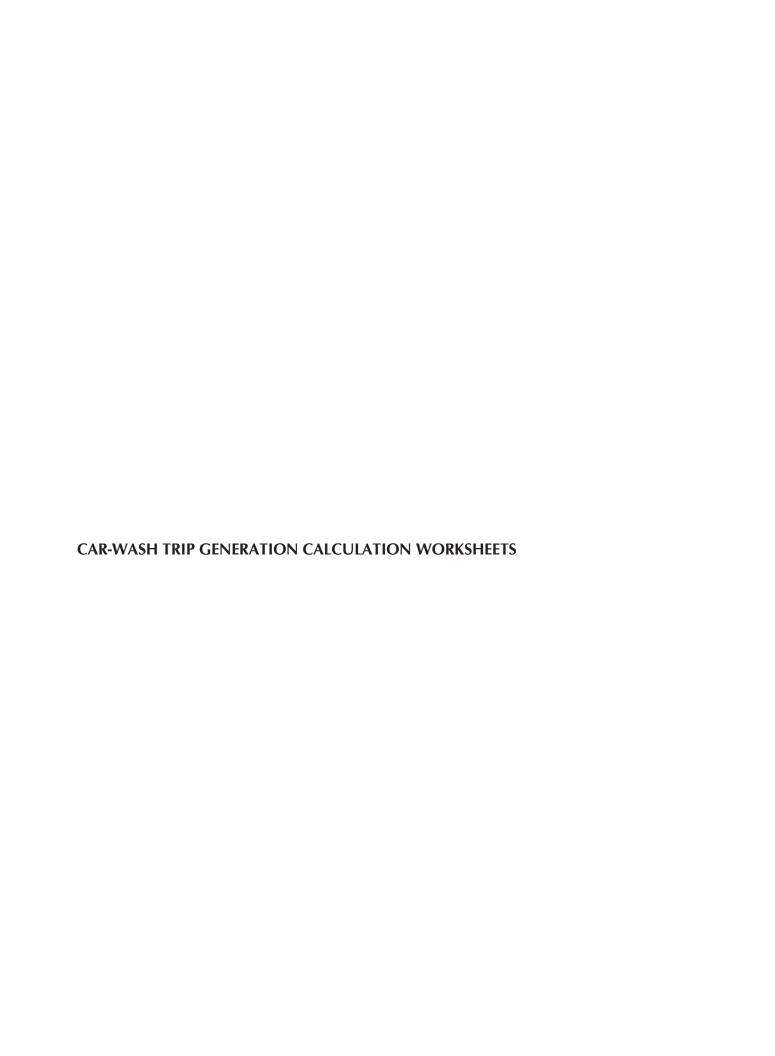
(a) Trip generation based on ITE rates for Mini-Warehouse (ITE #151).

		Z.	Trips In % Trips Out % Trips		9 %09	48% 31 37
		PM PEAK HOUR	η% Trip		2 %0.	52% 33
		PM	Trips II		13 5	64 5
			Rate		23.70	33.03
	ORS		Trips		7	69
	IP FACT	~	Out %		%09	49%
	NAL TR	AM PEAK HOUR	Trips In % Trips Out % Trips		က	69 72
	H INTER	AM PEA	% ul		20%	51%
	EL 3 WIT		$\overline{}$		2	136 141
	- PARCI		Rate		8.50	44.61
	(#21069)	ADT	Trips			1,145 1,282
	MARIA	A	Rate		249.00	467.48
	I - SANTA	PM Internal	Factor		0.55	0.55
	RICHARDS RANCH - SANTA MARIA (#21069) - PARCEL 3 WITH INTERNAL TRIP FACTORS	ADT AM PM Internal Internal	Factor		0.55	0.87
	RICHARD	ADT Internal	Factor		0.55	0.70
ers			Size		1 Tunnel	3,500 SF 3,501 SF
Associated Transportation Engineers Trip Generation Worksheet			Use	COMMERCIAL	Car Wash-Automated (a)	Restaurant Pad 8 - Drive Thru (c) Totals:

(a) Trip generation for Car Wash-Automated derived from local studies.
(b) Trip generation based on ITE rates for Fast-Food Restaurant with Drive-Through Window (ITE #934) Average Rate.

CAR WASH PASS-BY & PRIMARY TRIPS Commercial External Trips - Car Wash 20% Pass-By Trips - Applied to Car Wash 80% Primary Trips - Remainder Car Wash	ADT 137 27 110	AM Total 5 1 4	AM In 3	AM Out 2 0 2	PM Total 13 3 10	PM In 7 2 2 5	PM Out 6 1 5
FAST FOOD RESTAURANT PASS-BY & PRIMARY TRIPS Commercial External Trips - Restaurant Pads 55% Pass-By Trips - Applied to Restaurant Pads 45% Primary Trips - Remainder Restaurant Pads	ADT 1,145 630 515	AM Total 136 75 61	AM In 69 38 31	AM Out 67 37 30	PM Total 64 35 29	PM in 33 18 15	31 31 17
TOTAL EXTERNAL PRIMARY TRIPS Commercial External Total External Trips	ADT 625 625	AM Total 65 65	AM In 33 33 33	AM Out 32 32	PM Total 39 39	PM In 20 20	PM Out 19 19

RANCH - SANTA MARIA (#21069) - PARCEL 4A WITH INTERNAL TRIP FACTORS	ADT AM PEAK HOUR PM PEAK HOUR	Rate Trips Rate Trips In% Trips Out% Trips Rate Trips In% Trips Out% Trips	1,847 0.37 128 24% 31 76% 97 0.48 106 63% 67 39 1,847 128 31 97 106 67 39
DS RANCH -	AM PM Internal	Factor Factor	0.87
RICHARDS	ADT Internal	Factor	0.70
		Size	400 DU 400 DU
Trip Generation Worksheet		Use	RESIDENTIAL Three Story Apartments(a) Totals:


(a) Trip generation based on ITE rates for Multifamily Housing (Low-Rise) (ITE #220) Fitted Curve Equation.

	R Out % Tr
ADT	37%
	Out % T
RANCH - SANTA MARIA (#21069) - PARCEL 4B WITH INTERNAL TRIP FACTORS	2

(a) Trip generation based on ITE rates for Multifamily Housing (Low-Rise) (ITE #220) Fitted Curve Equation.

Trip Generation Worksheet	₩.	CHARDS	RICHARDS RANCH - SANTA MARIA (#21069) - WITH INTERNAL TRIP FACTORS	SANTA	MARIA (#	-(21069) -	WITHIN	TERNAL	TRIPFA	CTORS								
		ADT	AM	PM	JA	ADT		`	AM PEAK HOUR	HOUR				"	PM PEAK HOUR	HOUR		
Use	Size	Factor	Factor	Factor	Rate	Rate Trips	Rate	Trips	In % Trips Out %	Trips	% mo	Trips	Rate	Trips		Trips	In % Trips Out % Trips	Trips
COMMERCIAL																		
High Turnover Sit Down Restaurant (a)	5,000 SF	0.70	0.87	0.55	107.20	375	9.57	42	22%	23	45%	19	9.05	25	61%	15	39%	9
2 Restaurants without Drive Thru (b)	6,000 SF	0.70	0.87	0.55	97.14	408	1.43	7	20%	4	20%	3	12.55	4	25%	23	45%	18
6 Drive Thru Restaurants (c)	18,750 SF	0.70	0.87	0.55	467.48	6,136	44.61	728	51%	371	49%	357	33.03	341	52%	177	48%	164
Shopping Center (d)	55,000 SF	0.70	0.87	0.55	94.49	3,638	3.53	169	62%	105	38%	64	9.84	298	48%	143	52%	155
Gas Station with Mart (e)	10 Fueling Positions	0.70	0.87	0.55	200.80	1,406	16.06	140	20%	20	%09	20	18.42	101	20%	51	20%	20
Car Wash-Automated (f)	1 Tunnel	0.55	0.55	0.55	249.00	137	8.50	2	20%	3	%09	2	23.70	13	20%	7	20%	9
Lube Station (g)	3 Bays	0.70	0.87	0.55	40.00	8	3.00	89	92.6	2	33%	3	4.85	89	26%	4	44%	4
Mini Storage (h)	39,500 SF	0.70	0.87	0.55	1.45	40	0.09	8	29%	2	41%	-	0.15	8	47%	-	53%	2
Subtotals:	124,250 SF					12,224		1,102		283		519		830		421		409
RESIDENTIAL																		
Three Story Apartments (i)	400 DU	0.70	0.87	0.55	09.9	1,847	0.37	128	24%	31	%9/	97	0.48	106	63%	49	37%	39
Two Story Townhomes (i)	95 DU	0.70	0.87	0.55	09.9	439	0.37	30	24%	۶ / a	26%	23	0.48	25	63%	9 6	37%	o q
oubloidis.	000					2,200		8		8		0.71		2		2		9
Totale						44.540		000		200		0		,				

SHOPPING CENTER PASS-BY & PRIMARY TRIPS Commental Edeman Tips - Retail 40% Pass-8y Trips - Applied to Retail 60% Primary Trips - Remainder Retail	ADT 3,638 1,455 2,183	AM Total 169 68 101	AM In 105 42 63	AM Out 64 26 38	PM Total 298 119 179	143 143 57 86	PM Out 155 62 93
SIT DOWN RESTAURANT PASS-BY & PRIMARY TRIPS Commental Edeman Tips: Resistantari Stopping Center and No Dive Thru Case Pass-By Trips - Applied to Resistantari - Shopping Center and No Dive Thru 57% Primary Trips - Remainder Resistantari - Shopping Center and No Drive Titu	ADT 783 337 446	AM Total 49 21 28	AM In 27 12 15	AM Out 22 9 13	PM Total 66 28 38	9M In 38 16 22	PM Out 28 12 16
FAST FOOD RESTAURANT PASS-BY & PRIMARY TRPS GOWNEDIA Edeman Tips: GOWNEDIA Edeman Tips: Applied to Restaurant Pass 45% Frinary Tips - Remainder Restaurant Pass	ADT 6,136 3,375 2,761	AM Total 728 400 328	AM In 37.1 204 167	AM Out 357 196 161	PM Total 341 188 153	1777 98 79	PM Out 164 90 74
GAS STATION PASS-BY & PRIMARY TRIPS Commental External Trips - Case Station To Simple External Trips - Case Station 22% Prass-8y Trips - Applied to Gas Station 22% Primary Trips - Remainder Gas Station	ADI 1,406 1,055 352	AM Total 140 105 35	AM In 70 53 17	AM Out 70 52 18	PM Total 101 76 25	PM In 51 38 13	PM Out 50 38 12
GAR WASH PASS-BY & PRIMARY TRIPS COMMEDIATE Edental Tips: Cart Wash 20% reals by Tips: Applied to Car Wash 80% Primary Tips: Permainder Car Wash	ADI 137 27 27 110	AM Total 5 1 4	AM In 3 3 2 2 2 2	AM Out 2 0 2 2	PM Total 13 3 10	PM In 7 2 2 5 5	PM Out
TOTAL PASS-BY TRIPS Shopping Content and Fast Casual Restaurant Fish Proof Restaurant and Fast Casual Restaurant Gas Station Car Wash	ADI 1,455 337 3,375 1,055 27 6,249	AM Total 68 68 21 700 105 1	AM In 42 42 12 204 53 1	AM Out 28 9 196 196 52 0	PM Total 119 28 188 76 3	PMID 57 16 98 38 2 2	PM Out 62 12 90 38 1 1
TOTAL EXTERNAL PRIMARY TRIPS Commendia Edermal Lide Station: Edermal Min Stonge: Edermal Residential - External Total External Trips	ADT 5,852 84 40 2,286 8,262	AM Total 496 8 8 3 158 665	AM In 264 5 2 2 38 309	AM Out 232 3 3 1 1 1 1 1 1 1 1 1 1 2 0 3 5 6	PM Total 405 8 8 3 131 547	PM In 205 4 4 1 83 293	PM Out 200 4 2 2 48 2 48

TRIP GENERATION AT 2 LOCAL FUEL DEPOT SITES (Walnut & Mesa)

WALNUT CAR WASH

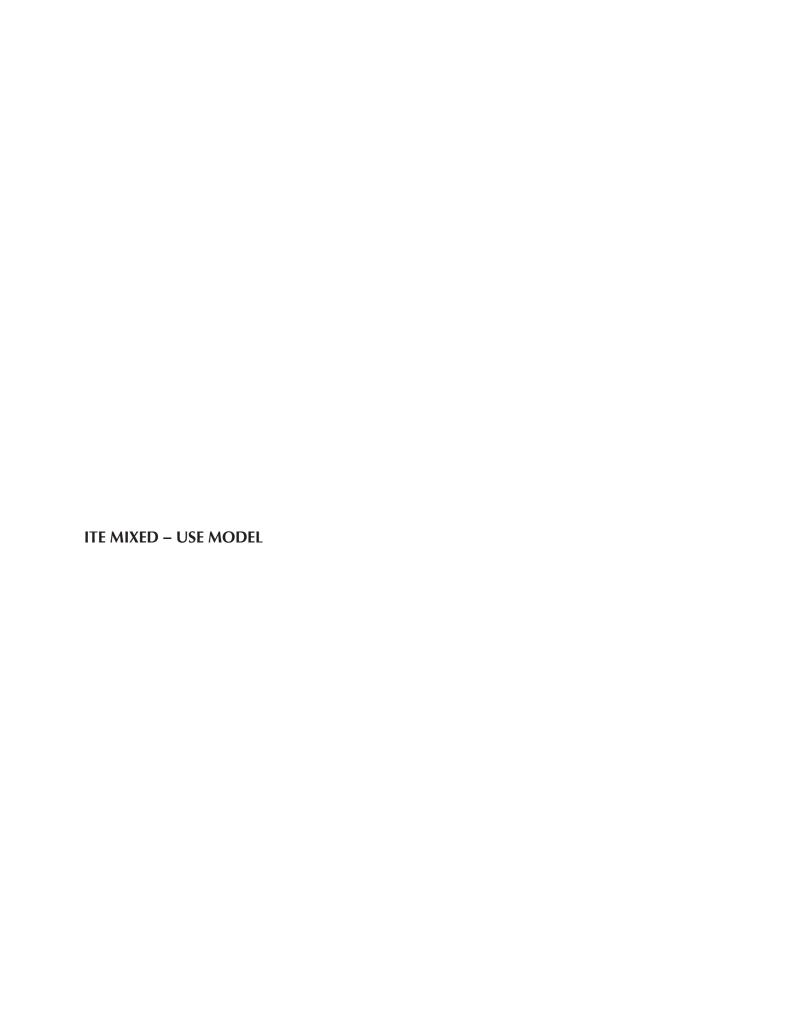
	Pay	Pay	Pay	Pay	Pay
	at Pump/Store	at Pedestal	TOTAL	% Pump/Store	% Pedestal
May-18	1,038	836	1,874	55%	45%
Jun-18	1,653	1,591	3,244	51%	49%
Jul-18	1,774	1,712	3,486	51%	49%
Aug-18	1,754	1,624	3,378	52%	48%
Sep-18	1,667	1,529	3,196	52%	48%
Oct-18	1,164	1,157	2,321	50%	50%
Nov-18	1,115	987	2,102	53%	47%
Dec-18	0	0	0		
Jan-19	392	319	711	55%	45%
Feb-19	227	185	412	55%	45%
Mar-19	409	313	722	57%	43%
Apr-19	1,271	1,105	2,376	53%	47%
May-19	848	718	1,566	54%	46%
Totals >	13,312	12,076	25,388	52%	48%

MESA CAR WASH

	Pay	Pay	Pay	Pay	Pay
	at Pump/Store	at Pedestal	TOTAL	% Pump/Store	% Pedestal
May-18	2,727	4,103	6,830	40%	60%
Jun-18	2,970	4,029	6,999	42%	58%
Jul-18	3,193	4,293	7,486	43%	57%
Aug-18	3,143	4,321	7,464	42%	58%
Sep-18	3,220	4,438	7,658	42%	58%
Oct-18	2,458	3,212	5,670	43%	57%
Nov-18	2,133	2,789	4,922	43%	57%
Dec-18	1,288	1,709	2,997	43%	57%
Jan-19	882	1,164	2,046	43%	57%
Feb-19	571	925	1,496	38%	62%
Mar-19	1,394	2,278	3,672	38%	62%
Apr-19	2,581	3,789	6,370	41%	59%
Totals >	26,560	37,050	63,610	42%	58%
TOTAL BOTH >	39,872	49,126	88,998	45%	55%

TRIP GENERATION RATES

Days in 2-Year Period > Car Washes Per Day>


716 (number of days data was collected) 124.30 (88,998 washes / 716 days)

ADT = 249 (a) AM Peak Hour = 8.5 (b) PM Peak Hour = 23.7 (c)

⁽a) ADT rate based on local studies (124.3 cars per day x 2 = 249).

⁽b) AM peak hour rate based on local studies (3.4% of car washes occurred during the AM peak hour).

⁽c) PM peak hour rate based on local studies (9.5% of car washes occurred during the PM peak hour).

	NCHRP 684 Internal Trip Capture Estimation Tool											
Project Name:	RICHARDS RANCH		Organization:	ATE								
Project Location:	SANTA MARIA		Performed By:	GOM								
Scenario Description:	WITHOUT PASS-BY		Date:	18-May-22								
Analysis Year:		1	Checked By:	SAS								
Analysis Period:	AM Street Peak Hour		Date:	18-May-22								

	Table 1	-A: Base Vehicl	e-Trip Generation	n Es	timates (Single-Use Si	te Estimate)	
Land Use	Developme	ent Data (<i>For Int</i>	formation Only)			Estimated Vehicle-Trips ³	
Land Ose	ITE LUCs1	Quantity	Units	1	Total	Entering	Exiting
Office					0		
Retail	821/945/941	55,000	SF		205	118	87
Restaurant	930/932/934	29,750	SF		408	209	199
Cinema/Entertainment					0		
Residential	220	495	DU		182	43	139
Hotel					0		
All Other Land Uses ²	151	39,500	SF		4	2	2
					799	372	427

Table 2-A: Mode Split and Vehicle Occupancy Estimates										
Land Use		Entering Tri	ps		Exiting Trips					
Land Ose	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ. ⁴ % Transit % Non-Motorized					
Office										
Retail										
Restaurant										
Cinema/Entertainment										
Residential										
Hotel										
All Other Land Uses ²										

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)											
Origin (Fram)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office											
Retail											
Restaurant											
Cinema/Entertainment		İ									
Residential											
Hotel											

Table 4-A: Internal Person-Trip Origin-Destination Matrix*												
Origin (From)		Destination (To)										
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel						
Office		0	0	0	0	0						
Retail	0		11	0	1	0						
Restaurant	0	9		0	2	0						
Cinema/Entertainment	0	0	0		0	0						
Residential	0	1	28	0		0						
Hotel	0	0	0	0	0							

Table 5-A: Computations Summary										
Total Entering Exiting										
All Person-Trips	799	372	427							
Internal Capture Percentage	13%	14%	12%							
External Vehicle-Trips ⁵	695	320	375							
External Transit-Trips ⁶	0	0	0							
External Non-Motorized Trips ⁶	0	0	0							

Table 6-A: Internal Trip Capture Percentages by Land Use									
Land Use	Entering Trips	Exiting Trips							
Office	N/A	N/A							
Retail	8%	14%							
Restaurant	19%	6%							
Cinema/Entertainment	N/A	N/A							
Residential	7%	21%							
Hotel	N/A	N/A							

¹Land Use Codes (LUCs) from *Trip Generation Manual* , published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.

⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

	NCHRP 684 Internal Trip Capture Estimation Tool											
Project Name:	RICHARDS RANCH		Organization:	ATE								
Project Location:	SANTA MARIA		Performed By:	GOM								
Scenario Description:	WITHOUT PASS-BY	1	Date:	18-May-22								
Analysis Year:		1	Checked By:	SAS								
Analysis Period:	PM Street Peak Hour	1	Date:	18-May-22								

Table 1-P: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)											
Land Use	Developm	ent Data (<i>For Info</i>	ormation Only)			Estimated Vehicle-Trips ³					
Land OSE	ITE LUCs ¹	Quantity	Units		Total	Entering	Exiting				
Office					0						
Retail	821/945/941	55,000	SF	1 [432	210	222				
Restaurant	930/932/934	29,750	SF	1 [347	184	163				
Cinema/Entertainment					0						
Residential	220	495	DU		239	151	88				
Hotel				1 🗆	0						
All Other Land Uses ²	151	39,500	SF		6	3	3				
					1,024	548	476				

Table 2-P: Mode Split and Vehicle Occupancy Estimates											
Land Use		Entering Trip	os		Exiting Trips						
Land Ose	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized				
Office											
Retail											
Restaurant											
Cinema/Entertainment											
Residential											
Hotel											
All Other Land Uses ²											

Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)											
Origin (From)		Destination (To)									
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office											
Retail											
Restaurant											
Cinema/Entertainment											
Residential											
Hotel											

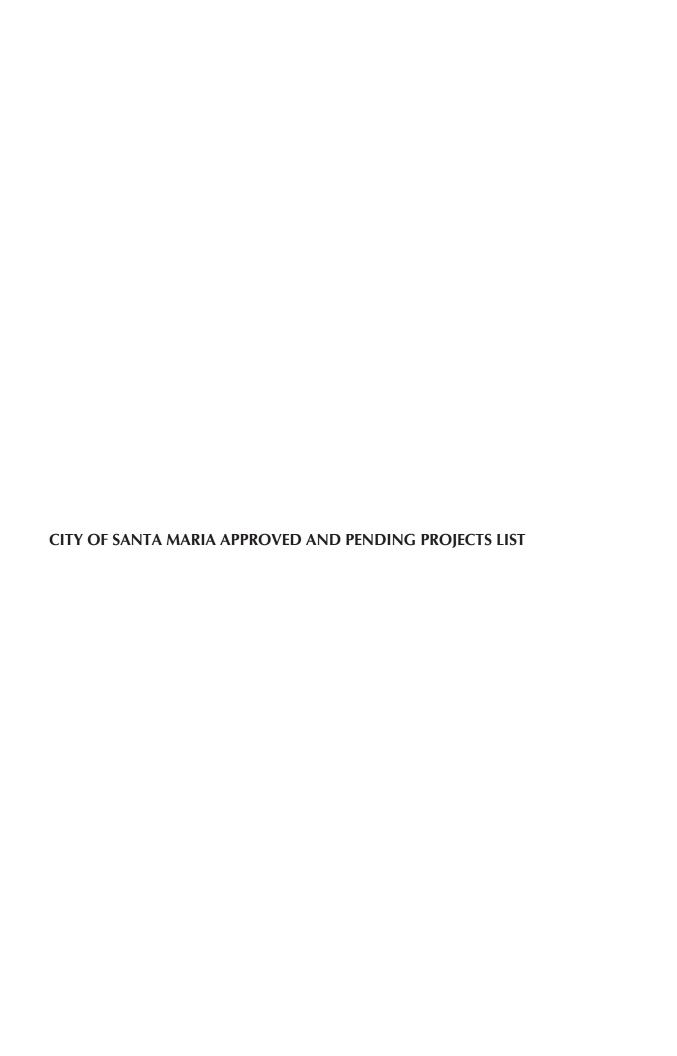
Table 4-P: Internal Person-Trip Origin-Destination Matrix*								
Origin (From)	Destination (To)							
	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel		
Office		0	0	0	0	0		
Retail	0		53	0	58	0		
Restaurant	0	67		0	24	0		
Cinema/Entertainment	0	0	0		0	0		
Residential	0	21	18	0		0		
Hotel	0	0	0	0	0			

Table 5-P: Computations Summary							
	Total	Entering	Exiting				
All Person-Trips	1,024	548	476				
Internal Capture Percentage	47%	44%	51%				
	•	•					
External Vehicle-Trips ⁵	542	307	235				
External Transit-Trips ⁶	0	0	0				
External Non-Motorized Trips ⁶	0	0	0				

Table 6-P: Internal Trip Capture Percentages by Land Use						
Land Use	Entering Trips	Exiting Trips				
Office	N/A	N/A				
Retail	42%	50%				
Restaurant	39%	56%				
Cinema/Entertainment	N/A	N/A				
Residential	54%	44%				
Hotel	N/A	N/A				

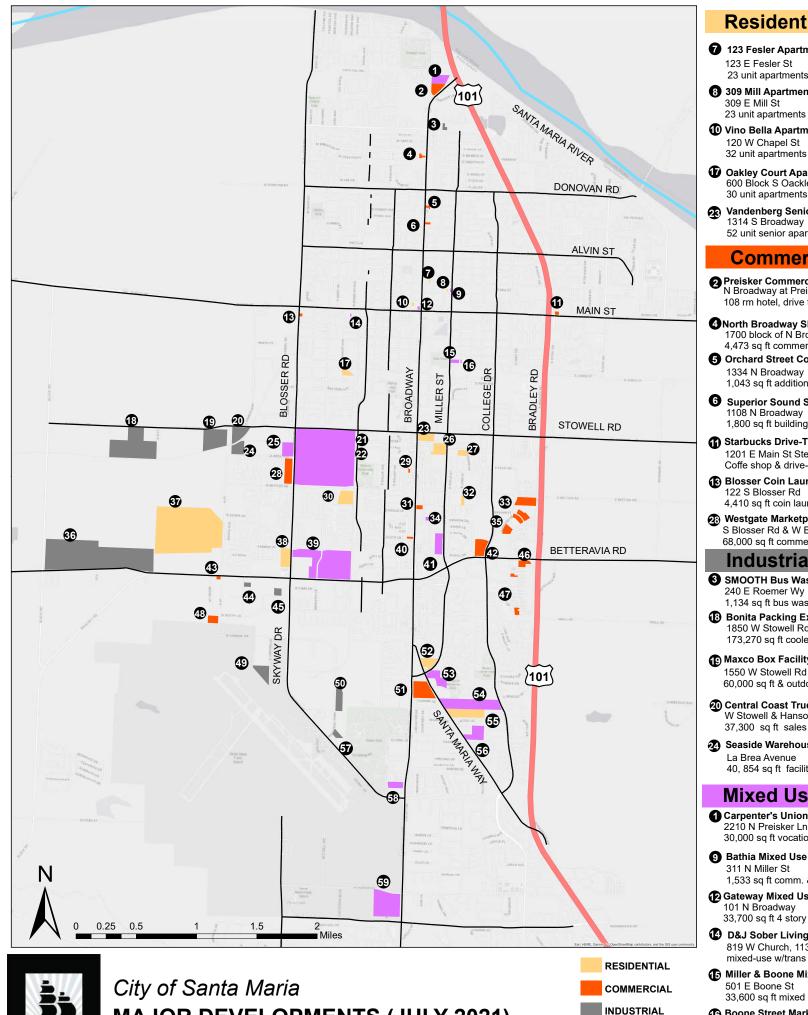
¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.


³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made ⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.

⁶Person-Trips


*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

	RICHARDS RANCH PROJECT - CUMULATIVE CITY LIST (#21069)															
		0:		Multi-Trip	AM Peak							PM	Peak			
	Land-Use	Siz	Size		Rate	Trips	In %	Trips	Out %	Trips	Rate	Trips	In %	Trips	Out %	Trips
18	BONITA PACKING EXPANSION (a)	173,270	SF	1.00	0.11	19	77%	15	23%	4	0.12	21	28%	6	72%	15
19	MAXCO BOX FACILITY (n)	167,850	SF	1.00	-	39	-	32	-	7	-	40	-	9	-	31
21	BLOSSER SOUTHEAST (b)	-	-	1.00	-	-19	-	-19	-	0	-	-202	-	-103	-	-99
23	VANDENBERG SENIOR RESIDENCES (c)	52	DU	1.00	0.20	10	34%	3	66%	7	0.25	13	56%	7	44%	6
24	SEASIDE PACKAGING WAREHOUSE (d)	40,854	SF	1.00	0.17	7	77%	5	23%	2	0.19	8	28%	2	72%	6
26	CENTENNIAL SQUARE APARTMENTS (e)	184	DU	1.00	0.36	66	29%	19	71%	47	0.46	85	59%	50	41%	35
27	BARCELLUS SENIOR APARTMENTS (c)	80	DU	1.00	0.20	16	34%	5	66%	11	0.25	20	56%	11	44%	9
28	WESTGATE MARKETPLACE (f)	68,000	SF	1.00	3.53	240	62%	149	38%	91	9.03	614	48%	295	52%	319
29	JOSHI COMMERCIAL (g)	3,200	SF	1.00	3.10	10	79%	8	21%	2	3.93	13	30%	4	70%	9
30	CENTENNIAL GARDENS (e)	160	DU	1.00	0.36	58	29%	17	71%	41	0.46	74	59%	44	41%	30
32	NEWLOVE EAST APARTMENTS (h)	16	DU	1.00	0.40	6	24%	1	76%	5	0.51	8	63%	5	37%	3
38	SERRAMONTE TOWNHOMES (h)	81	DU	1.00	0.40	32	24%	8	76%	24	0.51	41	63%	26	37%	15
39	BETTERAVIA PLAZA (i)	-	_	1.00	-	1,810	_	994	-	816	-	2,293	-	1,126	-	1,167
41	CELEBRATION I, II, III (j)	56	DU	1.00	0.70	39	26%	10	74%	29	0.94	53	63%	33	37%	20
41	CELEBRATION I, II, III (c)	33	DU	1.00	0.20	7	34%	2	66%	5	0.25	8	56%	4	44%	4
41	CELEBRATION I, II, III (k)	7,000	SF	1.00	1.67	12	82%	10	18%	2	2.16	15	34%	5	66%	10
42	ENOS RANCH WEST SHOPPING CENTER (f)	80,900	SF	1.00	3.53	286	62%	177	38%	109	9.03	731	48%	351	52%	380
45	TAVA CORP (I)	33,000	SF	1.00	1.52	50	88%	44	12%	6	1.44	48	17%	8	83%	40
49	2811 CENTER (m)	51,200	SF	1.00	-	60	-	52	-	8	-	60	-	10	-	50
50	PLATINO DEVELOPMENT (m)	48,717	SF	1.00	-	34	-	30	-	4	-	31	-	4	-	27
52	SANTA MARIA STUDIOS (e)	150	DU	1.00	0.36	54	29%	16	71%	38	0.46	69	59%	41	41%	28
53	PARK EDGE APARTMENTS (RESIDENTIAL) (h)	140	DU	1.00	0.40	56	24%	13	76%	43	0.51	71	63%	45	37%	26
53	PARK EDGE APARTMENTS (COMMERCIAL) (o)	5,435	SF	1.00	-	96	-	50	-	46	-	71	-	37	-	34
55	NORTHMAN RESIDENTIAL (m)	63	DU	1.00	-	47	-	12	-	35	-	62	-	39	-	23
56	PEOPLE'S SELF HELP HOUSING (q)	49	DU	1.00		36	-	9	-	27	-	49	-	31		18
58	LAKEVIEW MIXED USE (m)	164	DU	1.00	-	102	-	26	-	76	-	143	-	86	-	57
59	AIRPORT BUSINESS PARK SPECIFIC PLAN AMENDMENT (p	264,500	SF	1.00	-	574	-	373	-	201	-	505	-	217	-	288
60	DMV SANTA MARIA (r)	3,500	SF	1.00	-	53	-	31	-	22	-	52	-	20	-	32

- (a) Trip generation based on ITE Code #157 (High-Cube Cold Storage Warehouse). AM/PM inbound/outbound splits from ITE Code #154 (High-Cube trasnload and Short-Term Storage Warehouse).
- (b) Traffic and Circulation Study, ATE, June 2019
- (c) Trip generation rate derived from ITE Trip Generation Manual Senior Adult Housing Multifamily (#252).
- (d) Traffic and VMT Analysis, ATE, April 2021
- (e) Trip generation rate derived from ITE Trip Generation Manual Affordable Housing (#223).
- (f) Trip generation rate derived from ITE Trip Generation Manual Shopping Plaza (40-150k) (#821).
- (g) Trip generation rate derived from ITE Trip Generation Manual Medical-Dental Office Building (#720).
- (h) Trip generation rate derived from ITE Trip Generation Manual Multifamily Housing (Low-Rise) (#220).
- (i) Traffic and Circulation Study, ATE, December 2014
- (j) Trip generation rate derived from ITE Trip Generation Manual Single-Family Detached Housing (#210).
- (k) Trip generation rate derived from ITE Trip Generation Manual Small Office Building (#712).
- (I) Trip generation rate derived from ITE Trip Generation Manual General Office Building (#710).
- (m) Traffic Impact Study, PSOMAS, May 2020
- (n) Traffic and Circulation Study, ATE, January 2021
- (o) Drive-Through Queue Study, ATE, January 2022
- (p) Traffic Study, Central Coast Transportation Consulting, October 2020
- (q) Traffic and Circulation Study, ATE, December 2020
- (r) Traffic Study, LSA, October 2018

Residential

- 7 123 Fesler Apartments 123 E Fesler St 23 unit apartments
- 8 309 Mill Apartments 309 E Mill St 23 unit apartments
- 10 Vino Bella Apartments 120 W Chapel St 32 unit apartments
- **1** Oakley Court Apartments 600 Block S Oackley Ct 30 unit apartments
- Vandenberg Senior 1314 S Broadway 52 unit senior apartment addition

- 26 Centennial Square SW/c Miller St at Plaza Dr 164 unit affordable apartments
- **Barcellus Senior Apartments** 502 E Barcellus Ave 80 unit senior apartments
- (f) Centennial Gardens SW/c Battles Rd & Depot St

16 unit apartments

- 160 unit affordable apartments **32** Newlove East Apartments 575 E Newlove Dr
- **Workforce Dormitories** 1900 Block of S A Street Workforce housing dormitories

- 3 SerraMonte Townhomes 2065 S Blosser Rd 81 unit townhomes
- Santa Maria Studios 2660 Santa Maria Way Affordable units
- Northman Residential SM Way btw Sunrise Dr & E Dauphin St 63 single family residences

Commercial

- 2 Preisker Commercial Center N Broadway at Preisker Ln 108 rm hotel, drive thru rest, retail
- 4 North Broadway Shell Building 1700 block of N Broadway 4,473 sq ft commercial space
- **5** Orchard Street Corner Market **3** 1334 N Broadway 1,043 sq ft addition
- 6 Superior Sound Systems 1,800 sq ft building
- 1 Starbucks Drive-Thru 1201 E Main St Ste 1 Coffe shop & drive-thru
- (3) Blosser Coin Laundry 122 S Blosser Rd 4,410 sq ft coin laundry facility
- Westgate Marketplace S Blosser Rd & W Battles Rd 68,000 sq ft commercial center

- 29 Joshi Commercial 116 W Enos Dr 3,200 sq ft retail
- McDonald's 1710 S Broadway Ave 4,554 sq ft drive thru restaurant
- **Enos Auto Center North** Lots 2-7 of Enos Ranchos Design/layout of auto center
- 3 Lot 5 Auto Lot 5 Enos Ranchos 29,000 sq ft auto dealership
- Home Motors 1004 E Battles Rd 52,000 sq ft auto dealership
- 35 Enos Auto Center South Lots 8-11 Enos Ranchos Design/layout of auto center
- 3 Lot 11 Auto Lot 11 Enos Ranchos 28,000 sq ft auto dealership

- 3 Splash N Dash Lot 8 Enos Ranchos 8.200 sq ft car wash
- **3** U-Haul 2875 Santa Maria Way Ministorage and Office
- Smile Santa Maria Dental 1925 S Broadway 7,750 sq ft dental office **42** Enos Ranch West Shopping Center NW/c E Betteravia Rd at S College Dr

80,900 sq ft shopping center

- A Street Deli W Betteravia Rd at A St 4,420 sq ft retail bldg
- Santa Maria Freeway Center 1000 E Betteravia Rd 23,455 sq ft retail center
- ♠ Crossroads Expansion Pads 2100-2300 S Bradley Rd 27,700 sq ft retail on 3 pads
- 48 VTC Enterprises (Phase 2) 2445 A St 6,187 sq ft vocational training bldg

Industrial

- **3** SMOOTH Bus Wash 240 E Roemer Wy
- 1,134 sq ft bus wash building (B) Bonita Packing Expansion 1850 W Stowell Rd
- 173,270 sq ft cooler addition (R) Maxco Box Facility 1550 W Stowell Rd
- 60,000 sq ft & outdoor storage 20 Central Coast Truck Center W Stowell & Hanson Way 37,300 sq ft sales & repair facility
- 2 Seaside Warehouse La Brea Avenue 40, 854 sq ft facility

- 36 Windset Farms Greenhouse 1650 Black Rd 4.3 mil sq ft greenhouse & 93k bldg
- M DMS Electric 2224 S Westgate Rd 10,000 sq ft bldg

Blosser Southeast

Amen. to Specific Plan

Blosser SE (Area 5A) SP

16 lots (res, comm, pf & os)

- 45 Tava Corp 2329 Thompson Way 33,000 sq ft mult-tenant complex
- 49 2811 Center 2811 Airpark Dr 51,200 sq ft of office in 2 bldgs
- Platino Development 2900 block Industrial Pkwy 48,717 sq ft in 4 bldgs on 4 lots

NE/c Blosser Rd & W Battles Rd

The Gas Company **3** 3138 Industrial Pkwy Natural gas fueling station

Mixed Use/Other

- 1 Carpenter's Union Training 2210 N Preisker Ln 30,000 sq ft vocational training
- Aquistapace Tentative Map 311 N Miller St 1,533 sq ft comm. & 6 res. units 45 Manriquez Commercial Gateway Mixed Use
- 101 N Broadway 33,700 sq ft 4 story mixed use bldg **4** Crucified Life Church
- 1 D&J Sober Living Facility 819 W Church, 113 S Benwiley mixed-use w/trans housing & off
- Miller & Boone Mixed Use 501 E Boone St 33,600 sq ft mixed use building **13** Boone Street Market

501 E Boone St

2,280 sq ft add & 2 units

MIXED USE/OTHER

11,700 sq ft church bldg 39 Betteravia Plaza W Betteravia Rd at SMVRR

S Miller St at É Inger Dr

NW/c S McClelland Street

272 apts & 381,250 sq ft retail/off Celebration I, II, III

56 homes/33 senior/7,000 sqft comm

- Park Edge Apartments
- SE/c Santa Maria Way & S Miller St 140 apt units & 5,435 sq ft comm.
- (2) First Baptist Church Master Plan 2970 Santa Maria Way Site Master Plan
- Manriquez Commercial
 NW/c S Blosser Rd & La Brea Ave
 People's Self Help Housing Land Use Map/Zone Change 3170 Santa Maria Way Gen. Plan Amen. & Zone Change Gen. Plan Amen. & Zone Change
 - 3 Lakeview Mixed Use NW/c S Broadway & Skyway Dr 164 apts & 11,000 sq ft comm
 - Airport Business Park Specific Plan NWC of Orcutt Expressway & Union Pkwy Specific Plan w/ multiple land uses

MAJOR DEVELOPMENTS (JULY 2021)

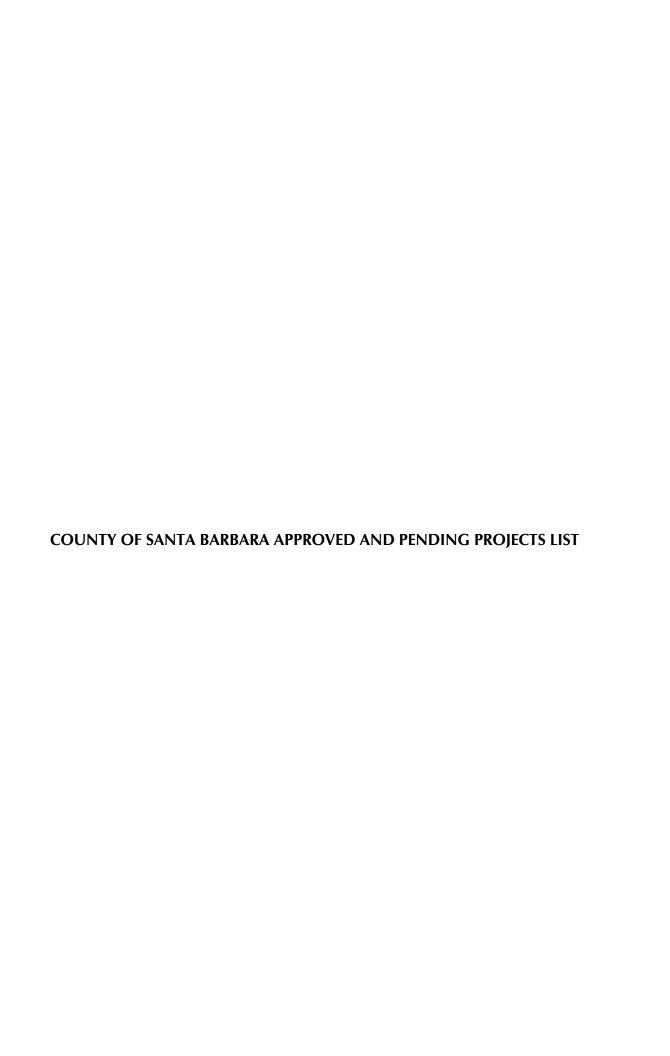
City of Santa Maria

MAJOR DEVELOPMENTS (JULY 2021)

	Project	Carpenter's Union Training Center	Category	Mixed/Other	File #s	Approved	Status
	Description	30,000 sq. ft. vocational training center	Acreage	6.2	PD2018-0010		Building permits approved. Planning
1	Location	2210 N. Preisker Ln	District	PD/C-2	GPZ2018-0002	12/4/2018	permit expiration on 10/17/2021.
	APN(s)	128-002-035	Planner	<u>Dana Eady</u>	TR2018-0001	10/17/2018	
	Contact	Christopher Horstman, Architect, 805-544-4334 x104					
	Project	Preisker Commercial Center	Category	Commercial	File #s	Approved	Status
	Description	108 rm hotel, 15,000 sq. ft. drive thru, rest., retail	Acreage	5	PD2015-0011	5/18/2016	Under construction.
2	Location	NW/c N. Broadway and Preisker Ln	District	PD-f/C-2	TR2016-0001	9/7/2016	
	APN(s)	128-002-048, -049 & -050	Planner	Carol Ziesenhenne	A2019-0004	2/18/2019	
	Contact	Jody Walker Belsick, Applicant, 702-786-1829					
	Project	SMOOTH Bus Wash	Category	Industrial	File #s	Approved	Status
	Description	1,134 sq. ft. bus wash building	Acreage	1.2	PD2017-0023	5/16/2018	Planning permit expiration on
3	Location	240 E. Roemer Way	District	PD/C-2	A2021-0004		5/16/2023
	APN(s)	128-003-046	Planner	Dana Eady			
	Contact	Tom Martinez, Architect, 805-934-5737					
	Project	North Broadway Shell Building	Category	Commercial	PD2007-014	7/2/2008	Status
	Description	4,473 commercial space	Acreage	3	TR5996-0001	9/3/2014	Under construction.
4	Location	1700 block of N. Broadway	District	PD/C-2	A2015-0031	11/6/2015	
-	APN(s)	117-040-038, 039, and 040	Planner	Cody Graybehl			
	Contact	Ellen Goodwin, Architect					
	Project	Orchard Street Corner Market	Category	Commercial	File #s	Approved	Status
	Description	1,043 sq ft addition to existing corner market	Acreage	0.45	PD2019-0005	10/2/2019	Planning permit expiration on
5	Location	1334 N. Broadway	District	PD/C-2			10/2/2022.
	APN(s)	121-031-004	Planner	Cody Graybehl			
	Contact	Rami Zakour, Applicant					
	Project	Superior Sound Systems	Category	Commercial	File #s	Approved	Status
	Description	1,800 sq. ft. building	Acreage	0.5	PD2018-0015	5/15/2019	Planning permit expiration on
6	Location	1108 N. Broadway	District	PD/C-2			5/15/2022.
	APN(s)	121-051-002	Planner	Carol Ziesenhenne			
	Contact	Paul Knutson, Engineer, 805-922-4777					
	Project	123 Fesler Apartments	Category	Residential	File #s	Approved	Status
	Description	Construct a 23 unit, 9750 sq. ft. apartment building	Acreage	0.2	DT2020-0016	Pending	Planning permits under review.
7	Location	123 E Fesler St	District	DTSP - Bungalow D	istrict		
	APN(s)	121-152-014	Planner	Frank Albro			
	Contact	Jason Heyward, Consultant, 805-928-8948					

	Project	309 Mill Apartments	Category	Residential	File #s	Approved	Status
	Description	Construct a 23 unit, 9750 sq. ft. apartment building	Acreage	0.2	DT2020-0015	Pending	Planning permits under review.
8	Location	309 E Mill St	District	DTSP - Bungalow Dist	trict		
	APN(s)	121-193-011	Planner	Frank Albro			
	Contact	Jason Heyward, Consultant, 805-928-8948					
	Project	Bathia Mixed Use	Category	Mixed/Other	File #s	Approved	Status
	Description	1,533 sq. ft. commercial & 6 residential units	Acreage	0.2	DT2017-0088	1/30/2018	Building permits submitted. Planning
9	Location	311 N. Miller St	District	Downtown SP	A2019-0027	7/30/2019	permit expiration on 7/30/2021
	APN(s)	121-193-008	Planner	Frank Albro			
	Contact	Chris Thomas Pasco, Consultant, 805-703-0380					
	Project	Vino Bella Apartments	Category	Residential	File #s	Approved	Status
10	Description	Construct a 32 unit, 3-story apartment building	Acreage	0.3	DT2020-0017	12/16/2020	Planning permit expiration on
10	Location	120 W Chapel St	District	DTSP - Bungalow Dist	trict		12/16/2023.
	APN(s)	119-276-015	Planner	Frank Albro			
	Contact	Ben Nikfarjam, Applicant, 310-215-4882					
	Project	Starbucks Drive-Thru	Category	Commercial	File #s	Approved	Status
	Description	Coffee shop and drive-thru	Acreage	0.56	PD2021-0001	Pending	Planning permits under review.
11	Location	1201 E Main St Ste 1	District	PD/HC	U2021-0003		
	APN(s)	128-120-004	Planner	Carol Ziesenhenne			
	Contact	Joey Ly, Applicant, 714-560-8673					
	Project	Gateway Mixed Use	Category	Mixed/Other	File #s	Approved	Status
	Description	33,700 sq. ft., four-story mixed use development	Acreage	0.3	DT2017-0033	1/16/2018	Building permits submitted. Planning
12	Location	101 N. Broadway	District	Downtown SP	A2019-0032	9/4/2019	permit expiration on 7/16/2020.
	APN(s)	119-276-019	Planner	Dana Eady			
	Contact	Ben Nikfarjam, Developer, 310-251-4882					
	Project	Blosser Coin Laundry	Category	Commercial	File #s	Approved	Status
	Description	4,410 sq. ft. coin laundry facility	Acreage	0.4	PD2017-0018	8/15/2018	Under construction
13	Location	122 S. Blosser Rd	District	PD/C-2			
	APN(s)	123-011-023	Planner	Carol Ziesenhenne			
	Contact	Irina Tudorache, Applicant, 213-388-5807					
	Project	D&J's Sober Living Facility	Category	Mixed/Other	File #s	Approved	Status
	Description	Mixed-use facility w/transitional housing and offices	Acreage	0.4	PD2017-0011	11/1/2017	123-024-007 parcel has been built.
14	Location	819 W. Church St, 113 S. Benwiley Ave	District	PD/C-2	A2018-0010	9/19/2018	Building permits submitted for 123-024-
	APN(s)	123-024-008, 007	Planner	Frank Albro			008.
	Contact	Jeff Jeffery, Applicant, 619-301-1846					
	Project	Miller & Boone Mixed Use	Category	Mixed Use/Other	File #s	Approved	Status
	Description	Construct a 33,600 sq. ft. mixed use building	Acreage	1.19	DT2020-0013	Pending	Planning permits under review.
15	Location	417 E Boone St	District	DTSP- Bungalow Distr	rict	_	
	APN(s)	125-112-011	Planner	Cody Graybehl			
	` ′			<u> </u>			

	Project	Boone Street Market	Category	Mixed/Other	File #s	Approved	Status
	Description	2,280 sq. ft. addition to market, and 2 new units	Acreage	0.2	GPZ2016-0004	5/2/2017	Planning permit expiration on
40	Location	501 E. Boone St	District	Downtown SP	SPZ2016-0003	5/2/2017	3/20/2022.
16	APN(s)	125-114-015	Planner	Carol Ziesenhenne	DT2016-0040	8/21/2017	
	Contact	Brian Schwartz, Consultant, 805-934-5760			A2019-0006	3/4/2019	
					A2020-0012	6/8/2020	
	Project	Oakley Court Apartments	Category	Residential	File #s	Approved	Status
	Description	30 apartment units with on-site manager's unit	Acreage	2.1	GPZ2019-0001	10/1/2019	Planning permit expiration on
17	Location	600 Block S. Oakley Ct	District	PD/R-3	PD2019-0002	7/17/2019	7/17/2022
	APN(s)	123-140-036	Planner	Frank Albro			
	Contact	Lupe & Gustavo, Applicant, 805-937-1108					
	Project	Bonita Packing Expansion	Category	Industrial	File #s	Approved	Status
	Description	173,270 sq. ft. cooler addition in 4 phases	Acreage	45.4	PD2012-0007	5/1/2013	Phase 1 (45,935 sq. ft.) is completed.
18	Location	1850 W. Stowell Rd	District	PD/CM			
	APN(s)	117-820-028	Planner	Dana Eady			
	Contact	John Smith, Engineer, 805-466-5660					
	Project	Maxco Box Facility	Category	Industrial	File #s	Approved	Status
	Description	Construct a new 60,000 sq. ft. box facility and outdoor storage yard	Acreage	19.8	PD2020-0003	Pending	Planning permits under review.
19	Location	1550 W Stowell Rd	District	PD/CM-AG			
	APN(s)	117-820-015	Planner	Cody Graybehl			
	Contact	Steve Rigor, Applicant, (503) 477-8328 x 112					
	Project	Central Coast Truck Center	Category	Industrial	File #s	Approved	Status
	Description	37,300 sq ft building for the sales and repair of semi-trucks	Acreage	8.3	U2019-0010	12/18/2019	Under construction.
20	Location	W. Stowell Rd & Hanson Way	District	M-2			
	APN(s)	117-240-021	Planner	Frank Albro			
	Contact	RRM Design, Consultant, 805-543-1794					
	Project	Blosser Southeast	Category	Mixed/Other	File #s	Approved	Status
	Description	Amendment to Blosser Southeast Specific Plan	Acreage	155.5	GPZ2016-0003	10/20/2020	Planning permits aproved.
21	Location	NE/c of S. Blosser Rd and W. Battles Rd	District	Blosser SE SP	SPZ2016-0002	10/20/2020	
	APN(s)	117-240-028	Planner	Dana Eady	TR2019-0003	10/20/2020	
	Contact	Laurie Tamura, Consultant, 805-934-5760					
	Project	Aquistapace Tentitive Map	Category	Mixed/Other	File #s	Approved	Status
	Description	16 lots (residential, commercial, public facility, open space)	Acreage	146.5	TR2019-0003	Pending	Planning permit under review.
22	Location	Blosser Southeast (Area 5A) Specific Plan	District	Blosser Southeast SP			
	APN(s)	117-240-028	Planner	Dana Eady			
	Contact	<u>Jason Tamura , 805-934-5737</u>					
	Project	Vandenberg Senior Residences	Category	Residential	File #s	Approved	Status
	Description	52 unit senior apartment addition	Acreage	4.9	PD2017-0002	7/18/2018	Building permit submitted. Planning
23	Location	1314 S. Broadway	District	PD/C-1	A2021-0008	Pending	permit expiration on 7/18/2021.Time
20							
20	APN(s)	128-065-008	Planner	Carol Ziesenhenne			extension under review.


	Project	Seaside Packaging Warehouse	Category	Industrial	File #s	Approved	Status
	Description	40, 854 square-foot packaging warehouse	Acreage	6.18	U2021-0002	Pending	Planning permit under review.
24	Location	La Brea Avenue	District	M-2		J	
	APN(s)	117-240-034	Planner	Cody Graybehl			
	Contact	Suzanne D. Winslow, Applicant, (805) 544-9700		<u> </u>			
	Project	Manriquez Commercial Land Use Map/Zone Change	Category	Mixed Use/Other	File #s	Approved	Status
	Description	Revise the land use and zone designations from GI, M-2 to CC, PD/C-2	Acreage	6.74	GPZ2020-0002	Pending	Planning permits under review.
25	Location	NW/c S. Blosser Rd and La Brea Ave.	District	M-2			
	APN(s)	117-240-024	Planner	Cody Graybehl			
	Contact	Manriquez Commercial Real Estate, Applicant					
	Project	Centennial Square Apartments	Category	Residential	File #s	Approved	Status
	Description	184 affordable apartments	Acreage	6.35	PD2020-0009	8/4/2021	Planning permit expiration on
26	Location	SW/c Miller St and Plaza Dr	District	PD/R-3			8/4/2024.
20	APN(s)	128-066-003	Planner	Carol Ziesenhenne			
	Contact	Brian Schwartz, Consultant, 805-934-5760					
	Project	Barcellus Senior Apartments	Category	Residential	File #s	Approved	Status
	Description	80 unit senior apartments	Acreage	2.3	GPZ2016-0002	12/7/2016	Planning permit expiration on
27	Location	502 E. Barcellus Ave	District	CPO	PD2016-0005	12/7/2016	6/6/2023.
	APN(s)	128-067-032, -033, -034	Planner	Cody Graybehl	A2018-0005	7/18/2018	
	Contact	Brian Schwartz, Consultant, 805-934-5760			A2019-0037	11/6/2019	
					A2021-0005	6/2/2021	
	Project	Westgate Marketplace	Category	Commercial	File #s	Approved	Status
	Description	68,000 sq. ft. commercial center	Acreage	7.6	PD2007-012	7/2/2008	Planning permit expiration on
28	Location	NW/c S. Blosser Rd and W. Battles Rd	District	PD/CC	A2016-0011	6/15/2016	12/15/2021.
20	APN(s)	117-240-046, -045	Planner	Dana Eady	A2017-0029	2/7/2018	
	Contact	Craig Minus, Developer, 805-962-2121			A2018-0023	1/16/2019	
					A2020-0003	5/20/2020	
	Project	Joshi Commercial	Category	Commercial	File #s	Approved	Status
	Description	3,200 sq. ft. of retail	Acreage	0.3	PD2016-0015	6/7/2017	Planning permit expiration on
29	Location	116 W. Enos Dr	District	PD/C-1	A2018-0024	2/6/2019	12/7/2021.
	APN(s)	117-300-084	Planner	Frank Albro	A2020-0001	5/6/2020	
	Contact	Tom Martinez, Architect, 805-934-5737					
	Project	Centennial Gardens	Category	Residential	File #s	Approved	Status
	Description	Construct 160 affordable apartment units	Acreage	8.36	PD2020-0006	11/18/2020	Building permits submitted. Planning
30	Location	SW/c Battles and Depot	District	PD/R-3			permit expiration 11/18/2023
	APN(s)	118-010-058	Planner	Frank Albro			
	Contact	Templeton Santa Barbara, LLC, Applicant, 805-598-1825					
	Project	McDonald's	Category	Commercial	File #s	Approved	Status
	Description	4,554 sq ft drive thru restaurant	Acreage	0.8	PD2019-0006	11/6/2019	Building permits submitted. Planning
31	Location	1710 S. Broadway Ave	District	PD/C-2,R-2			permit expiration 11/6/2022.
	APN(s)	128-075-001	Planner	Carol Ziesenhenne			

	Project	Newlove East Apartments	Category	Residential	File #s	Approved	Status
	Description	16 apartment units	Acreage	1.4	U2016-0016	2/21/2018	Building permits submitted. Planning
32	Location	575 E. Newlove Dr	District	R-2	A2019-0044	5/6/2020	permit expiration on 5/6/2023.
-	APN(s)	128-073-016	Planner	Frank Albro			
	Contact	Tom Martinez, Architect, 805-934-5737					
	Project	Enos Auto Center North Campus	Category	Commercial	File #s	Approved	Status
	Description	Overall site design and layout of an auto center	Acreage	17.7	PD2018-0006	5/16/2018	Under construction.
33	Location	Lots 2-7 of Enos Ranchos Specific Plan	District	Enos Ranchos SP	TU2019-0153	6/17/2020	
	APN(s)	128-189-002, 003, 004, 005, 006, 007	Planner	Carol Ziesenhenne			
	Contact	Jacob Weintraub, Consultant, 805-441-0332					
	Project	Lot 5 Auto	Category	Commercial	File #s	Approved	Status
	Description	A 29,000 sq. ft. auto dealership	Acreage	2	PD2017-0020	• •	Under construction.
33(a)		Lot 5 & 6	District	Enos Ranchos SP		0.10.2010	
33(a)	APN(s)	128-189-005	Planner	Carol Ziesenhenne			
	Contact	Jacob Weintraub, Consultant, 805-441-0332		<u>Garor Ziocomionno</u>			
	Project	Home Motors	Category	Commercial	File #s	Approved	Status
	Description	52,000 sq. ft. auto dealership	Acreage	7.2	PD2018-0004		Under construction.
33(b)	Location	1004 E. Battles Rd	District	Enos Ranchos SP		0, 10, 20 10	
JJ(D)	APN(s)	128-189-002	Planner	Carol Ziesenhenne			
	Contact	Jacob Weintraub, Consultant, 805-441-0332	riamici	Odi Oi Ziesei ilietilie			
	Project	Crucified Life Church	Category	Mixed/Other	File #s	Approved	Status
	Description	11,700 sq. ft. building	Acreage	0.6	PD2017-0017	2/21/2018	Building permits submitted. Planning
34	Location	NW/c S. McClelland St	District	PD/C-2	A2019-0041	12/18/2019	1 1 0/04/0000
5	APN(s)	128-114-069	Planner	Frank Albro	A2020-0017	2/3/2021	
	Contact	Cordelia Raymond, Architect, 805-786-4391	riamer	TIAIR AIDIO	712020 0011	2/0/2021	
	Project	Enos Auto Center South Campus	Category	Commercial	File #s	Approved	 Status
	Description	Overall site design and layout of an auto center	Acreage	15.2	PD2018-0007	• •	Under construction.
35	Location	Lots 8-11 of the Enos Ranch Specific Plan	District	Enos Ranchos SP	1 52010 0007	0/10/2010	Chack concuración.
33	APN(s)	128-189-008, 009, 010, 011	Planner	Carol Ziesenhenne			
	Contact	Jacob Weintraub, Consultant, 805-441-0332	Trainici	Caror Ziesennenne			
	Project	Lot 11 Auto	Category	Commercial	File #s	Approved	Status
	Description	A 28,000 sq. ft. auto dealership	Acreage	3	PD2017-0021		Under construction.
35(a)	Location	Lot 11	District	Enos Ranchos SP			
ss(a)	APN(s)	128-189-011	Planner	Carol Ziesenhenne			
	Contact	Jacob Weintraub, Consultant, 805-441-0332		<u></u>			
	Project	Splash N Dash	Category	Commercial	File #s	Approved	Status
	Description	8,200 sq ft carwash	Acreage	1.6	PD2018-0005	9/4/2019	Grading permits submitted. Planning
35(b)	Location	Lot 8	District	Enos Ranchos SP			permit expiration on 9/4/2022.
	APN(s)	128-189-008	Planner	Dana Eady			
		Jacob Weintraub, Consultant, 805-441-0332					

	Project	Windset Farms Greenhouses 7-9	Category	Industrial	File #s	Approved	Status
	Description	4.3 mil sq. ft. greenhouse and 93,000 sq. ft. bldg.	Acreage	49	PD2017-0009	Pending	Planning permit under review.
36	Location	1650 Black Rd	District	Area 9 SP		_	
	APN(s)	117-310-004 thru -010	Planner	Dana Eady			
	Contact	Brian Schwartz, Consultant, 805-934-5760		<u> </u>			
	Project	Workforce Dormitories	Category	Residential	File #s	Approved	Status
	Description	Workforce Housing Dormitories	Acreage	127.96	PD2019-0011	Pending	Planning permit under review.
37	Location	1900 Block of S. A Street	District	Area 9 Specific Plan	SPZ2020-0001		
0.	APN(s)	128-003-019	Planner	Frank Albro			
	Contact	Dan Blough, Applicant, 805-4937-1108					
	Project	SerraMonte Townhomes	Category	Residential	File #s	Approved	Status
	Description	81 townhome units	Acreage	6.5	GPZ2018-0003	6/4/2019	Planning permit expiration on
38	Location	2065 S. Blosser Rd	District	PD/R-3	PD2018-0012	3/20/2019	3/20/2022.
	APN(s)	117-770-016, -017, -018, -047	Planner	Dana Eady	TR2018-0002	3/20/2019	
	Contact	Laurie Tamura, Consultant, 805-934-5760					
	Project	Betteravia Plaza	Category	Mixed/Other	File #s	Approved	Status
	Description	Up to 272 apts. and 381,250 sq. ft. of retail/office	Acreage	55.2	GPZ2015-0002	2/2/2016	Tentative map expiration on
39	Location	NW/c of W. Betteravia Rd & SMVRR tracks	District	Multiple	DA2015-0001	2/2/2016	8/3/2021. Master PD approved.
	APN(s)	117-330-082	Planner	<u>Dana Eady</u>	TR2018-0002		Grading permit approved.
	Contact				PD2015-0006	2/3/2016	Final map under review.
	Project	Smile Santa Maria Dental	Category	Commercial	File #s	Approved	Status
	Description	7,750 sq. ft. dental office building	Acreage	0.9	PD2018-0016	9/19/2018	Building permits submitted. Planning
40	Location	1925 S. Broadway	District	PD/C-2			permit expiration 9/19/2021.
	APN(s)	117-500-029	Planner	Carol Ziesenhenne			
	Contact	Cordelia Raymond, Architect, 805-786-4391					
	Project	Celebration I, II, III	Category	Mixed/Other	File #s	Approved	Status
	Description	56 single family units, 33 unit senior apt,	Acreage	6.8	Tract 5893, 5921	Recorded	Phase III (rooftop gardens) building
		7,000 sq. ft. office bldg, 1 mixed use bldg	District	PD/R-2	PD2005-023	12/21/2005	
41	Location	NW/c S. Miller St and E. Inger Dr	Planner	Cody Graybehl	PD2006-019	9/20/2006	permits expiration on 8/15/2021.
	APN(s)	128-177 (all) and 128-178 (all)			PD2013-0010	7/1/2014	
	Contact	Frances Romero, Agent, 805-469-9510			Tract 5993	7/1/2014	
					PD2018-0001	8/15/2018	
	Project	Enos Ranch West Shopping Center	Category	Commercial	File #s	Approved	Status
	Description	80,900 sq. ft. shopping center in 6 buildings	Acreage	7.8	PD2011-005	8/1/2012	Building permits submitted. Planning
42	Location	NW/c E. Betteravia Rd and S. College Dr	District	Enos Ranchos SP	A2016-0006	3/30/2016	permit expiration 8/19/2023.
42	APN(s)	128-078-010	Planner	Carol Ziesenhenne	A2017-0008	3/7/2018	
	Contact	Clifford Rhea, Consultant, 805-260-4154			A2019-0013	6/19/2019	
					PD2020-0004	8/19/2020	
	Project	A Street Deli	Category	Commercial	File #s	Approved	Status
	Description	4,420 sq. ft. retail building	Acreage	0.5	GPZ2015-0005	9/20/2016	Building permits issued. Planning
43	Location	SW/c Betteravia Rd and A St	District	PD/M-1	PD2015-0019	9/21/2016	permit expiration 6/28/2020.
	APN(s)	111-040-006	Planner	<u>Dana Eady</u>	A2018-0002	3/21/2018	
	Contact	Gil Rodriguez, Applicant, 805-478-1674			A2019-0025	9/4/2019	

	Project	DMS Electric	Category	Industrial	File #s	Approved	Status
	Description	10,000 sq. ft. new construction	Acreage	1.26	PD96-17	1/22/1997	Phase 1 (5,000 sq. ft.) is complete, no
44	Location	2224 S. Westgate Rd	District	PD/CM			building permit submittal for Phase 2
• •	APN(s)	111-400-050	Planner	<u>Dana Eady</u>			(5,000 sq. ft.)
	Contact	David Shahrabani, Owner, 805-922-6033 *					
	Project	Tava Corp	Category	Industrial	File #s	Approved	Status
4 =	Description	33,000 sq. ft. multi-tenant complex	Acreage	3	PD2016-0012	8/16/2017	Under construction.
45	Location	2329 Thompson Way	District	PD/M-1			
	APN(s)	111-400-018	Planner	Frank Albro			
	Contact	Kevin Moore, Architect, 805-455-0574					
	Project	Santa Maria Freeway Center	Category	Commercial	File #s	Approved	Status
40	Description	23,455 sq. ft. retail on five pads	Acreage	4.7	PD2002-020	6/4/2003	1,898 sq. ft. gas station and Popeye's restaurant complete.
46	Location	1000 E. Betteravia Rd	District	Entrada Este SP	A2014-0012	12/5/2015	restaurant complete.
	APN(s)	128-136-043, -056	Planner	Frank Albro	A2016-0019	11/23/2016	
	Contact	Jim Lichacz, Consultant, 323-874-3370			A2019-0021	8/5/2019	
	Project	Crossroads Expansion Pads	Category	Commercial	File #s	Approved	Status
	Description	27,700 sq. ft. on three new pads	Acreage	47.8	PD2012-0001	8/1/2012	Under construction, two of the three
47	Location	2100 - 2300 S. Bradley Rd	District	Entrada Este SP	Tract 5997	Recorded	pads completed.
	APN(s)	128-136-050, -053, 128-137-060	Planner	Cody Graybehl	A2014-0008	9/17/2014	
	Contact	Ryan Best, Developer, 714-241-0400			A2018-0020	12/10/2018	
	Project	VTC Enterprises (Phase 2)	Category	Commercial	File #s	Approved	Status
	Description	6,187 sq. ft. vocational training buildings	Acreage	3.3	U2008-004 (PR)	7/2/2008	Classroom building built (12,023 sq.
48	Location APN(s)	2445 A St 111-040-043, -044	TAZ District	30091 PF			ft.). Building permits submitted for phase 2.
	Contact	Gil Palacios, Architect, 805-928-8008	Planner	Cody Graybehl			
	Project	2811 Center	Category	Industrial	File #s	Approved	Status
	Description	51,200 sq. ft. of office in 2 buildings	Acreage	7	PD2017-0003	6/7/2017	One 25,600 sq. ft. building
49	Location	2811 Airpark Dr	District	PD/M-1	TR2017-0002	3/21/2018	constructed. Under construction.
73	APN(s)	111-231-003	Planner	Carol Ziesenhenne			
	Contact	Steve Simoulis, Developer, 805-541-9004		Caror Erecentionine			
	Project	Platino Development	Category	Industrial	File #s	Approved	Status
	Description	48,717 sq. ft. in 4 buildings on 4 lots	Acreage	5.1	PD2010-006	2/16/2011	Planning permit under review
50	Location	2900 block Industrial Parkway	District	PD/M-1	A2015-0032	9/2/2015	•
	APN(s)	111-291-035, -036, -038, -039	Planner	Dana Eady	A2016-0034	Closed	
	Contact	Chris Mathys, Developer, 559-438-9999 ext. 11	, idinio	<u>Dana Lady</u>	A2019-0016	Pending	
	Project	U-Haul Ministorage and Office	Category	Commercial	File #s	Approved	Status
	Description	Exterior improvements to the building and interior remodel to include mini-storage	Acreage	13	U2019-0008	6/19/2019	Building permits submitted. Planning
51	Location	2875 Santa Maria Way	District	PD/C-2	U2019-0021	6/17/2020	permits expiration on 6/17/2023.
31	APN(s)	109-010-008	Planner	Cody Graybehl	PD2020-0002	6/17/2020	
	Contact	Tom Martinez, Architect, 805-934-5737	ı ıalılı c ı	Couy Graybern	F D2020-0002	5/11/2020	
	- COMACI	FUH IVIALUITEZ, ATCHITECT, OUD-954-5757					

	Project	Santa Maria Studios	Category	Residential	Files #s	Approved	Status
	Description	Affordable Housing Project	Acreage	5.5	PD2020-0001	N/A	Building permits submitted.
52	Location	2660 Santa Maria Way, Santa Maria, CA	District	PD/C-2			
-	APN(s)	128-090-011	Planner	Dana Eady			
	Contact	AMG & Associates, LLC, 818-380-2600		-			
	Project	Park Edge Apartments	Category	Mixed Use/Other	PD2020-0008	Pending	Planning permits under review.
	Description	140 apt units, clubhouse and 5,435 sq. ft. multi-tenant commercial	Acreage	7.45	U2020-0012	Pending	
53	Location	SE/corner of Santa Maria Way & Miller Street	District	PD/C-2 & PD/R-3	SUB2021-0001	Pending	
	APN(s)	128-090-022, -023 & 109-010-039	Planner	Cody Graybehl			
	Contact	Brian Schwartz, Consultant, 805-934-5760					
	Project	First Baptist Church Master Plan	Category	Mixed Use/Other	File #s	Approved	Status
	Description	Site Master Plan	Acreage	25.5	U2019-0005	Pending	Planning permits under review.
54	Location	2970 Santa Maria Way	District	PD/R-1			
	APN(s)	109-010-019	Planner	Carol Ziesenhenne			
	Contact	John Kemlo, Applicant, 805-937-8405					
	Project	Northman Residential	Category	Residential	File #s	Approved	Status
	Description	63 single family residences	Acreage	13.2	GPZ2018-0004	8/6/2019	Building permits submitted. Planning
55	Location	Santa Maria Wy btw Sunrise Dr & E Dauphin St	District	PD/R-1	TR2018-0003	7/16/2019	permit expiration 6/19/2022.
	APN(s)	109-010-005, -006	Planner	<u>Dana Eady</u>	PD2018-0013	6/19/2019	
	Contact	Brian Schwartz, Consultant					
	Project	People's Self Help Housing Land Use Map/Zone Change	Category	Mixed Use/Other	File #s	Approved	Status
	Description	From CC, PD/C-2 to LMDR-8, PD/R-1	Acreage	8.89	GPZ2021-0001	Pending	Planning permits under review.
56	Location	3170 Santa Maria Way	District	PD/C-2			
	APN(s)	109-010-012	Planner	Frank Albro			
	Contact	Sheryl Flores, Applicant, 805-540-2465					
	Project	The Gas Company	Category	Industrial	File #s	Approved	Status
	Description	A natural gas fueling station	Acreage	1.9	U2017-0013	3/7/2018	Building permits submitted. Planning
57	Location	3138 Industrial Parkway	District	PD/M-1	U2019-0004	9/23/2019	permit expiration on 9/7/2019.
	APN(s)	111-291-020	Planner	Dana Eady	A2019-0033	Pending	
	Contact	Steven Ly, Applicant, 213-244-3175					
	Project	Lakeview Mixed Use	Category	Mixed/Other	File #s	Approved	Status
F 0	Description	164 unit apartments and 11,000 sq. ft. commercial	Acreage	4	PD2018-0008	4/2/2019	Building permits submitted. Planning permit expiration on 4/2/2022.
58	Location	NW/corner of S. Broadway and Skyway Dr.	District	PD/R-3 + PD/C-2			permit expiration on 4/2/2022.
	APN(s)	111-100-008	Planner	Frank Albro			
	Contact	Laurie Tamura, Consultant, 805-934-5760					
	Project	Airport Business Park Specific Plan Amendment	Category	Mixed/Other	File #s	Approved	Status
E 0	Description	Specific Plan with multiple land uses	Acreage	19.3	SPZ2019-0001	Pending	Planning permits under review.
59	Location	NWC of Orcutt Expressway (Highway 135) and Union Valley Parkway	District	Airport Specific Plan	GPZ2019-0002	Pending	
	APN(s)	111-231-011	Planner	Frank Albro			
	Contact	Erik P Justesen, (805) 543-1794					

Associated Transportation Engineers

Trip Generation Worksheet - With In/Out Splits

RICHARDS RANCH PROJECT (#21069) - CUMULATIVE COUNTY PROJECTS																	
Land-Use	Size Units Mixed- ADT AM I				AM PEAK HOUR					PM PEAK HOUR							
Lallu-USE	Size	Ullits	Use	Rate	Trips	Rate	Trips	In %	Trips	Out %	Trips	Rate	Trips	In %	Trips	Out %	Trips
1 ADDAMO WINERY/DIAMANTE - RANCH HOMES (a)	5	SFD	1.00	9.43	47	0.70	4	26%	1	74%	3	0.94	5	63%	3	37%	2
ADDAMO WINERY/DIAMANTE - WINERY (b)	33,210	SF	1.00	-	110	-	15	50%	8	50%	7	-	15	50%	8	50%	7
2 OUSD SENIOR HOUSING PROJECT (KEY SITE #17 - ATE #20051)	-	-	1.00	-	672	-	55	-	31	-	24	-	60	-	27	-	33
3 MULTI-FAMILY RESDENTIAL (KEY SITE #3) (d)	160	UNITS	1.00	6.74	1,078	0.40	64	24%	15	76%	49	0.51	82	63%	52	37%	30
4 MESA NEIGHBORHOOD (KEY SITE #3) (a)	125	SFD	1.00	9.43	1,179	0.70	88	26%	23	74%	65	0.94	118	63%	74	37%	44
5 KEY SITE #30 (ATE #11084)	69	UNITS	1.00	-	837	-	75	-	24	-	51	-	86	-	52	-	34
6 MR O APARTMENTS (KEY SITE #30) (d)	214	UNITS	1.00	6.74	1,442	0.40	86	24%	21	76%	65	0.51	109	63%	69	37%	40
7 KEY SITE #21-NEIGHBORHOOD WILLOW CREEK/HIDDEN CANYON (a)	146	UNITS	1.00	9.43	1,377	0.70	102	26%	27	74%	75	0.94	137	63%	86	37%	51
8 NORTH COUNTY JAIL (ATE #07114)	-	-	1.00	-	2,772	-	232	-	125	-	107	-	232	-	125	-	107
9 OASIS COMMUNITY CENTER PROJECT (ATE #18106)	15,333	SF	1.00	28.82	442	1.76	27	67%	18	33%	9	2.31	35	45%	16	55%	19
10 VINTAGE RANCH TRACT MAP (a)	41	UNITS	1.00	9.43	387	0.70	29	26%	8	74%	21	0.94	39	63%	25	37%	14
11 ORCUTT GATEWAY RETAIL CENTER (KEY SITE #2) (f)	-	-	1.00	-	3,350	-	47	-	29	-	18	-	190	-	91	-	99
12 ORCUTT UNION PLAZA PHASE II - APTS (d)	19	UNITS	1.00	6.74	128	0.40	8	24%	2	76%	6	0.51	10	63%	6	37%	4
13 ORCUTT UNION PLAZA PHASE II (c)	16,880	SF	1.00	54.45	919	2.36	40	60%	24	40%	16	6.59	111	50%	56	50%	55
14 ORCUTT GAS STATION (g)	8	Fueling Positions	1.00	257.13	2,057	16.06	128	50%	64	50%	64	18.42	147	50%	74	50%	73
15 GUY TENATIVE PARCEL MAP (a)	2	SFD	1.00	9.43	19	0.70	1	26%	0	74%	1	0.94	2	63%	1	37%	1 /
16 TERRACE VILLAS (a)	16	SFD	1.00	9.43	151	0.70	11	26%	3	74%	8	0.94	15	63%	9	37%	6
17 CLARK AVENUE COMMERCIAL (KEY SITE #4) (f)	4,000	SF	1.00	-	-	-	3	-	2	-	1	-	10	-	5	-	5
18 ORCUTT PUBLIC MARKETPLACE (KEY SITE #1) (f)	252	SFD	1.00	-	-	-	187	-	47	-	140	-	249	-	157	-	92
18 ORCUTT PUBLIC MARKETPLACE (KEY SITE #1) (f)	211,264	SF	1.00	-	-	-	111	-	76	-	35	-	506	-	239	-	267
19 SKYWAY OFFICE BUILDING (f)	19,800	SF	1.00	-	-	-	23	-	20	-	3	-	23	-	4	-	19
20 AGRICULTURAL EDUCATION AND CAREER TECHNICAL CENTER (f)	198	Students	1.00	-	-		103		69	-	34	-	27		13	-	14

⁽a) Trip generation based on ITE code for Single Family Dwelling (#210)
(b) Addamo Winery, Diamonte Estates Tract Map, General Plan Amendment & Rezone, Proposed Final Draft Negative Declaration, County of Santa Barbara, April 2005.
(c) Trip generation based on ITE code for Strip Retail Plaza (#822)
(d) Trip generation based on ITE code for Multifamily Low-Rise Housing (#220)
(e) Trip generation based on ITE code for Convenience Store/Gas Station (Land-Use #945 - GFA > 4-5.5 SF)

⁽f) Traffic Impact Study, PSOMAS, May 2020

⁽g) Trip generation based on ITE code for Convenience Store/Gas Station (#945)

Intersection: 4: Orcutt Expressway & Union Valley Parkway

Movement	EB	EB	EB	EB	EB	WB	WB	WB	WB	WB	NB	NB
Directions Served	L	L	T	T	R	L	L	Т	T	R	L	T
Maximum Queue (ft)	90	134	129	121	88	219	195	110	109	197	110	233
Average Queue (ft)	53	72	71	79	33	124	130	73	65	153	96	196
95th Queue (ft)	95	134	129	136	79	207	188	113	140	197	137	244
Link Distance (ft)			552	552				390	390			758
Upstream Blk Time (%)												
Queuing Penalty (veh)												
Storage Bay Dist (ft)	270	270	ALL AND DESIGNATION OF THE PARTY OF THE PART	NE DI	150	223	223			210	315	
Storage Blk Time (%)						0				0		
Queuing Penalty (veh)						0		WELL WI		0		

Intersection: 4: Orcutt Expressway & Union Valley Parkway

Movement	NB	NB	SB	SB	SB	SB	SB
Directions Served	Т	R	L	L	Т	Т	R
Maximum Queue (ft)	185	149	183	207	211	153	45
Average Queue (ft)	168	122	142	174	148	128	28
95th Queue (ft)	189	149	211	231	215	158	47
Link Distance (ft)	758	- HAMMON	I Hadaman and a second	4600	826	826	
Upstream Blk Time (%)							
Queuing Penalty (veh)							
Storage Bay Dist (ft)		315	615	615			380
Storage Blk Time (%)							
Queuing Penalty (veh)							

Intersection: 5: Orcutt Rd & Union Valley Parkway

Movement	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	TR	L	Т	TR	L	TR	L	TR	
Maximum Queue (ft)	116	156	290	118	333	252	162	96	53	210	
Average Queue (ft)	90	105	184	49	251	184	102	75	24	121	
95th Queue (ft)	114	155	289	109	336	277	156	97	60	219	
Link Distance (ft)		390	390		1431	1431		462		405	
Upstream Blk Time (%)						WAR.					
Queuing Penalty (veh)											
Storage Bay Dist (ft)	185			270			245		175		
Storage Blk Time (%)					6					2	
Queuing Penalty (veh)				STEE OF T	7					1	

Zone Summary

Zone wide Queuing Penalty: 8

Intersection: 4: Orcutt Expressway & Union Valley Parkway

Movement	EB	EB	EB	EB	EB	WB	WB	WB	WB	WB	NB	NB
Directions Served	L	L	Т	Т	R	L	L	Т	Т	R	L	Т
Maximum Queue (ft)	69	88	89	108	62	153	110	110	105	190	339	365
Average Queue (ft)	43	61	61	. 74	22	96	95	53	59	122	180	307
95th Queue (ft)	71	96	103	109	56	155	121	120	110	204	396	399
Link Distance (ft)			552	552				390	390			758
Upstream Blk Time (%)				SISSING.		Nation.	COLUMN DE			B. F. 19		STATE OF
Queuing Penalty (veh)							-					
Storage Bay Dist (ft)	270	270			150	223	223		011999	210	315	
Storage Blk Time (%)												6
Queuing Penalty (veh)				11112000		A TOP OF						6

Intersection: 4: Orcutt Expressway & Union Valley Parkway

Movement	NB	NB	SB	SB	SB	SB	SB
Directions Served	T	R	L	L	Т	Т	R
Maximum Queue (ft)	304	232	285	326	268	191	46
Average Queue (ft)	256	163	204	246	211	171	35
95th Queue (ft)	320	242	314	339	277	223	54
Link Distance (ft)	758				826	826	
Upstream Blk Time (%)		SI UNITED S					
Queuing Penalty (veh)							
Storage Bay Dist (ft)		315	615	615		a second line	380
Storage Blk Time (%)	0						
Queuing Penalty (veh)	1						STORE LINE

Intersection: 5: Orcutt Rd & Union Valley Parkway

Movement	EB	EB	EB	WB	WB	WB	NB	NB	SB	SB	
Directions Served	L	Т	TR	L	Т	TR	L	TR	L	TR	The state of
Maximum Queue (ft)	133	333	338	53	245	214	116	94	53	94	in the
Average Queue (ft)	104	209	253	39	177	172	77	56	27	62	
95th Queue (ft)	135	369	384	56	238	230	118	91	66	89	
Link Distance (ft)		390	390		1431	1431		462		405	
Upstream Blk Time (%)									and the same		
Queuing Penalty (veh)							NAME AND DESCRIPTION OF THE PERSON OF THE PE				
Storage Bay Dist (ft)	185			270			245		175		
Storage Blk Time (%)		8									
Queuing Penalty (veh)		10									

Zone Summary

Zone wide Queuing Penalty: 16

100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110 ● (805) 687-4418 ● (805) 682-8509-F

ACCIDENT RATE CALCULATION SHEET - FOR INTERSECTIONS

Proiect:	Richards Ranch	File Name:	Accident Rate Worksheet 3 Year

 Project #:
 021069

 Analyst:
 GOM

 Date:
 1/17/2022

N/S Street: Foxenwood Lane
E/W Street: Union Valley Parkway

Weekday:

PM Peak Hour Entering Volume: 846
Peak Hour Factor: 10
-----OR------

Total Approach ADT: N/A

Weekend:

PM Peak Hour Entering Volume OR ADT: 75% (as a percentage of Weekday PM Peak Hour Entering Volume OR ADT)

Period Analyzed (years): 3

Number of Accidents: 1

Million Entering Vehicle Miles: 8.6 million entering vehicle miles (mevm)

Accident Rate: .12 accidents per million entering vehicle miles (mevm)

Intersection Rate Group: 109

100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110 ● (805) 687-4418 ● (805) 682-8509-F

ACCIDENT RATE CALCULATION SHEET - FOR INTERSECTIONS

Proiect:	Richards Ranch	File Name:	Accident Rate Worksheet 3 Year

 Project #:
 021069

 Analyst:
 GOM

 Date:
 1/17/2022

N/S Street: Orcutt Expressway
E/W Street: Union Valley Parkway

Weekday:

PM Peak Hour Entering Volume: 3735
Peak Hour Factor: 9
-----OR-----

Total Approach ADT: N/A

Weekend:

PM Peak Hour Entering Volume OR ADT: 75% (as a percentage of Weekday PM Peak Hour Entering Volume OR ADT)

Period Analyzed (years): 3

Number of Accidents: 12

Million Entering Vehicle Miles: 34.19 million entering vehicle miles (mevm)

Accident Rate: .35 accidents per million entering vehicle miles (mevm)

Intersection Rate Group: 109

100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110 ● (805) 687-4418 ● (805) 682-8509-F

ACCIDENT RATE CALCULATION SHEET - FOR INTERSECTIONS

Proiect:	Richards Ranch	File Name:	Accident Rate Worksheet 3 Year

 Project #:
 021069

 Analyst:
 GOM

 Date:
 1/17/2022

N/S Street: Orcutt Road

E/W Street: Union Valley Parkway

Weekday:

PM Peak Hour Entering Volume: 1679
Peak Hour Factor: 10
-----OR------

Total Approach ADT: N/A

Weekend:

PM Peak Hour Entering Volume OR ADT: 75% (as a percentage of Weekday PM Peak Hour Entering Volume OR ADT)

Period Analyzed (years): 3

Number of Accidents: 9

Million Entering Vehicle Miles: 17.08 million entering vehicle miles (mevm)

Accident Rate: .53 accidents per million entering vehicle miles (mevm)

Intersection Rate Group: 109

100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110 ● (805) 687-4418 ● (805) 682-8509-F

ACCIDENT RATE CALCULATION SHEET - FOR INTERSECTIONS

Project: Richards Ranch	File Name: Accident Rate Worksheet 3 Yea
-------------------------	--

 Project #:
 021069

 Analyst:
 GOM

 Date:
 1/17/2022

N/S Street: Hummel Drive E/W Street: Union Valley Parkway

Weekday:

PM Peak Hour Entering Volume: 1596
Peak Hour Factor: 10
-----OR------

Total Approach ADT: N/A

Weekend:

PM Peak Hour Entering Volume OR ADT: 75% (as a percentage of Weekday PM Peak Hour Entering Volume OR ADT)

Period Analyzed (years): 3

Number of Accidents: 5

Million Entering Vehicle Miles: 16.23 million entering vehicle miles (mevm)

Accident Rate: .31 accidents per million entering vehicle miles (mevm)

Intersection Rate Group: 109

100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110 ● (805) 687-4418 ● (805) 682-8509-F

ACCIDENT RATE CALCULATION SHEET - FOR INTERSECTIONS

Proiect:	Richards Ranch	File Name:	Accident Rate Worksheet 3 Year

 Project #:
 021069

 Analyst:
 GOM

 Date:
 1/17/2022

N/S Street: Bradley Road

E/W Street: Union Valley Parkway

Weekday:

PM Peak Hour Entering Volume: 2551
Peak Hour Factor: 10
-----OR------

Total Approach ADT: N/A

Weekend:

PM Peak Hour Entering Volume OR ADT: 75% (as a percentage of Weekday PM Peak Hour Entering Volume OR ADT)

Period Analyzed (years): 3

Number of Accidents: 4

Million Entering Vehicle Miles: 25.94 million entering vehicle miles (mevm)

Accident Rate: .15 accidents per million entering vehicle miles (mevm)

Intersection Rate Group: 109

DEFINITIONS

Length × Rate Expected 1000000 Time × ADT П Number Expected

1.329 Number Expected + (2.576 x (Number Expected, 1/2)) II Number Significant

NOTES: Number Significant using 99.5% confidence level.

For intersections, use annual number of entering vehicles in place of ADT and delete length. The NR is the same as for roadway segments.

CALCULATIONS - ORCUTT ROAD/UVP INTERSECTION (Three Year Period)

| | | × 0.42 1000000 3 × 5,693,333 x II Number Expected

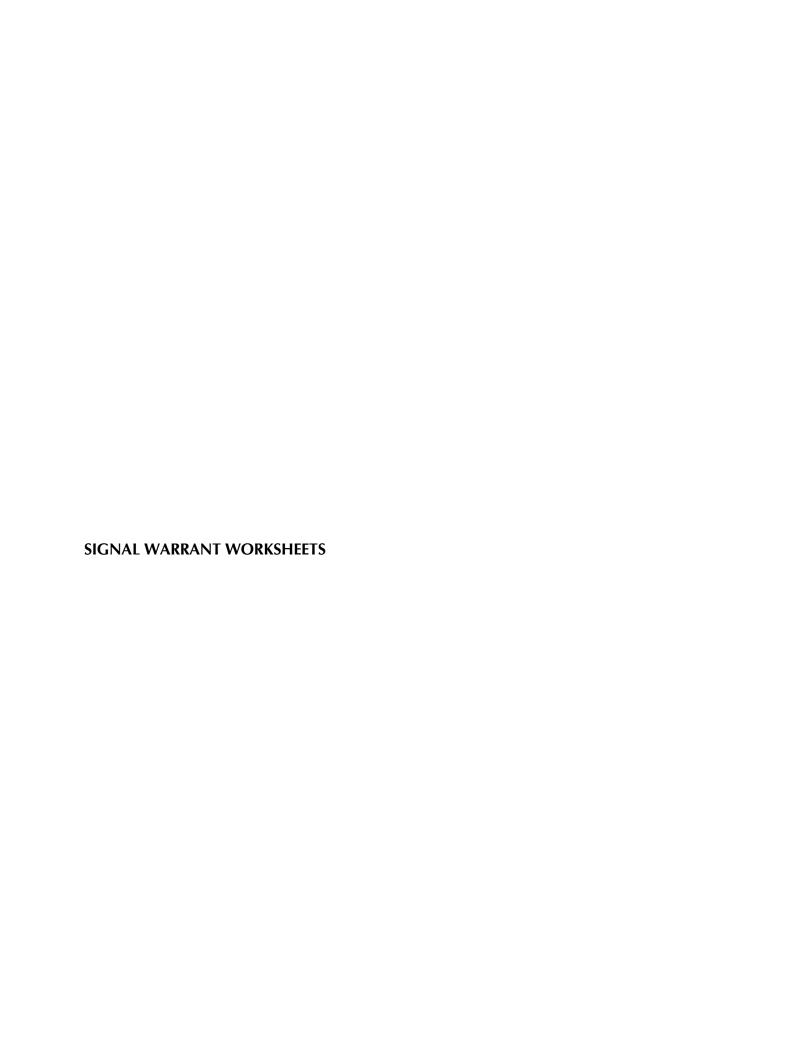
7.1736

Number Significant = 15.40205

DEFINITIONS

Length × Rate Expected Time × ADT П Number Expected

1.329 Number Expected + (2.576 x (Number Expected, ^{1/2})) 1000000 II Number Significant


For intersections, use annual number of entering vehicles in place of ADT and delete length. The NR is the same as for roadway segments. NOTES: Number Significant using 99.5% confidence level.

CALCULATIONS - HUMMEL DRIVE/UVP INTERSECTION (Three Year Period)

3.8952 | || × 0.24 1000000 3 × 5,410,000 x П Number Expected

10.30826 Number Significant

П

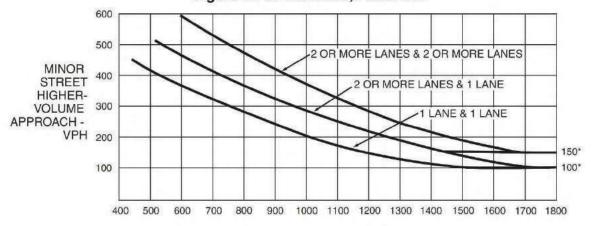
EXISTING TRAFFIC VOLUMES

Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 1 of 5)

						C	OUNT	DATE	4/	27/22		10101	
DIST OO	DIE					C	ALC_	GOM			AIL.	10/3/2	
DIST CO	RTE		PM			C	нк _	SAS		D	ATE.	10/3/	
/lajor St: Union Val		arkv	way			Critica	I Appro	oach S	Spee	o	50		mph
Vinor St: Hummel D	rive					Critica	I Appro	oach S	Spee	d	35		mph
Speed limit or crit In built up area of								2		RURA URBA			
WARRANT 1 - Ei Condition A or C						of A and	B mu	0,000	100,000	FIED tisfied		s 🗆	NO 🗆
Condition A - Mir	imu	ım \	Vehicle	Volur	ne		100	% S/	ATIS	SFIED	YE	s 🗆	NO 🗆
			IUM REG				80	% S/	ATIS	SFIED	YE	s 🗆	NO 🗆
1 St	ι	J	R	U	R	20	1,20	- 97		10 W		921	82 00
APPROACH LANES		8	1	2 or	More			_	/		/	//	_/Hou
Both Approaches Major Street		00 00)	350 (280)	600 (480)	420 (336)								
Highest Approach Minor Street		50 20)	105 (84)	200 (160)	140 (112)					200)	
Condition B - Inte	М	ININ	ON OF C	QUIREN	MENTS	ffic				SFIED SFIED	YE	270, 20	NO 🗆
<u> </u>	1	U	R	U	R	,	,	,		, ,		,	, ,
APPROACH LANES			1	5	More			_	/		/	//	Hoi
Both Approaches Major Street		50 00)	525 (420)	900 (720)	630 (504)								
Highest Approach Minor Street		75 30)	53 (42)	100 (80)	70 (56)								
Combination of C	Cond	ditic	ons A 8	ßВ				S	ATIS	SFIED	YE	s 🗆	 NO □
REQUIREMEN	т				CONDITIO	N			V	FU	LFIL	LED	
TWO CONDITIO	NIC	A.	MINIMU	IM VEH	ICULAR V	OLUME		-					
SATISFIED 809		AN B.		RUPTIO	N OF CON	TINUOUS	TRAFI	FIC		Yes [No [1
AND, AN ADEQU CAUSE LESS DI TO SOLVE THE	ELAY	AND	INCON	VENIE						Yes [J	No [1

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

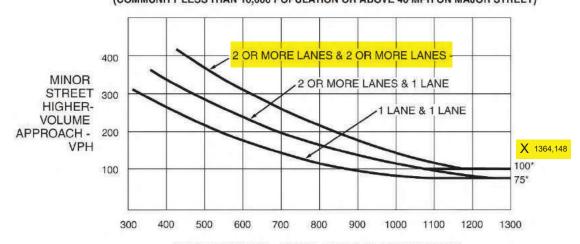
EXISTING TRAFFIC VOLUMES


Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 2 of 5)

WARRANT 2 - Four Hour Vehicula	r Volume		SATISFIED*	YES 🗆	NO 🗆
Record hourly vehicular volumes for any	four hours of ar	n average da	ıy.		
APPROACH LANES	2 or One More		///Hour		
Both Approaches - Major Street					
Higher Approach - Minor Street					
*All plotted points fall above the applica	ble curve in Fig	ure 4C-1. (L	IRBAN AREAS)	Yes 🗆	No 🗆
OR, All plotted points fall above the app	licable curve in	Figure 4C-2	(RURAL AREAS)	Yes 🗆	No 🗆
WARRANT 3 - Peak Hour (Part A or Part B must be satisfied	Ñ.		SATISFIED	YES 🖾	NO □
PART A (All parts 1, 2, and 3 below must be s	atisfied for th	e same	SATISFIED	YES 🗆	NO 🗆
one hour, for any four consecutive 1	5-minute perio	ods)			
 The total delay experienced by traffic controlled by a STOP sign equals or e approach, or five vehicle-hours for a t 	exceeds four vel	hicle-hours for		Yes 🗆	No 🗆
The volume on the same minor street 100 vph for one moving lane of traffic	approach (one or 150 vph for t	direction onl wo moving la	y) equals or exceeds anes; <u>AND</u>	Yes 🗆	No 🗆
The total entering volume serviced du for intersections with four or more app three approaches.	ring the hour ed proaches or 650	quals or exce vph for inter	eds 800 vph sections with	Yes 🗆	No 🗆
				7	
E Common of the			SATISFIED	YES 🛛	по □
PART B	2 or -	7:15 AM /HG		YES 🛛	NO 🗆
PART B APPROACH LANES	Une More	7:15 AM Ho		YES 🛛	№ □
APPROACH LANES Both Approaches - Major Street	X X	1364		YES 🖾	NO 🗆
PART B APPROACH LANES	Une More	-		YES 🖾	NO 🗆
APPROACH LANES Both Approaches - Major Street	X X	1364 148	ur	YES 🖾	NO No

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

EXISTING TRAFFIC VOLUMES


Figure 4C-3. Warrant 3, Peak Hour

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

CUMULATIVE + PROJECT

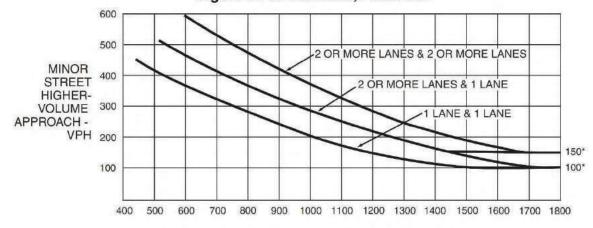
Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 1 of 5)

					COUNT DAT	E <u>-4/</u> 1	27/22 D	ATE _1	0/3/2	2
DIST CO	RTE	PM			CHK SAS				0/3/2	
Major St: <u>Union Valle</u> Minor St: <u>Hummel Dr</u>	ey Pai	rkway			Critical Approach Critical Approach	A CONTRACTOR OF THE PARTY OF TH	· —	50 35		_ mph _ mph
							RURA URBA	NL (R) NN (U)		
WARRANT 1 - Eig Condition A or C					S of A and B must b	W100000	FIED tisfied	YES)		NO 🗆
Condition A - Min	imun	1 Vehicle	Volum	ne	100% S	ATIS	SFIED	YES		NO 🗆
		IMUM REG			80% S	ATIS	SFIED	YES		ио □
	U	R	U	R						
APPROACH LANES		1	2 or	More		/	//		/	Hou
Both Approaches Major Street	500 (400		600 (480)	420 (336)						
Highest Approach Minor Street	150 (120		200 (160)	140 (112)					X.E.	
Condition B - Inte	MIN	IIMUM REG	QUIREN	MENTS	fic 100% S 80% S			YES		NO □
·	U	R	U	R	, , ,		, ,	,		, ,
APPROACH LANES		1	5	More		/				Ho
Both Approaches Major Street	750 (600		900 (720)	630 (504)						
Highest Approach Minor Street	75 (60)	53 (42)	100 (80)	70 (56)						
Combination of C	ondi	tions A 8	kВ		s	ATIS	SFIED	YES		no □
REQUIREMENT			- 9	CONDITIO	N	V	FU	LFILLE	D	
TWO CONDITION	IC A	A. MINIMU	IM VEH	CULAR VO	OLUME				_	2
SATISFIED 80%) A	AND, 3. INTERR	RUPTIO	N OF CON	TINUOUS TRAFFIC		Yes [N	o 🗆	
	LAY A	ND INCOM	IVENIE		IVES THAT COULD RAFFIC HAS FAILED		Yes [□ N	o 🗆	8

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

CUMULATIVE + PROJECT

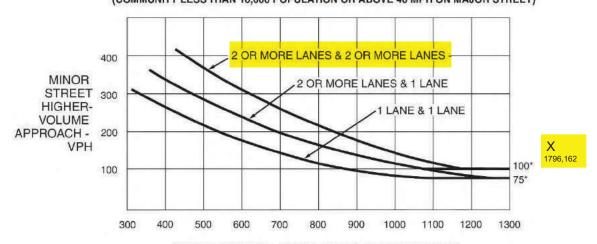
Figure 4C-101 (CA). Traffic Signal Warrants Worksheet (Sheet 2 of 5)


WARRANT 2 - Four Hour Vehicula	ar Volume	SATISFIED*	YES 🗆	NO 🗆
Record hourly vehicular volumes for an	y four hours of an average	day.		
APPROACH LANES	2 or One More	Hour		
Both Approaches - Major Street				
Higher Approach - Minor Street				
*All plotted points fall above the applic	able curve in Figure 4C-1.	(URBAN AREAS)	Yes 🗆	No 🗆
OR, All plotted points fall above the ap	oplicable curve in Figure 4C	-2. (RURAL AREAS)	Yes 🗆	No □
VARRANT 3 - Peak Hour Part A or Part B must be satisfie	d)	SATISFIED	YES 🖾	NO 🗆
ART A All parts 1, 2, and 3 below must be a	satisfied for the same	SATISFIED	YES 🗆	№ □
The total delay experienced by traffic controlled by a STOP sign equals or approach, or five vehicle-hours for a	exceeds four vehicle-hours		Yes 🗆	No 🗆
The volume on the same minor stree 100 vph for one moving lane of traffic			Yes 🗆	No 🗆
The total entering volume serviced d for intersections with four or more ap three approaches.			Yes 🗆	No 🗆
PART B	3	SATISFIED	YES 🖾	по □
APPROACH LANES	2 or 7:15 AM	Hour		
Both Approaches - Major Street	X 1796			
Higher Approach - Minor Street	X 162			
The plotted point falls above the applic	cable curve in Figure 4C-3	(LIDRAN ADEAS)	Yes 🗆	№ П
The plotted point fails above the applic	cable curve in rigure 40-5.	(UNDAN ANEAS)	les 🗖	140

The satisfaction of a traffic signal warrant or warrants shall not in itself require the installation of a traffic control signal.

(FHWA's MUTCD 2009 Edition, including Revisions 1 & 2, as amended for use in California)

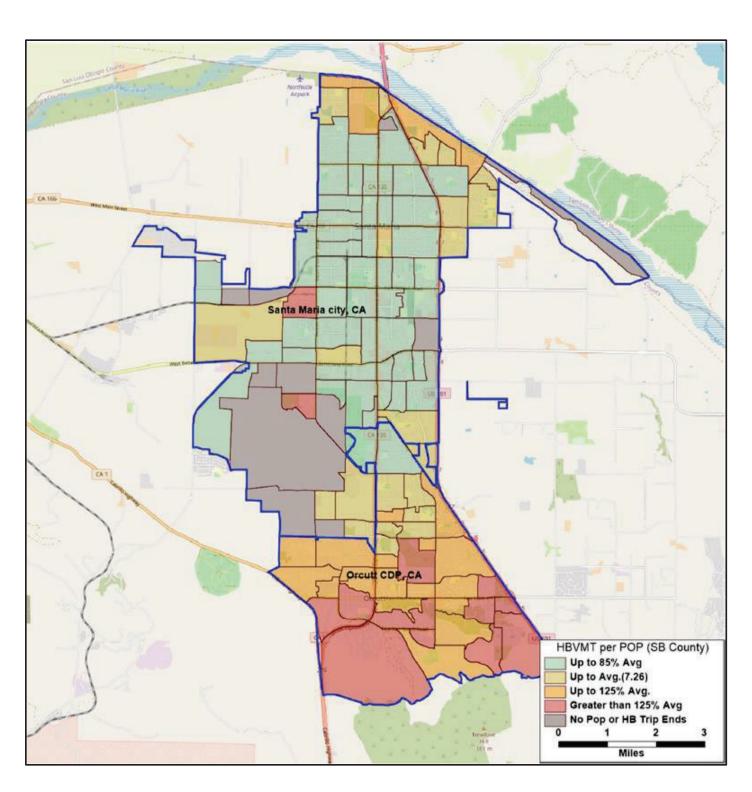
CUMULATIVE + PROJECT


Figure 4C-3. Warrant 3, Peak Hour

MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 150 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 100 vph applies as the lower threshold volume for a minor-street approach with one lane.

Figure 4C-4. Warrant 3, Peak Hour (70% Factor)
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 40 MPH ON MAJOR STREET)


MAJOR STREET—TOTAL OF BOTH APPROACHES— VEHICLES PER HOUR (VPH)

*Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

Appendix B

Countywide Average: Home-Based VMT per Population (Residential Land Uses)

INTERSECTION LEVEL OF SERVICE CALCULATION WORKSHEETS

Reference 1 - Orcutt Expressway/Lakeview Road

Reference 2 - Orcutt Expressway/Foster Road

Reference 3 - UVP/Foxenwood Lane

Reference 4 - UVP/Orcutt Expressway

Reference 5 - UVP/Orcutt Road

Reference 6 - UVP/Hummel Drive

Reference 7 - UVP/Bradley Road

Reference 8 - UVP/US 101 SB Ramps

Reference 9 - UVP/US 101 NB Ramps

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

8/1/2016

TIME PERIOD:

AM PEAK HOUR

N/S STREET:

ORCUTT EXPRESSWAY (SR 135)

E/W STREET:

SKYWAY DRIVE-LAKEVIEW ROAD

CONTROL TYPE:

SIGNAL

					TKA	AFFIC V	OLUM	E SUM	MARY					
		NOR	TH BO	UND	SOL	JTH BOI	JND	EAS	T BOU	ND	WE	ST BOUND)	
VOL	JMES	L	T	R	L	T	R	L	T	R	L	T	R	
(A)	EXISTING:	675	809	151	65	518	62	11	163	369	110	377	42	
(B)	PROJECT-ADDED:	18	66	10	0	45	O	0	0	16	9	0	0	
(C)	CUMULATIVE:	714	969	175	84	742	62	11	187	432	133	391	62	

GEOMETRICS

LANE GEOMETRICS

NORTH BOUND LL TT R

SOUTH BOUND L TT R

EAST BOUND

WEST BOUND

REF: 01 AM

LTTR

L T TR

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B)

SCENARIO 3 = SHORT-TERM CUMULATIVE (C)

SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

				LEVEL (OF SER	VICE CALCULATIO	NS				
MOVE-	# OF			SCE	NARIO \	/OLUMES			SCENARIO	V/C RATIOS	
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4	
NBL	2	3200	675	693	714	732	0.211 *	0.217 *	0.223 *	0.229 *	
NBT	2	3200	809	875	969	1035	0.253	0.273	0.303	0.323	
NBR (a)	1	1600	107	114	124	131	0.067	0.071	0.078	0.082	
SBL	1	1600	65	65	84	84	0.041	0.041	0.053	0.053	-
SBT	2	3200	518	563	742	787	0.162 *	0.176 *	0.232 *	0.246 *	
SBR (b)	1	1600	39	39	39	39	0.024	0.024	0.024	0.024	
EBL	1	1600	11	11	11	11	0.007 *	0.007 *	0.007 *	0.007	
EBT	2	3200	163	163	187	187	0.051	0.051	0.058	0.058 *	- "
EBR (c)	1	1600	162	169	190	197	0.101	0.106	0.119	0.123	
WBL	1	1600	110	119	133	142	0.069	0.074	0.083	0.089 *	
WBT	2	3200	377	377	391	391	0.128 *	0.128 *	0.137 *	0.137	
WBR (d)	0	0	33	33	48	48	la.	181		250	
			, (c)			LOST TIME:	0.100 *	0.100 *	0.100 *	0.100 *	
		TO				ITY UTILIZATION:	0.608 B	0,628 B	0.699 B	0.722 C	

RTOR: (a) 29%

(b) 37%

(c) 56%. Not critical due to overlap arrow.

(d) 22%

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

8/1/2016

TIME PERIOD:

PM PEAK HOUR

N/S STREET:

ORCUTT EXPRESSWAY (SR 135)

E/W STREET:

SKYWAY DRIVE-LAKEVIEW ROAD

CONTROL TYPE:

SIGNAL

					TRA	AFFIC V	OLUM	E SUN	MARY				
		NOF	RTH BO	UND	SOL	JTH BOL	DNL	EAS	T BOU	ND	WE	ST BOUND)
VOL	UMES	L	T	R	L	T	R	L	T	R	L	T	R
(A)	EXISTING:	340	913	186	147	858	33	51	398	573	100	190	40
(B)	PROJECT-ADDED:	12	40	7	0	52	0	0	0	15	8	0	0
(C)	CUMULATIVE:	400	1141	216	157	1140	33	51	421	663	117	214	53

GEOMETRICS

LANE GEOMETRICS

NORTH BOUND LL TT R

SOUTH BOUND LTTR

EAST BOUND LTTR

WEST BOUND L T TR

REF: 01 PM

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B)

SCENARIO 3 = SHORT-TERM CUMULATIVE (C)

SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

MOVE-	# OF			SCE	NARIO V	/OLUMES	122		SCENARIO	V/C RATIOS
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4
NBL	2	3200	340	352	400	412	0.106	0.110 *	0.125 *	0.129 *
NBT	2	3200	913	953	1141	1181	0.285 *	0.298	0.357	0.369
NBR (a) 1	1600	132	137	153	158	0.083	0.086	0.096	0.099
SBL	1	1600	147	147	157	157	0.092 *	0.092	0.098	0.098
SBT	2	3200	858	910	1140	1192	0.268	0.284 *	0.356 *	0.373 *
SBR (b) 1	1600	18	18	18	18	0.011	0.011	0.011	0.011
EBL	1	1600	51	51	51	51	0.032	0.032	0.032	0.032
EBT	2	3200	398	398	421	421	0.124 *	0.124 *	0.132 *	0.132 *
BR (c,	1 1	1600	281	288	325	332	0.176	0.180	0.203	0.208
WBL	1	1600	100	108	117	125	0.063 *	0.068 *	0.073 *	0.078 *
WBT	2	3200	190	190	214	214	0.068	0.068	0.078	0.078
NBR (d	0	0	26	26	34	34	5		18	⊕ ₹
						LOST TIME:	0.100 *	0.100 *	0.100 *	0.100 *
		то				ITY UTILIZATION:	0.664 B	0.686	0.786	0.812 D

NOTES:

RTOR: (a) 29%

(b) 44%

(c) 51%. Not critical due to overlap arrow.

(d) 36%

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

12/7/2019

TIME PERIOD:

AM PEAK HOUR

N/S STREET:

ORCUTT EXPRESSWAY (SR 135)

E/W STREET:

FOSTER ROAD

CONTROL TYPE:

SIGNAL

					TRAF	FIC VC	LUME	SUMN	ARY			1	
		NO	RTH BOI	UND	SOU	TH BO	UND	EAS	T BOU	ND	WE	ST BOUN	D
VOL	JMES	L	T	R	L	T	R	L	T	R	E	T	R
(A)	EXISTING:	19	1227	91	105	809	98	176	93	8	118	76	249
(B)	PROJECT-ADDED:	7	94	0	0	70	0	0	0	5	0	0	0
(C)	CUMULATIVE:	47	1304	91	106	871	275	321	117	45	118	121	250

GEOMETRICS

LANE GEOMETRICS

NORTH BOUND

L T TR

EAST BOUND

LL TR

WEST BOUND LTR

REF: 02 AM

L TT R

SOUTH BOUND

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B)

SCENARIO 3 = SHORT-TERM CUMULATIVE (C)

SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

THTM HOSSAT NO. 1	1000-000			LYLLO	JERVI	CE CALCULATION	3				_
MOVE-	# OF		E	SCE	NARIO \	/OLUMES		3	SCENARIO V	//C RATIOS	
MENTS	LANES	CAPACITY	. 1	2	3	4	1	2	3	4	
NBL	1	1600	19	26	47	54	0.012	0.016	0.029	0.034	
NBT	2	3200	1227	1321	1304	1398	0.405 *	0.435 *	0.429 *	0.459 *	ı
NBR (a)	0	0	70	70	70	70	-	-	14.1		
SBL	1	1600	105	105	106	106	0.066 *	0.066 *	0.066 *	0.066 *	
SBT	2	3200	809	879	871	941	0.253	0.275	0.272	0.294	
SBR (b)	1	1600	68	68	190	190	0.043	0.043	0.119	0.119	
EBL	2	3200	176	176	321	321	0.055 *	0.055 *	0.100 *	0.100 *	
EBT	1	1600	93	93	117	117	0.061	0.063	0.089	0.091	
EBR (c)	0	0	5	8	26	29	2		- 2	21	
WBL	1	1600	118	118	118	118	0.074	0.074	0.074	0.074	
WBT	1	1600	76	76	121	121	0.048	0.048	0.076	0.076	
WBR (d)	1	1600	132	132	133	133	0.083 *	0.083 *	0.083 *	0.083 *	
						LOST TIME:	0.100 *	0.100 *	0.100 *	0.100 *	
		Ţ	OTAL INTERS	SECTION	CAPAC	ITY UTILIZATION:	0.709	0.739	0.778	0.808	
			5	CENARI	O LEVEL	OF SERVICE:	С	С	С	D	

RTOR: (a) 23%

(b) 31%

(c) 42%

(d) 47%

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

12/7/2019

TIME PERIOD:

PM PEAK HOUR

N/S STREET:

ORCUTT EXPRESSWAY (SR 135)

E/W STREET:

FOSTER ROAD

CONTROL TYPE:

SIGNAL

					TRAF	FIC VO	LUME	SUMM	IARY				
		NO	RTH BOI	JND	SOL	TH BO	JND	EAS	T BOU	ND	WE	ST BOUN	D
VOL	UMES	L	T	R	L	T	R	L	T	R	L	T	R
(A) (B)	EXISTING:	6	1130	60	133	1299	133	182	53	27	67	48	107
(B)	PROJECT-ADDED:	5	59	0	0	75	0	0	0	6	0	0	0
(C)	CUMULATIVE:	31	1266	60	135	1464	263	362	88	71	67	74	109

GEOMETRICS

NORTH BOUND

SOUTH BOUND

EAST BOUND

WEST BOUND

REF: 02 PM

LANE GEOMETRICS

L T TR

LTTR

LTR

LL TR

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

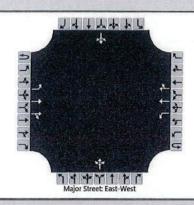
SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B)

SCENARIO 3 = SHORT-TERM CUMULATIVE (C)

SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

MOVE-	# OF		0.0075	SCE	NARIO V	VOLUMES		3	SCENARIO V	//C RATIOS
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4
NBL	1	1600	6	11	31	36	0.004	0.007	0.019	0.023
NBT	2	3200	1130	1189	1266	1325	0.368 *	0.386 *	0.410 *	0.428 *
NBR (a)	0	0	46	46	46	46	90	1	12	-
SBL	1	1600	133	133	135	135	0.083 *	0.083 *	0.084 *	0.084 *
SBT	2	3200	1299	1374	1464	1539	0.406	0.429	0.458	0.481
SBR (b)	1	1600	94	94	187	187	0.059	0.059	0.117	0.117
EBL	2	3200	182	182	362	362	0.057	0.057	0.113 *	0.113 *
EBT	1	1600	53	53	88	88	0.046 *	0.048 *	0.088	0.090
EBR (c)	0	0	20	24	52	56	74	=	12	2
VBL	1	1600	67	67	67	67	0.042 *	0.042 *	0.042	0.042
NBT	1	1600	48	48	74	74	0.030	0.030	0.046 *	0.046 *
WBR (d)	1	1600	43	43	44	44	0.027	0.027	0.028	0.028
						LOST TIME:	0.100 *	0.100 *	0.100 *	0.100 *
		Ţ				ITY UTILIZATION:	0.639 B	0.659 B	0.753 C	0.771 C

RTOR: (a) 23%

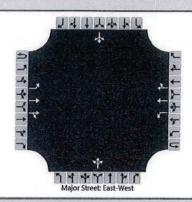

(b) 29%

(c) 27%

(d) 60%

HCS Two-Way Stop-Control Report **General Information** Site Information Analyst SAS Intersection UVP/FOXENWOOD LANE Agency/Co. ATE Jurisdiction SANTA MARIA Date Performed 1/5/2022 East/West Street Analysis Year 2019 North/South Street **FOXENWOOD LANE** Time Analyzed AM PEAK HOUR Peak Hour Factor 0.81 Intersection Orientation East-West Analysis Time Period (hrs) 0.25 **Project Description EXISTING CONDTIONS**

Lanes


Vehicle Volumes and Ad	justme	nts																
Approach		Easth	oound			West	bound		Γ	North	nbound	7		South	bound			
Movement	U	L	T	R	U	L	T	R	U	L	Т	R	U	L	Т	R		
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0		
Configuration		L	Т	TR		L	Т	TR			LTR				LTR			
Volume (veh/h)	0	13	296	0	0	78	176	32		0	44	189		0	3	1		
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3	3	3		
Proportion Time Blocked					1000				3 7.00							Till St		
Percent Grade (%)											0				0			
Right Turn Channelized																		
Median Type Storage		II Was too II E		Left	Only							2	2					
Critical and Follow-up H	eadwa	ys																
Base Critical Headway (sec)	T	4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9		
Critical Headway (sec)		4.16				4.16				7.56	6.56	6,96		7.56	6.56	6.96		
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3		
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33		
Delay, Queue Length, an	d Leve	of Se	ervice												NE.			
Flow Rate, v (veh/h)		16				96					288				5			
Capacity, c (veh/h)		1298				1183					593	8-18			333			
v/c Ratio		0.01				0.08					0.49				0.01			
95% Queue Length, Q ₉₅ (veh)		0.0	None XIII			0.3					2.6				0.0			
Control Delay (s/veh)		7.8				8.3					16.7				16.0			
Level of Service (LOS)		Α	ALC:		1 50	Α					С		Bevi		С			
Approach Delay (s/veh)		0.	.3			2.	.3			16	5.7			5 333 0.01 0.0 16.0				
Approach LOS		1	1			F	4			(2			7.5 6.5 7.56 6.56 3.5 4.0 3.53 4.03 5 3.33 4.03 5 0.01 0.0 16.0 C				

Copyright © 2022 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2022 03 AM_EX.xtw

Generated: 5/24/2022 1:33:42 PM

	HCS Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	SAS	Intersection	UVP/FOXENWOOD LANE
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	1/5/2022	East/West Street	UVP
Analysis Year	2019	North/South Street	FOXENWOOD LANE
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	0.81
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	EXISTING + PROJECT CONDITIO	NS	

Approach	T	Facth	oound	Manager Co.	1	Mest	bound	-		North	bound			Court	nbound	
Movement	U	Lasti	Т	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6	U	7	8	9	U	10	11	
Number of Lanes	0	1	2	0	0	1	2	0		0						12
Configuration	0			AN ENGLIS	U		7 T	1000		0	1	0		0	1	0
Volume (veh/h)	0	L 12	T	TR	0	L		TR		-	LTR	400			LTR	
	0	13	325	0	0	88	206	32		0	44	198		0	3	1
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized																
Median Type Storage			Market and Mark	Left	Only							2	2			
Critical and Follow-up Ho	eadway	/s														
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9
Critical Headway (sec)		4.16				4.16				7.56	6.56	6.96		7.56	6.56	6.9
Base Follow-Up Headway (sec)		2.2				2,2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.3
Delay, Queue Length, and	d Level	of Se	ervice													
Flow Rate, v (veh/h)		16				109					299		estilynt.		5	
Capacity, c (veh/h)		1257				1147					554			31.7	290	
v/c Ratio		0.01				0.09					0.54				0.02	
95% Queue Length, Q ₉₅ (veh)		0.0				0.3					3.2				0.1	
Control Delay (s/veh)		7.9				8.5					18.8				17.6	
Level of Service (LOS)		Α				Α	507 53	N. A.	CHR		С			100	С	
Approach Delay (s/veh)		0.	3			2.	3			18	3.8			17	.6	
Approach LOS		A				A								. (800

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

12/7/2019

TIME PERIOD:

AM PEAK HOUR

N/S STREET:

FOXENWOOD LANE

E/W STREET:

UVP

CONTROL TYPE:

SIGNAL CUMULATIVE IMPROVEMENT

					TRA	FFIC V	OLUM	E SUN	MARY				
		NOI	RTH BO	UND	SOU	TH BO	UND	EAS	T BOU	ND	WI	ST BOUN	D
VOL	UMES	L	T	R	L	T	R	L	Т	R	L	T	R
(A)	EXISTING:	0	44	189	0	3	1	13	296	0	78	176	32
(B)	PROJECT-ADDED:	0	0	9	0	0	0	0	29	0	10	30	0
(C)	CUMULATIVE:	0	51	189	132	7	23	58	296	0	78	176	140

GEOMETRICS

NORTH BOUND

SOUTH BOUND

EAST BOUND

WEST BOUND

REF: 03 AM

LANE GEOMETRICS

L TR

L TR

L T TR

LTTR

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

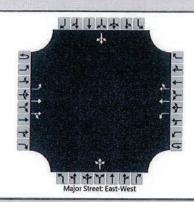
SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B)

SCENARIO 3 = SHORT-TERM CUMULATIVE (C)

SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

				LEVEL (OF SERV	/ICE CALCULATIO	NS			
MOVE-	# OF			SCE	NARIO V	OLUMES			SCENARIO '	V/C RATIOS
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4
NBL	1	1600	0	0	0	0	0.000	0.000	0.000	0.000
NBT	1	1600	44	44	51	51	0.146 *	0.151 *	0.150 *	0.156 *
NBR (a)		0	189	198	189	198	5.00	10.20 10.20 10.20	15 -	=
SBL	1	1600	0	0	132	132	0.000 *	0.000 *	0.083 *	0.083 *
SBT	1	1600	3	3	7	7	0.003	0.003	0.019	0.019
SBR (b)	0	0	1	1	23	23	12	828	2	1
EBL	1	1600	13	13	58	58	0.008	0.008	0.036	0.036
EBT	2	3200	296	325	296	325	0.093 *	0.102 *	0.093 *	0.102 *
EBR (c)		O	0	0	0	0		5 4 3	D=3	*
WBL	1	1600	78	88	78	88	0.049 *	0.055 *	0.049 *	0.055 *
WBT	2	3200	176	206	176	206	0.062	0.072	0.087	0.096
WBR (d)		0	23	23	102	102		j#	272	972
						LOST TIME:	0.100 *	0.100 *	0.100 *	0.100 *
		тс				ITY UTILIZATION: OF SERVICE:	0.388 A	0.408 A	0.475 A	0.496 A

RTOR: (a)

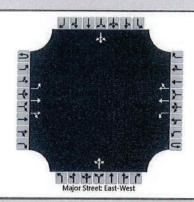

(b)

(c)

(d)

HCS Two-Way Stop-Control Report **General Information** Site Information SAS Analyst Intersection UVP/FOXENWOOD LANE Agency/Co. ATE Jurisdiction SANTA MARIA Date Performed 1/5/2022 East/West Street UVP Analysis Year 2019 North/South Street **FOXENWOOD LANE** Time Analyzed PM PEAK HOUR Peak Hour Factor 0.92 Intersection Orientation East-West Analysis Time Period (hrs) 0.25 Project Description **EXISTING CONDITIONS**

Lanes


Approach		Eastl	oound			West	bound			North	bound			South	nbound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	Т	TR			LTR				LTR	
Volume (veh/h)	0	1	220	3	0	178	300	6		3	9	99		7	8	12
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3	3	3
Proportion Time Blocked				TERM!				S Dal								
Percent Grade (%)											0		-		0	
Right Turn Channelized							124									
Median Type Storage				Left	Only							2	2			
Critical and Follow-up H	eadway	/s														
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5	6,5	6.9
Critical Headway (sec)		4.16				4.16				7.56	6.56	6.96		7.56	6.56	6.9
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.3
Delay, Queue Length, an	d Level	of Se	rvice													
Flow Rate, v (veh/h)	T	1				193					121				29	
Capacity, c (veh/h)		1216				1314		AGE			695				361	
v/c Ratio		0.00				0.15					0.17				0.08	
95% Queue Length, Q ₉₅ (veh)		0.0				0.5					0.6			Medi	0.3	
Control Delay (s/veh)		8.0				8.2					11.3				15.9	
Level of Service (LOS)		Α				Α				THE TANK	В			A THE	С	
Approach Delay (s/veh)		0.	0			3.	0			11	.3		-	15	5.9	-
Approach LOS		-	\			A				E	3		Altic I	(

Copyright © 2022 University of Florida. All Rights Reserved.

HCS伽 TWSC Version 2022 03 PM_EX.xtw

Generated: 5/25/2022 4:18:14 PM

	HCS Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	SAS	Intersection	UVP/FOXENWOOD LANE
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	1/5/2022	East/West Street	UVP
Analysis Year	2019	North/South Street	FOXENWOOD LANE
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	EXISTING + PROJECT CONDITIO	NS .	

Approach		Easth	oound			Westl	oound			North	bound	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	0		0	1	0		0	1	0
Configuration		L	Т	TR		L	T	TR			LTR				LTR	
Volume (veh/h)	0	1	245	3	0	185	324	6		3	9	107		7	8	12
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3	3	3
Proportion Time Blocked	800															
Percent Grade (%)											0				0	
Right Turn Channelized																
Median Type Storage				Left	Only							2				
Critical and Follow-up He	adway	s														
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9
Critical Headway (sec)		4.16				4.16				7.56	6.56	6.96		7.56	6.56	6.96
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, and	Level	of Se	rvice											100		
Flow Rate, v (veh/h)		1	T			201	T				129				29	
Capacity, c (veh/h)		1189				1284		N. Carlot			676				333	
v/c Ratio		0.00				0.16					0.19			S.J. S.J.	0.09	
95% Queue Length, Q ₉₅ (veh)		0.0				0.6					0.7				0.3	
Control Delay (s/veh)		8.0				8.3					11.6				16.9	
Level of Service (LOS)		Α				А					В	Naci			С	
Approach Delay (s/veh)		0.0	0			3.0)			11	.6		17/11/	16	.9	
Approach LOS	1000	A		1	No. le P	A				В			S. Da	C		

Copyright © 2022 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2022 03 PM_EX + PROJ.xtw

Generated: 5/25/2022 4:13:39 PM

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

12/7/2019

TIME PERIOD:

PM PEAK HOUR

N/S STREET:

FOXENWOOD LANE

E/W STREET:

UVP

CONTROL TYPE:

SIGNAL CUMULATIVE IMPROVEMENT

					TRA	FFIC V	OLUM	E SUN	MARY				
		NO	RTH BO	UND	SOU	TH BO	UND	EAS	T BOU	ND	WE	ST BOUNE)
VOL	UMES	L	Т	R	L	T	R	L	T	R	L	T	R
(A)	EXISTING:	3	9	99	7	8	12	1	220	3	178	300	6
(B)	PROJECT-ADDED:	0	0	8	O	0	0	0	25	0	7	24	0
(C)	CUMULATIVE:	3	13	99	159	14	47	27	220	3	178	300	81

GEOMETRICS

NORTH BOUND

SOUTH BOUND

EAST BOUND

WEST BOUND

REF: 03 PM

LANE GEOMETRICS

L TR

L TR

LTTR

L T TR

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B)

SCENARIO 3 = SHORT-TERM CUMULATIVE (C)

SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

					LEVEL (OF SERV	/ICE CALCULATIO	NS				
MOVE-		# OF			SCE	NARIO V	OLUMES	**		SCENARIO '	V/C RATIOS	
MENTS		LANES	CAPACITY	1	2	3	4	1	2	3	4	
NBL		1	1600	3	3	3	3	0.002	0.002	0.002	0.002	
NBT		1	1600	9	9	13	13	0.068 *	0.073 *	0.070 *	0.075 *	
NBR	(a)	4 1	0	99	107	99	107	183	100	1971	1	
SBL		1	1600	7	7	159	159	0.004 *	0.004 *	0.099 *	0.099 *	1
SBT		1	1600	8	8	14	14	0.013	0.013	0.038	0.038	
SBR	(b)	0	0	12	12	47	47	52.7		1121		
EBL		î î	1600	1	1	27	27	0.001	0.001	0.017	0.017	
EBT		2	3200	220	245	220	245	0.070 *	0.078 *	0.070 *	0.078 *	1
EBR	(c)		0	3	3	3	3		048	(*)	:(4:)	1
WBL		1	1600	178	185	178	185	0.111 *	0.116 *	0.111 *	0.116 *	
WBT		2	3200	300	324	300	324	0.095	0.103	0.112	0.120	
WBR	(d)		0	4	4	59	59			0 2 0	(37)	
							LOST TIME:	0.100 *	0.100 *	0.100 *	0.100 *	
			то				ITY UTILIZATION:	0.353	0.371	0.450	0.468	
				5	CENARI	O LEVEL	OF SERVICE:	A	A	A	A	
NOTES):			and the second	ST. JOHNSON	CONTRACTOR.				-		

RTOR: (a)

(b)

(c)

(d)

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

12/7/2019

TIME PERIOD:

AM PEAK HOUR

N/S STREET:

ORCUTT EXPRESSWAY (SR 135)

E/W STREET:

UVP

CONTROL TYPE:

SIGNAL

		NOR	RTH BO	UND		TH BO			T BOU	ND.	WF	ST BOUN	D
VOL	UMES	L	T	R	L	T	R	L	T	R	L	T	R
(A)	EXISTING:	15	898	254	126	717	97	198	276	15	370	174	236
(B)	PROJECT-ADDED:	0	-94	125	169	-94	0	0	38	0	122	40	186
(C)	CUMULATIVE:	102	953	254	153	741	155	219	310	92	370	260	265

GEOMETRICS

LANE GEOMETRICS

NORTH BOUND LTTR

SOUTH BOUND LL TT R

EAST BOUND LL TT R

WEST BOUND LL TT R

REF: 04 AM

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B)

SCENARIO 3 = SHORT-TERM CUMULATIVE (C)

SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

T manual T			LEVEL (JF SERV	VICE CALCULATIO	N5			
# OF		Ti.	SCE	NARIO V	OLUMES	10		SCENARIO Y	V/C RATIOS
LANES	CAPACITY	1	2	3	4	1	2	3	4
1	1600	15	1.5	102	102	0.009	0.009	0.064	0.064
2	3200	898	804	953	859	0.281 *	0.251 *	0.298 *	0.268 *
1	1600	254	379	254	379	0.159	0.237	0.159	0.237
2	3200	126	295	153	322	0.039 *	0.092 *	0.048 *	0.101 *
2	3200	717	623	741	647	0.224	0.195	0.232	0.202
1	1600	97	97	155	155	0.061	0.061	0.097	0.097
2	3200	198	198	219	219	0.062	0.062	0.068	0.068
2	3200	276	314	310	348	0.086 *	0.098 *	0.097 *	0.109 *
1	1600	15	15	92	92	0.009	0.009	0.058	0.058
2	3200	370	492	370	492	0.116 *	0.154 *	0.116 *	0.154 *
2	3200	174	214	260	300	0.054	0.067	0.081	0.094
1	1600	172	308	193	329	0.108	0.193	0.121	0.206
					LOST TIME:	0.100 *	0.100 *	0.100 *	0.100 *
	TO					0.622	0.695	0.659	0.732 C
	1 2 1 2 2 1 2 2 1	LANES CAPACITY 1 1600 2 3200 1 1600 2 3200 2 3200 1 1600 2 3200 2 3200 1 1600 2 3200 2 3200 2 3200 1 1600	# OF LANES CAPACITY 1 1 1600 15 2 3200 898 1 1600 254 2 3200 717 1 1600 97 2 3200 198 2 3200 198 2 3200 156 1 1600 15 2 3200 174 1 1600 172	# OF LANES CAPACITY 1 2 1 1600 15 15 2 3200 898 804 1 1600 254 379 2 3200 126 295 2 3200 717 623 1 1600 97 97 2 3200 198 198 2 3200 276 314 1 1600 15 15 2 3200 370 492 2 3200 370 492 1 1600 172 308	# OF LANES CAPACITY 1 2 3 1 1600 15 15 102 2 3200 898 804 953 1 1600 254 379 254 2 3200 717 623 741 1 1600 97 97 155 2 3200 198 198 219 2 3200 276 314 310 1 1600 15 15 92 2 3200 370 492 370 2 3200 370 492 370 2 3200 174 214 260 1 1600 172 308 193	# OF LANES CAPACITY 1 2 3 4 1 1600 15 15 102 102 2 3200 898 804 953 859 1 1600 254 379 254 379 2 3200 717 623 741 647 1 1600 97 97 155 155 2 3200 198 198 219 219 2 3200 276 314 310 348 1 1600 15 15 92 92 2 3200 370 492 370 492 2 3200 174 214 260 300 1 1600 172 308 193 329	LANES CAPACITY 1 2 3 4 1 1 1600 15 15 102 102 0.009 2 3200 898 804 953 859 0.281 * 1 1600 254 379 254 379 0.159 2 3200 126 295 153 322 0.039 * 2 3200 717 623 741 647 0.224 1 1600 97 97 155 155 0.061 2 3200 198 198 219 219 0.062 2 3200 276 314 310 348 0.086 * 1 1600 15 15 92 92 0.009 2 3200 370 492 370 492 0.116 * 2 3200 174 214 260 300 0.054 1 1600	# OF LANES CAPACITY 1 2 3 4 1 2 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 3 4 4 4 4 4 4 4 4 4	# OF LANES CAPACITY 1 2 3 4 1 2 3 3 4 1 2 3 3 4 1 2 3 3 4 1 2 3 3 4 1 2 3 3 4 1 2 3 3 4 1 2 3 3 3 4 1 2 3 3 3 3 3 3 3 3 3

NOTES:

RTOR: (a)

(b)

(c)

(d) 27% RTOR (OVERLAP WITH SB LEFT)

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

12/17/2019

TIME PERIOD:

PM PEAK HOUR

N/S STREET:

ORCUTT EXPRESSWAY (SR 135)

E/W STREET:

UVP

CONTROL TYPE:

SIGNAL

	TRAFFIC VOLUME SUMMARY														
		NO	RTH BO	UND	SOU	TH BO	UND	EAS	T BOU	ND	WE	ST BOUNI	D		
VOL	UMES	1	T	R	L	Т	R	L	T	R	L	T	R		
(A)	EXISTING:	9	952	427	311	851	259	144	174	8	273	219	108		
(B)	PROJECT-ADDED:	0	-64	93	145	-64	0	0	33	0	89	31	127		
(C)	CUMULATIVE:	87	1057	427	372	959	302	165	223	90	273	269	143		

GEOMETRICS

NORTH BOUND

SOUTH BOUND

EAST BOUND

WEST BOUND

REF: 04 PM

LANE GEOMETRICS

LTTR

LL TT R

LL TT R

LL TT R

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B)

SCENARIO 3 - SHORT-TERM CUMULATIVE (C)

SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

				LEVEL	OF SERV	/ICE CALCULATIO	NS			
MOVE-	# OF			SCE	NARIO V	OLUMES			SCENARIO V	//C RATIOS
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4
NBL	1	1600	9	9	87	87	0.006	0.006	0.054	0.054
NBT	2	3200	952	888	1057	993	0.298 *	0.278 *	0.330 *	0.310
NBR (a)	1	1600	427	520	427	520	0.267	0.325	0.267	0.325 *
SBL	2	3200	311	456	372	517	0.097 *	0.143 *	0.116 *	0.162 *
SBT	2	3200	851	787	959	895	0.266	0.246	0.300	0.280
SBR (b)	1	1600	259	259	302	302	0.162	0.162	0.189	0.189
EBL	2	3200	144	144	165	165	0.045	0.045	0.052	0.052
EBT	2	3200	174	207	223	256	0.054 *	0.065 *	0.070 *	0.080 *
EBR (c)	1	1600	8	8	90	90	0.005	0.005	0.056	0.056
WBL	2	3200	273	362	273	362	0.085 *	0.113 *	0.085 *	0.113 *
WBT	2	3200	219	250	269	300	0.068	0.078	0.084	0.094
WBR (d)	1	1600	54	118	72	135	0.034	0.074	0.045	0.084
			24.			LOST TIME:	0.100 *	0.100 *	0.100 *	0.100 *
		TC		ITY UTILIZATION: OF SERVICE:	0.634 B	0.699 B	0.701 B	0.780 C		

NOTES:

RTOR: (a)

(b)

(c)

(d) 50% RTOR (OVERLAP WITH SB LEFT)

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

12/17/2019

TIME PERIOD:

AM PEAK HOUR

N/S STREET:

ORCUTT ROAD

E/W STREET:

UVP

CONTROL TYPE:

SIGNAL

					TRA	FFIC V	OLUM	E SUM	MARY						
	NORTH BOUND SOUTH BOUND EAST BOUND WEST BOUND														
VOLUMES		L	T	R	L	T	R	L	T	R	L	Т	R		
(A)	EXISTING:	147	77	72	24	52	8	6	561	90	36	613	13		
(B)	PROJECT-ADDED:	78	12	24	15	8	125	174	104	54	81	155	23		
(C)	CUMULATIVE:	147	81	72	26	56	8	6	622	90	36	728	15		

GEOMETRICS

NORTH BOUND

SOUTH BOUND L TR

EAST BOUND

WEST BOUND

REF: 05 AM

LANE GEOMETRICS

L TR

L T TR

L T TR

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B)

SCENARIO 3 = SHORT-TERM CUMULATIVE (C)

SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

MOVE-	# OF		-	SCE	NARIO V	OLUMES	3		SCENARIO 1	V/C RATIOS
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3 .	4
NBL	1	1600	147	225	147	225	0.092 *	0.141 *	0.092 *	0.141 *
NBT	1	1600	77	89	81	93	0.093	0.116	0.096	0.118
NBR (a)	0	0	72	96	72	96	100	*	2	3
SBL	1	1600	24	39	26	41	0.015	0.024	0.016	0.026
SBT	1	1600	52	60	56	64	0.038 *	0.121 *	0.040 *	0.123 *
SBR (b)	0	0	8	133	8	133	588	- 63	=0	*
EBL	1	1600	6	180	6	180	0.004	0.113 *	0.004	0.113 *
EBT	2	3200	561	665	622	726	0.203 *	0.253	0.223 *	0.272
BR (c)	0	0	90	144	90	144	150	150	(E)	Ti di
WBL	1	1600	36	117	36	117	0.023 *	0.073	0.023 *	0.073
WBT	2	3200	613	768	728	883	0.196	0.251 *	0.232	0.288 *
WBR (d)	0	0	13	36	15	38	-	(A)	-	-
						LOST TIME:	0.100 *	0.100 *	0.100 *	0.100 *
		TO		ITY UTILIZATION: OF SERVICE:	0.456 A	0.726 C	0.478 A	0.765 C		

RTOR: (a)

(b)

(c)

(d)

Printed: 09/27/22

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

12/17/2019

TIME PERIOD:

PM PEAK HOUR

N/S STREET: E/W STREET: ORCUTT ROAD UVP

CONTROL TYPE:

SIGNAL

					TRA	AFFIC V	OLUM	E SUM	MARY						
	NORTH BOUND SOUTH BOUND EAST BOUND WEST BOUND														
VOLUMES		Ĺ	T	R	L	T	R	L	T	R	L	Т	R		
(A)	EXISTING:	66	31	42	22	32	5	0	806	105	26	533	11		
(B)	PROJECT-ADDED:	37	8	15	11	7	100	130	93	48	64	118	17		
(C)	CUMULATIVE:	66	35	42	24	36	5	0	916	105	26	618	13		

GEOMETRICS

NORTH BOUND

SOUTH BOUND L TR

EAST BOUND

WEST BOUND

REF: 05 PM

LANE GEOMETRICS

L TR

L T TR

L T TR

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B)

SCENARIO 3 = SHORT-TERM CUMULATIVE (C)

SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

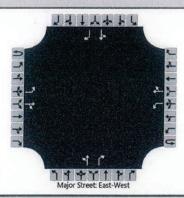
MOVE-	# OF		102	SCE	NARIO V	VOLUMES	70		SCENARIO '	V/C RATIOS
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4
NBL	1	1600	66	103	66	103	0.041 *	0.064 *	0.041 *	0.064 *
NBT	1	1600	31	39	35	43	0.046	0.060	0.048	0.063
NBR (a)	0	0	42	57	42	57	-	2	-	
SBL	1	1600	22	33	24	35	0.014	0.021	0.015	0.022
SBT	1	1600	32	39	36	43	0.023 *	0.090 *	0.026 *	0.093 *
SBR (b)	0	0	.5	105	5	105		2	8	-
EBL	1	1600	0	130	0	130	0.000	0.081	0.000	0.081
EBT	2	3200	806	899	916	1009	0.285 *	0.329 *	0.319 *	0.363 *
EBR (c)	0	0	105	153	105	153	150			8
WBL	1	1600	26	90	26	90	0.016 *	0.056 *	0.016 *	0.056 *
WBT	2	3200	533	651	618	736	0.170	0.212	0.197	0.239
WBR (d)	0	0	11	28	13	30	120	R#3		2
						LOST TIME:	0.100 *	0,100 *	0.100 *	0.100 *
		то		CITY UTILIZATION:	0.465 A	0.639 B	0.502 A	0.676 B		

RTOR: (a)


(b)

(c) (d)

09/27/22

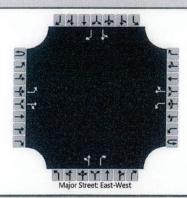

HCS Two-Way Stop-Control Report **General Information Site Information** Analyst SAS UVP/HUMMEL DRIVE Intersection ATE Agency/Co. Jurisdiction SANTA MARIA Date Performed East/West Street 1/5/2022 UVP Analysis Year 2022 North/South Street HUMMEL DRIVE Time Analyzed AM PEAK HOUR Peak Hour Factor 0.92 Intersection Orientation Analysis Time Period (hrs) 0.25 East-West **Project Description EXISTING CONDITIONS**

Lanes

Approach		Easth	oound		LOP-MINE	West	bound			North	bound		23111140031	South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	1		0	1	1
Configuration		L		TR		L		TR		LT		R		LT		R
Volume (veh/h)		18	633	24		41	638	10		26	36	86		25	27	18
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										i	0				0	
Right Turn Channelized										N	lo			N	lo	
Median Type Storage				Left	Only							1				
Critical and Follow-up H	eadway	ys .														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13			1114	7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23			is in	2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, an	d Level	of Se	ervice													
Flow Rate, v (veh/h)	T	20				45				67		93		57		20
Capacity, c (veh/h)		889				881			Mr. S	124		437		110		438
v/c Ratio		0.02				0.05				0.54		0.21		0.51		0.04
95% Queue Length, Q ₉₅ (veh)		0.1				0.2				2.6		0.8		2.3		0.1
Control Delay (s/veh)		9.1				9.3				64.0		15.5		67.9		13.6
Level of Service (LOS)		Α			FRE	Α				F		С		F		В
Approach Delay (s/veh)		0.	2			0.	6			35	.8			54	.0	
Approach LOS		-			The state of the s	A				E		10000		F		

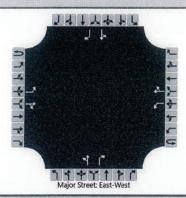
	HCS Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	SAS	Intersection	UVP/HUMMEL DRIVE
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	1/5/2022	East/West Street	UVP
Analysis Year	2022	North/South Street	HUMMEL DRIVE
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	EXISTING + PROJECT CONDITIO	NS	

Approach		Easth	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	1		0	1	1
Configuration		L		TR		L		TR		LT		R		LT		F
Volume (veh/h)		32	753	38		41	742	10		40	36	86		25	27	3
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)						ABAKOBA .				()			8	0	
Right Turn Channelized										N	lo			١	10	
Median Type Storage				Left	Only								1			
Critical and Follow-up H	eadway	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.3
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.2
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.3
Delay, Queue Length, an	d Level	of Se	rvice													
Flow Rate, v (veh/h)		35				45				83		93		57		35
Capacity, c (veh/h)		806				777			REW!	80		364		58	IVA III	37
v/c Ratio		0.04				0.06				1.03		0.26		0.98		0.0
95% Queue Length, Q ₉₅ (veh)		0.1				0.2				5.7		1.0		4.5		0.3
Control Delay (s/veh)		9.7				9.9				201.0		18.3		229.5		15.
Level of Service (LOS)		Α				Α				F		С		F		С
Approach Delay (s/veh)		0.	4			0.	5			104	4.0			14	8.0	
Approach LOS		A				A				F				F		


Copyright © 2022 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2022 06 AM_EX + PROJ.xtw

Generated: 9/30/2022 10:42:10 AM


HCS Two-Way Stop-Control Report **General Information Site Information** SAS Analyst Intersection UVP/HUMMEL DRIVE Agency/Co. ATE Jurisdiction SANTA MARIA **Date Performed** 1/5/2022 East/West Street Analysis Year 2022 North/South Street HUMMEL DRIVE Time Analyzed AM PEAK HOUR Peak Hour Factor 0.92 Intersection Orientation East-West Analysis Time Period (hrs) 0.25 **Project Description CUMULATIVE CONDITIONS**

Lanes

Approach		Eastl	bound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	1		0	1	1
Configuration		L		TR		L		TR		LT		R	(Indicate of the last	LT		R
Volume (veh/h)		18	696	24		41	755	10		26	36	86		25	27	18
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked								NE								
Percent Grade (%)										()				0	
Right Turn Channelized										N	lo			١	10	
Median Type Storage				Left	Only								1			
Critical and Follow-up H	eadway	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.2
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.3
Delay, Queue Length, an	d Level	of Se	ervice													
Flow Rate, v (veh/h)		20				45				67		93		57		20
Capacity, c (veh/h)		797		TO ES		831				93		399		78		370
v/c Ratio		0.02				0.05				0.72		0.23		0.72		0.0
95% Queue Length, Q ₉₅ (veh)		0.1				0.2				3.7		0.9		3.4		0.2
Control Delay (s/veh)		9.6				9.6				109.6		16.8		125.9		15.
Level of Service (LOS)		Α				Α	May 1			F		С		F		С
Approach Delay (s/veh)		0.	2			0.	5			55	.7			97	.4	
Approach LOS		-	1			A				F				F		

	HCS Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	SAS	Intersection	UVP/HUMMEL DRIVE
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	1/5/2022	East/West Street	UVP
Analysis Year	2022	North/South Street	HUMMEL DRIVE
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	CUMULATIVE + PROJECT COND	ITIONS	

Approach		Eastl	ound			West	bound			North	bound		S. C. C. C. C. C.	South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	1		0	1	1
Configuration		L		TR		L		TR		LT		R		LT		R
Volume (veh/h)		32	816	38		41	859	10		40	36	86		25	27	32
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)					1					(0			(0	-
Right Turn Channelized										N	lo			N	lo	
Median Type Storage				Left	Only											
Critical and Follow-up He	eadway	/s														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.2
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.3
Delay, Queue Length, and	d Level	of Se	rvice													
Flow Rate, v (veh/h)		35				45				83		93		57		35
Capacity, c (veh/h)		722				733				52		332		12		319
v/c Ratio		0.05				0.06				1.58		0.28		4.58		0.1
95% Queue Length, Q ₉₅ (veh)		0.2	REST			0.2				7.8		1.1		8.1		0.4
Control Delay (s/veh)		10.2				10.2				462.6		20.0		2218.7		17.
Level of Service (LOS)		В				В		1000	NAME OF THE OWNER OWNER OF THE OWNER	F		С		F		C
Approach Delay (s/veh)		0.	4			0.	5			227	7.6			138	0.2	
Approach LOS		1				-	1			F			TO TO THE	F		

Copyright © 2022 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2022 06 AM_CUM + PROJ.xtw

Generated: 9/30/2022 10:42:37 AM

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

12/17/2019

TIME PERIOD:

AM PEAK HOUR HUMMEL DRIVE

N/S STREET: E/W STREET:

UVP

CONTROL TYPE:

SIGNAL - WITH RECOMMENDED IMPROVEMENTS

					TRA	AFFIC V	OLUM	E SUN	MARY				
		NOF	RTH BO	UND	SOL	JTH BO	UND	EAS	T BOU	ND	WI	ST BOUNI	D
VOL	UMES	L	T	R	L	T	R	L	T	R	L	T	R
(A)	EXISTING:	26	36	86	25	27	18	18	633	23	41	638	10
(B)	PROJECT-ADDED:	14	0	0	0	0	14	14	120	14	0	104	0
(C)	CUMULATIVE:	26	36	86	25	27	18	18	696	24	41	755	10

GEOMETRICS

NORTH BOUND LANE GEOMETRICS

L TR

SOUTH BOUND L TR

EAST BOUND

WEST BOUND

REF: 06 AM

L T TR

L T TR

TRAFFIC SCENARIOS

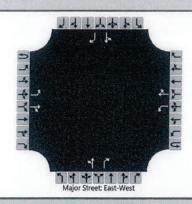
SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B)

SCENARIO 3 = SHORT-TERM CUMULATIVE (C)

SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

	S - WS			LEVEL (OF SERV	VICE CALCULATIO	NS			
MOVE-	# OF			SCE	NARIO V	OLUMES			SCENARIO '	V/C RATIOS
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4
NBL	1	1600	26	40	26	40	0.016	0.025	0.016	0.025
NBT	1	1600	36	36	36	36	0.076 *	0.076 *	0.076 *	0.076 *
NBR (a)	0	0	86	86	86	86	25	320	8.5	1 5 .
SBL	i	1600	25	25	25	25	0.016 *	0.016 *	0.016 *	0.016 *
SBT	1	1600	27	27	27	27	0.028	0.037	0.028	0.037
SBR (b)	0	0	18	32	18	32		3		•
EBL	1	1600	18	32	18	32	0.011	0.020	0.011	0.020
EBT	2	3200	633	753	696	816	0.205 *	0.247 *	0.225 *	0.267 *
EBR (c)	0	o	23	37	24	38	8		1941	360
WBL	1	1600	41	41	41	41	0.026 *	0.026 *	0.026 *	0.026 *
WBT	2	3200	638	742	755	859	0.203	0.235	0.239	0.272
WBR (d)	0	0	10	10	10	10		25	27	
						LOST TIME:	0.100 *	0.100 *	0.100 *	0.100 *
		то				ITY UTILIZATION: OF SERVICE:	0.423 A	0.465 A	0.443 A	0.485 A

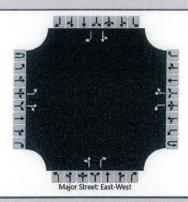

RTOR: (a)

(b)

(c)

(d)

	HCS Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	SAS	Intersection	UVP/HUMMEL DRIVE
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	1/5/2022	East/West Street	UVP
Analysis Year	2022	North/South Street	HUMMEL DRIVE
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	EXISTING CONDITIONS		

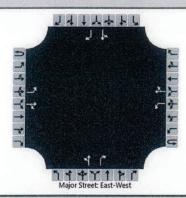

Approach		Easth	oound	Open Document		West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	1		0	1	1
Configuration		L		TR		L		TR		LT		R		LT		R
Volume (veh/h)		24	828	43		66	559	23		20	19	38		12	21	8
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized										N	10			N	10	
Median Type Storage				Left	Only							1				
Critical and Follow-up He	eadway	/5														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.2
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.3
Delay, Queue Length, and	d Level	of Se	rvice													
Flow Rate, v (veh/h)		26				72				42		41		36		9
Capacity, c (veh/h)		945				721				96		325		79		486
v/c Ratio		0.03				0.10				0.44		0.13		0.45		0.02
95% Queue Length, Q ₉₅ (veh)		0.1				0.3				1.9		0.4		1.8		0.1
Control Delay (s/veh)		8.9				10.5				69.5		17.7		83.5		12.5
Level of Service (LOS)		Α				В				F		С		F		В
Approach Delay (s/veh)		0.	2			1.	1			43	.9			69	.7	
Approach LOS		A	V			1	1			1				F	1011919	

Copyright © 2022 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2022 06 PM_EX.xtw

Generated: 9/30/2022 10:42:51 AM

	Ties two v	Vay Stop-Control Report	
General Information		Site Information	
Analyst	SAS	Intersection	UVP/HUMMEL DRIVE
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	1/5/2022	East/West Street	UVP
Analysis Year	2022	North/South Street	HUMMEL DRIVE
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	EXISTING + PROJECT CONDITIO	NS	


Vehicle Volumes and Ad	justme	nts														
Approach		Eastl	oound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	T	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	1		0	1	1
Configuration		L		TR		L		TR		LT		R		LT		R
Volume (veh/h)		35	913	54		66	658	23		32	19	38		12	21	19
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%))				0	Water Property
Right Turn Channelized										N	lo			١	lo	
Median Type Storage				Left	Only								ı			
Critical and Follow-up H	eadway	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23		7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2	3			3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, an	d Level	of Se	ervice													
Flow Rate, v (veh/h)		38				72				55		41		36		21
Capacity, c (veh/h)		862				658				68		285		50		422
v/c Ratio		0.04				0.11				0.81		0.14		0.71		0.05
95% Queue Length, Q ₉₅ (veh)		0.1				0.4				3.8	NEW	0.5		2.9		0.2
Control Delay (s/veh)		9.4				11.1				160.8		19.7		176.8		14.0
Level of Service (LOS)		Α				В				F		С		F		В
Approach Delay (s/veh)		0.	3			1.	.0			100	0.6			11	7.3	
Approach LOS		-	1			1	4		N. STATE	F				F		

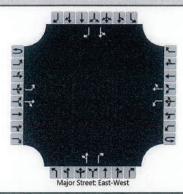
Copyright © 2022 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2022 06 PM_EX + PROJ.xtw Generated: 9/30/2022 10:43:04 AM

AWD = > 50 SEC = LOS F

	HCS Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	SAS	Intersection	UVP/HUMMEL DRIVE
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	1/5/2022	East/West Street	UVP
Analysis Year	2022	North/South Street	HUMMEL DRIVE
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	CUMULATIVE CONDITIONS	TO THE TAXABLE CONTRACTOR OF THE PARTY OF TH	

Approach		Easth	oound			West	bound			North	bound		averate and	South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	1		0	1	1
Configuration		L		TR		L		TR		LT		R		LT		R
Volume (veh/h)	Page 1	24	940	43		66	646	23		20	19	38		12	21	8
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)					XIII III					()			i i	0	AMADED I
Right Turn Channelized										N	lo			١	10	
Median Type Storage				Left	Only							1				
Critical and Follow-up He	eadway	/s														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13	57.53			4.13				7.13	6.53	6.23		7.13	6.53	6.2
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.3
Delay, Queue Length, and	d Level	of Se	ervice													
Flow Rate, v (veh/h)		26				72				42		41		36		9
Capacity, c (veh/h)		872				648				69		277		53		429
v/c Ratio		0.03				0.11				0.61		0.15		0.68		0.0
95% Queue Length, Q ₉₅ (veh)		0.1				0.4				2.7		0.5		2.8		0.1
Control Delay (s/veh)		9.3				11.2				118.1		20.3		163.9		13.
Level of Service (LOS)		А				В				F		С		F		В
Approach Delay (s/veh)		0.	2			1.	0			69	.8			134	4.6	
Approach LOS		1	1			1	1			F			The said	F		18 300


Copyright © 2022 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2022 06 PM_CUM.xtw

Generated: 9/30/2022 10:43:18 AM

HCS Two-Way Stop-Control Report **General Information Site Information** SAS Intersection Analyst **UVP/HUMMEL DRIVE** ATE Agency/Co. Jurisdiction SANTA MARIA Date Performed 1/5/2022 East/West Street UVP Analysis Year 2022 North/South Street HUMMEL DRIVE Time Analyzed PM PEAK HOUR Peak Hour Factor 0.92 Intersection Orientation East-West Analysis Time Period (hrs) 0.25 CUMULATIVE + PROJECT CONDITIONS **Project Description**

Lanes

Approach		East	bound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	1	0	0	1	1	0		0	1	1		0	1	1
Configuration		L		TR		L		TR		LT		R		LT		R
Volume (veh/h)		35	1025	54		66	745	23		32	19	38		12	21	19
Percent Heavy Vehicles (%)		3				3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										()				0	
Right Turn Channelized										N	o			N	lo	
Median Type Storage	T			Left	Only								1			
Critical and Follow-up H	eadway	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.13				4.13				7.13	6.53	6.23	House,	7.13	6.53	6.23
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, an	d Level	of Se	ervice													
Flow Rate, v (veh/h)		38				72				55		41		36		21
Capacity, c (veh/h)		794				592				41		242		14		372
v/c Ratio		0.05				0.12				1.35		0.17		2.53		0.06
95% Queue Length, Q ₉₅ (veh)		0.2				0.4				5.5		0.6		5.3		0.2
Control Delay (s/veh)		9.8				11.9				414.3		22.9		1241.2		15.2
Level of Service (LOS)		Α				В				F		С		F		С
Approach Delay (s/veh)		0	.3			0.	9			247	7.2			79:	3.3	
Approach LOS			4			-				F				F		

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

12/17/2019

TIME PERIOD:

PM PEAK HOUR **HUMMEL DRIVE**

N/S STREET: E/W STREET:

UVP

CONTROL TYPE:

SIGNAL - WITH RECOMMENDED IMPROVEMENTS

					TRA	AFFIC V	OLUM	E SUN	MARY				
		NOR	RTH BO	UND	SOU	ITH BO	UND	EAS	T BOU	ND	WI	ST BOUNI)
VOL	UMES	L	T	R	L	T	R	L	T	R	L	T	R
(A)	EXISTING:	20	19	38	12	21	8	24	828	43	66	559	23
(B)	PROJECT-ADDED:	12	0	0	0	0	11	11	85	11	0	99	0
(C)	CUMULATIVE:	20	19	38	12	21	8	24	940	43	66	646	23

GEOMETRICS

NORTH BOUND

SOUTH BOUND

EAST BOUND

WEST BOUND

REF: 06 PM

LANE GEOMETRICS

L TR

L TR

L T TR

L T TR

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B)

SCENARIO 3 - SHORT-TERM CUMULATIVE (C)

SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

		T		LEVEL (OF SER	VICE CALCULATIO	NS			
MOVE-	# OF		V	SCE	NARIO V	VOLUMES			SCENARIO '	V/C RATIOS
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4
NBL	1	1600	20	32	20	32	0.013	0.020 *	0.013	0.020 *
NBT	1	1600	19	19	19	19	0.036 *	0.036	0.036 *	0.036
NBR (a	i) 0	o	38	38	38	38	17		151	
SBL	1	1600	12	12	12	12	0.008 *	0.008	0.008 *	0.008
SBT	1	1600	21	21	21	21	0.018	0.025 *	0.018	0.025 *
SBR (b	0	o	8	19	8	19	-	100	127	120
EBL	1	1600	24	35	24	35	0.015	0.022	0.015	0.022
EBT	2	3200	828	913	940	1025	0.272 *	0.302 *	0.307 *	0.337 *
EBR (c	0	o	43	54	43	54	*	(*)	:-	386
WBL	1	1600	66	66	66	66	0.041 *	0.041 *	0.041 *	0.041 *
WBT	2	3200	559	658	646	745	0.182	0.213	0.209	0.240
WBR (d	0	0	23	23	23	23				(3)).
						LOST TIME:	0.100 *	0.100 *	0.100 *	0.100 *
		тс				CITY UTILIZATION:	0.457 A	0.488 A	0.492 A	0.523 A

RTOR:

(a) (b)

(c)

(d)

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

7/23/2019

TIME PERIOD:

AM PEAK HOUR

N/S STREET:

BRADLEY ROAD

E/W STREET:

UVP

CONTROL TYPE:

SIGNAL

					TRA	AFFIC V	OLUM	E SUN	MARY				
		NOF	RTH BO	UND	SOL	JTH BO	UND	EAS	T BOU	ND	WI	EST BOUNI)
VOL	UMES	L	T	R	L	T	R	L	T	R	L	T	R
(A)	EXISTING:	83	273	132	51	148	30	28	464	42	75	399	14
(B)	PROJECT-ADDED:	27	0	0	0	0	20	19	79	22	0	57	0
(C)	CUMULATIVE:	112	324	144	51	184	30	29	510	57	80	485	15

GEOMETRICS

NORTH BOUND LANE GEOMETRICS

LTTR

SOUTH BOUND L T TR

EAST BOUND LL TT R

WEST BOUND LL TT R

REF: 07 AM

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B)

SCENARIO 3 = SHORT-TERM CUMULATIVE (C)

SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

				LEVEL (OF SERV	ICE CALCULATIO	NS			
MOVE-	# OF			SCE	NARIO V	OLUMES			SCENARIO '	V/C RATIOS
MENTS	LANES	CAPACITY	1_	2	3	4	1	2	3	4
NBL	1	1600	83	110	112	139	0.052	0.069 *	0.070 *	0.087 *
NBT	2	3200	273	273	324	324	0.085 *	0.085	0.101	0.101
NBR (a)	1	1600	132	132	144	144	0.083	0.083	0.090	0.090
SBL	1	1600	51	51	51	51	0.032 *	0.032	0.032	0.032
SBT	2	3200	148	148	184	184	0.056	0.062 *	0.067 *	0.073 *
SBR (b)	0	0	30	50	30	50	-	2	2	1 2
EBL	2	3200	28	47	29	48	0.009	0.015	0.009	0.015
EBT	2	3200	464	543	510	589	0.145 *	0.170 *	0.159 *	0.184 *
EBR (c)	1	1600	42	64	57	79	0.026	0.040	0.036	0.049
WBL	2	3200	75	75	80	80	0.023 *	0.023 *	0.025 *	0.025 *
WBT	2	3200	399	456	485	542	0.125	0.143	0.152	0.169
WBR (d)	1	1600	14	14	15	15	0.009	0.009	0.009	0.009
						LOST TIME:	0.100 *	0.100 *	0.100 *	0.100 *
		TC				TY UTILIZATION: OF SERVICE:	0.385 A	0.424 A	0.421 A	0.469 A

RTOR: (a)

(b)

(c)

(d)

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE:

7/23/2019

TIME PERIOD:

PM PEAK HOUR

N/S STREET: E/W STREET: BRADLEY ROAD UVP

CONTROL TYPE:

SIGNAL

					TRA	AFFIC V	OLUM	E SUM	MARY				
		NOF	RTH BO	UND	SOL	TH BO	UND	EAS	T BOU	ND	WE	ST BOUNI)
VOL	UMES	L	T	R	L	T	R	L	T	R	L	T	R
(A)	EXISTING:	65	342	101	40	405	65	60	524	136	172	587	54
(B)	PROJECT-ADDED:	22	0	0	0	0	17	16	51	18	0	60	0
(C)	CUMULATIVE:	100	398	108	40	474	65	61	590	180	184	638	54

GEOMETRICS

LANE GEOMETRICS

NORTH BOUND LTTR

SOUTH BOUND

EAST BOUND

WEST BOUND

REF: 07 PM

LTTR

LL TT R

LL TT R

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

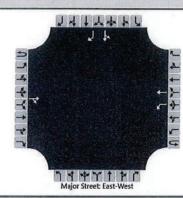
SCENARIO 2 = EXISTING + PROJECT VOLUMES(A+B)

SCENARIO 3 = SHORT-TERM CUMULATIVE (C)

SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

48			LEVEL (OF SERV	/ICE CALCULATIO	NS				
# OF		Di	SCE	NARIO V	OLUMES	an an		SCENARIO	V/C RATIOS	
LANES	CAPACITY	1	2	3	4	1	2	3	4	
1	1600	65	87	100	122	0.041 *	0.054 *	0.063 *	0.076 *	
2	3200	342	342	398	398	0.107	0.107	0.124	0.124	
1	1600	101	101	108	108	0.063	0.063	0.068	0.068	
1	1600	40	40	40	40	0.025	0.025	0.025	0.025	
2	3200	405	405	474	474	0.147 *	0.152 *	0.168 *	0.174 *	
0	0	65	82	65	82	•	7.	.5	5.	
2	3200	60	76	61	77	0.019	0.024	0.019	0.024	
2	3200	524	575	590	641	0.164 *	0.180 *	0.184 *	0.200 *	
1	1600	136	154	180	198	0.085	0.096	0.113	0.124	
2	3200	172	172	184	184	0.054 *	0.054 *	0.058 *	0.058 *	
2	3200	587	647	638	698	0.183	0.202	0.199	0.218	
1	1600	54	54	54	54	0.034	0.034	0.034	0.034	
					LOST TIME:	0.100 *	0,100 *	0.100 *	0.100 *	
	то				ITY UTILIZATION: OF SERVICE:	0.506 A	0.540 A	0.573 A	0.608 B	
	1 2 1 2 0 0 2 2 1 1 2 2 2 1	LANES CAPACITY 1 1600 2 3200 1 1600 2 3200 0 0 2 3200 2 3200 1 1600 2 3200 1 1600 2 3200 2 3200 1 1600	# OF LANES CAPACITY 1 1 1600 65 2 3200 342 1 1600 101 1 1600 40 2 3200 405 0 0 65 2 3200 60 2 3200 524 1 1600 136 2 3200 524 1 1600 136	# OF LANES CAPACITY 1 2 1 1600 65 87 2 3200 342 342 1 1600 101 101 1 1600 40 40 2 3200 405 405 0 0 65 82 2 3200 60 76 2 3200 524 575 1 1600 136 154 2 3200 172 172 2 3200 587 647 1 1600 54 54	# OF LANES CAPACITY 1 2 3 1 1600 65 87 100 2 3200 342 342 398 1 1600 101 101 101 108 1 1600 40 40 40 40 2 3200 405 405 474 0 0 65 82 65 2 3200 60 76 61 2 3200 524 575 590 1 1600 136 154 180 2 3200 172 172 184 2 3200 587 647 638 1 1600 54 54 54	# OF LANES CAPACITY 1 2 3 4 1 1600 65 87 100 122 2 3200 342 342 398 398 1 1600 101 101 108 108 1 1600 40 40 40 40 2 3200 405 405 474 474 0 0 0 65 82 65 82 2 3200 60 76 61 77 2 3200 524 575 590 641 1 1600 136 154 180 198 2 3200 172 172 184 184 2 3200 587 647 638 698 1 1600 54 54 54 54 54	LANES CAPACITY 1 2 3 4 1 1 1600 65 87 100 122 0.041 * 2 3200 342 342 398 398 0.107 1 1600 101 101 108 108 0.063 1 1600 40 40 40 40 0.025 2 3200 405 405 474 474 0.147 * 0 0 65 82 65 82 - 2 3200 524 575 590 641 0.164 * 1 1600 136 154 180 198 0.085 2 3200 527 575 590 641 0.164 * 1 1600 136 154 180 198 0.085 2 3200 587 647 638 698 0.183 1 1600	# OF LANES CAPACITY 1 2 3 4 1 2 1	#OF LANES CAPACITY 1 2 3 4 1 2 3 1 1600 65 87 100 122 0.041 * 0.054 * 0.063 * 0.107 0.107 0.124 1 1600 101 101 108 108 0.063 0.063 0.068 1 1600 40 40 40 40 40 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.068 1 1600 0 65 82 65 82	# OF LANES CAPACITY 1 2 3 4 1 2 3 4 1 2 3 4 1 1 2 3 4 1 1 2 3 4 1 1 2 3 4 4 1 1 2 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

RTOR: (a)

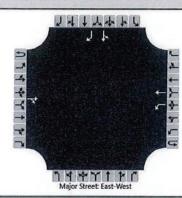

(b)

(c)

(d)

HCS Two-Way Stop-Control Report **General Information Site Information** Analyst SAS Intersection UVP/US 101 SB RAMPS Agency/Co. ATE Jurisdiction SANTA MARIA Date Performed 1/5/2022 East/West Street Analysis Year 2019 North/South Street US 101 SB RAMPS Time Analyzed AM PEAK HOUR Peak Hour Factor 0.92 Intersection Orientation East-West Analysis Time Period (hrs) 0.25 **Project Description EXISTING CONDITIONS**

Lanes

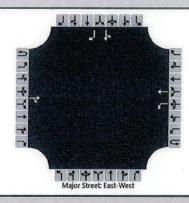


Only used 65% of SB right-turn volume

Approach		East	bound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	0	0		0	1	1
Configuration				TR		L	Т							LT		R
Volume (veh/h)			932	107		2	90							1	4	428
Percent Heavy Vehicles (%)						3								3	3	3
Proportion Time Blocked																
Percent Grade (%)														30	0	
Right Turn Channelized			The May											١	10	
Median Type Storage				Left	Only							2	2			
Critical and Follow-up H	eadway	/s														
Base Critical Headway (sec)						4.1								7.1	6.5	6.2
Critical Headway (sec)						4.13		un-					23	7.13	6.53	6.23
Base Follow-Up Headway (sec)						2.2								3.5	4.0	3.3
Follow-Up Headway (sec)						2.23	1.1							3.53	4.03	3.33
Delay, Queue Length, an	d Level	of S	ervice													
Flow Rate, v (veh/h)						2								5		465
Capacity, c (veh/h)						615								189		955
v/c Ratio	ti)					0.00								0.03		0.49
95% Queue Length, Q ₉₅ (veh)		V. ST				0.0		851		1				0.1		2.7
Control Delay (s/veh)						10.9								24.6		12.3
Level of Service (LOS)						В								С		В
Approach Delay (s/veh)			-			0.	2							12	2.4	
Approach LOS		170				A							WITE	E	3	

HCS Two-Way Stop-Control Report **General Information Site Information** Analyst SAS Intersection UVP/US 101 SB RAMPS Agency/Co. ATE Jurisdiction SANTA MARIA **Date Performed** 1/5/2022 East/West Street Analysis Year 2019 North/South Street US 101 SB RAMPS Time Analyzed AM PEAK HOUR Peak Hour Factor 0.92 Intersection Orientation East-West Analysis Time Period (hrs) 0.25 **Project Description EXISTING + PROJECT CONDITIONS**

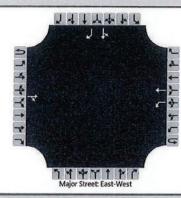
Lanes



Only used bs% of SB right-turn volume

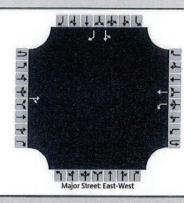
Approach		Easth	oound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	0	0		0	1	1
Configuration				TR		L	Т							LT		F
Volume (veh/h)		EAE	980	131		2	108							1	4	45
Percent Heavy Vehicles (%)						3								3	3	3
Proportion Time Blocked						Long is						7				
Percent Grade (%)														-	0	
Right Turn Channelized		10.00												١	No	
Median Type Storage				Left	Only								2			
		1 626		17/2012							TO USE					
Critical and Follow-up H	eadway	S														
Critical and Follow-up H Base Critical Headway (sec)	eadway	/S				4.1								7.1	6.5	6.
	eadway	/S				4.1								7.1 7.13	6.53	
Base Critical Headway (sec)	eadway	/s													1000	6.2
Base Critical Headway (sec) Critical Headway (sec)	eadway	/S				4.13								7.13	6.53	6.2 3.3 3.3
Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec)			ervice			4.13 2.2								7.13 3.5	6.53 4.0	6.2 3.:
Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec)			ervice			4.13 2.2								7.13 3.5	6.53 4.0	6.2 3.3
Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an			ervice			4.13 2.2 2.23								7.13 3.5 3.53	6.53 4.0	6.2 3.3 3.3
Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an			ervice			4.13 2.2 2.23 2								7.13 3.5 3.53	6.53 4.0	6.2 3.3 3.3 49
Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Pelay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h)			ervice			4.13 2.2 2.23 2 574								7.13 3.5 3.53 5 166	6.53 4.0	6.2 3.3 3.3
Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Delay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio			ervice			2.2 2.23 2 574 0.00								7.13 3.5 3.53 5 166 0.03	6.53 4.0	6.2 3. 3.3 49 93 0.5
Base Critical Headway (sec) Critical Headway (sec) Base Follow-Up Headway (sec) Follow-Up Headway (sec) Pelay, Queue Length, an Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q ₉₅ (veh)			ervice			2.2 2.23 2 574 0.00 0.0								7.13 3.5 3.53 5 166 0.03 0.1	6.53 4.0	6.2 3. 3.3 49 93 0.5 3.

HCS Two-Way Stop-Control Report **General Information Site Information** Analyst SAS Intersection UVP/US 101 SB RAMPS ATE Agency/Co. Jurisdiction SANTA MARIA Date Performed 1/5/2022 East/West Street UVP Analysis Year 2019 North/South Street US 101 SB RAMPS Time Analyzed AM PEAK HOUR Peak Hour Factor 0.92 Intersection Orientation East-West Analysis Time Period (hrs) 0.25 **Project Description CUMULATIVE CONDITIONS**


Lanes

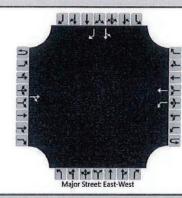
Vehicle Volumes and Ad	justme	nts														
Approach		East	bound			West	bound			North	bound		T	South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	Т	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	0	0	No.	0	1	1
Configuration				TR		L	Т							LT		R
Volume (veh/h)			976	121		2	116							1	4	471
Percent Heavy Vehicles (%)						3								3	3	3
Proportion Time Blocked																
Percent Grade (%)							20-11-200								0	
Right Turn Channelized			A STATE											١	No	
Median Type Storage				Left	Only								2			
Critical and Follow-up H	eadway	/S														
Base Critical Headway (sec)						4.1								7.1	6.5	6.2
Critical Headway (sec)						4.13						6		7.13	6.53	6.23
Base Follow-Up Headway (sec)						2.2								3.5	4.0	3.3
Follow-Up Headway (sec)						2.23				,				3.53	4.03	3.33
Delay, Queue Length, an	d Level	of S	ervice													
Flow Rate, v (veh/h)						2								5		512
Capacity, c (veh/h)						582							TEN	168		922
v/c Ratio						0.00								0.03		0.56
95% Queue Length, Q ₉₅ (veh)						0.0								0.1		3.5
Control Delay (s/veh)						11.2								27.2		13.7
Level of Service (LOS)			В					Towns.			D		В			
Approach Delay (s/veh)						0.	.2							13	3.8	
Approach LOS						1	1	10.00			NA COL			-	3	

HCS Two-Way Stop-Control Report **General Information Site Information** Analyst SAS Intersection UVP/US 101 SB RAMPS Agency/Co. ATE Jurisdiction SANTA MARIA Date Performed 1/5/2022 East/West Street Analysis Year 2019 North/South Street US 101 SB RAMPS Time Analyzed AM PEAK HOUR Peak Hour Factor 0.92 Intersection Orientation East-West Analysis Time Period (hrs) 0.25 **Project Description** CUMULATIVE + PROJECT CONDITIONS


Lanes

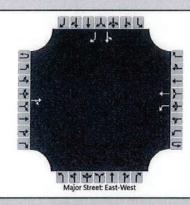
Approach		East	bound			West	bound			North	bound			South	nbound	
Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	0	0		0	1	1
Configuration				TR		L	Т	-						LT		F
Volume (veh/h)			1024	145		2	134							1	4	49
Percent Heavy Vehicles (%)						3								3	3	3
Proportion Time Blocked																
Percent Grade (%)															0	
Right Turn Channelized														١	No	
Median Type Storage		Left O										;	2			
Critical and Follow-up H	eadway	/s														
Base Critical Headway (sec)						4.1								7.1	6.5	6.
Critical Headway (sec)						4,13								7.13	6.53	6.2
Base Follow-Up Headway (sec)						2.2								3.5	4.0	3.
Follow-Up Headway (sec)					1	2.23								3.53	4.03	3.3
Delay, Queue Length, an	d Level	of S	ervice													
Flow Rate, v (veh/h)						2								5		53
Capacity, c (veh/h)					10/28 1	543								148		89
v/c Ratio						0.00								0.04		0.6
95% Queue Length, Q ₉₅ (veh)						0.0								0.1		4.1
Control Delay (s/veh)						11.7								30.3		14.
Level of Service (LOS)			Town Town	10.5		В								D		В
Approach Delay (s/veh)						0.	2			-				14	1.9	
Approach LOS						F							Marine.		3	

HCS Two-Way Stop-Control Report **General Information** Site Information Analyst SAS Intersection UVP/US 101 SB RAMPS Agency/Co. ATE Jurisdiction SANTA MARIA **Date Performed** 1/5/2022 East/West Street Analysis Year 2019 North/South Street US 101 SB RAMPS Time Analyzed PM PEAK HOUR Peak Hour Factor 0.92 Intersection Orientation East-West Analysis Time Period (hrs) 0.25 **Project Description EXISTING CONDITIONS**


Lanes

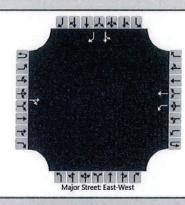
Vehicle Volumes and Ad	justme	nts														
Approach		East	bound			West	bound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0	4 97	0	0	0		0	1	1
Configuration				TR		L	Т							LT		R
Volume (veh/h)			729	55		3	109							2	2	532
Percent Heavy Vehicles (%)						3								3	3	3
Proportion Time Blocked											DV. N	W.				
Percent Grade (%)															0	
Right Turn Channelized													133	١	10	
Median Type Storage				Left	Only								2			
Critical and Follow-up H	eadway	/S														
Base Critical Headway (sec)	T					4.1								7.1	6.5	6.2
Critical Headway (sec)						4.13								7.13	6.53	6.23
Base Follow-Up Headway (sec)						2,2								3.5	4.0	3.3
Follow-Up Headway (sec)						2.23								3.53	4.03	3.33
Delay, Queue Length, an	d Level	of S	ervice													
Flow Rate, v (veh/h)						3								4		578
Capacity, c (veh/h)						782								292		931
v/c Ratio						0.00								0.01		0.62
95% Queue Length, Q ₉₅ (veh)						0.0								0.0		4.5
Control Delay (s/veh)						9.6								17.5		15.0
Level of Service (LOS)						Α							Santa I	С		В
Approach Delay (s/veh)					0.	3							15	0.0		
Approach LOS						1	1	Wat ou						(47	

HCS Two-Way Stop-Control Report General Information Site Information Analyst SAS Intersection UVP/US 101 SB RAMPS ATE Agency/Co. Jurisdiction SANTA MARIA Date Performed 1/5/2022 East/West Street Analysis Year 2019 North/South Street US 101 SB RAMPS Time Analyzed PM PEAK HOUR Peak Hour Factor 0.92 Intersection Orientation East-West Analysis Time Period (hrs) 0.25 **Project Description EXISTING + PROJECT CONDITIONS**

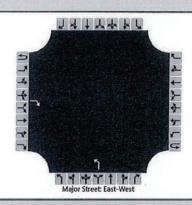

Lanes

Approach	T	Facti	oound	No. of Contract of	T	Most	bound	STATE OF		North	bound		The state of the s	South	bound	
	-						_									T
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	0	0		0	1	1
Configuration				TR		L	Т							LT		R
Volume (veh/h)			759	70		3	128							2	2	55
Percent Heavy Vehicles (%)						3								3	3	3
Proportion Time Blocked																
Percent Grade (%)														10	0	
Right Turn Channelized														N	10	100
Median Type Storage		Left O			Only								2			
Critical and Follow-up H	eadway	/S														
Base Critical Headway (sec)						4.1								7.1	6.5	6.2
Critical Headway (sec)						4.13								7.13	6.53	6.2
Base Follow-Up Headway (sec)						2.2								3.5	4.0	3.3
Follow-Up Headway (sec)						2.23								3.53	4.03	3,3
Delay, Queue Length, an	d Level	of Se	ervice										200			
Flow Rate, v (veh/h)						3								4		605
Capacity, c (veh/h)						750		T I						271		906
v/c Ratio						0.00								0.02		0.67
95% Queue Length, Q ₉₅ (veh)						0.0								0.0		5.3
Control Delay (s/veh)						9.8								18.5		16.0
Level of Service (LOS)						Α								С		С
Approach Delay (s/veh)						0	2							16	5.6	
Approach LOS						-	1							(

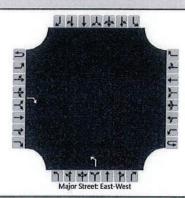
HCS Two-Way Stop-Control Report **General Information Site Information** Analyst SAS Intersection UVP/US 101 SB RAMPS Agency/Co. ATE Jurisdiction SANTA MARIA Date Performed 1/5/2022 East/West Street Analysis Year 2019 North/South Street US 101 SB RAMPS Time Analyzed PM PEAK HOUR Peak Hour Factor 0.92 Intersection Orientation East-West Analysis Time Period (hrs) 0.25 **Project Description CUMULATIVE CONDITIONS**


Lanes

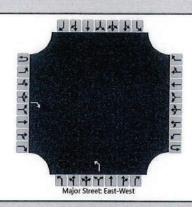
Approach		East	oound			West	bound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	T	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	0	0		0	1	1
Configuration				TR		L	Т							LT		R
Volume (veh/h)			782	75		3	124							2	2	563
Percent Heavy Vehicles (%)						3								3	3	3
Proportion Time Blocked																
Percent Grade (%)															0	
Right Turn Channelized														١	No	
Median Type Storage				Left	Only							- 1	2			
Critical and Follow-up H	eadway	/s														
Base Critical Headway (sec)						4.1								7.1	6.5	6.2
Critical Headway (sec)					12	4.13							A Sharp	7.13	6.53	6.23
Base Follow-Up Headway (sec)						2.2								3.5	4.0	3.3
Follow-Up Headway (sec)						2.23								3.53	4.03	3.33
Delay, Queue Length, an	d Level	of S	ervice													
Flow Rate, v (veh/h)					•	3								4		612
Capacity, c (veh/h)						730								262		911
v/c Ratio						0.00								0.02		0.67
95% Queue Length, Q ₉₅ (veh)						0.0								0.1		5.4
Control Delay (s/veh)						10.0								19.0		16.6
Level of Service (LOS)				Α								С		С		
Approach Delay (s/veh)						0	.2							16	5.6	
Approach LOS			DE NO		BIA.	-	1							(0	


HCS Two-Way Stop-Control Report **General Information Site Information** Analyst SAS Intersection UVP/US 101 SB RAMPS ATE Agency/Co. Jurisdiction SANTA MARIA **Date Performed** 1/5/2022 East/West Street Analysis Year 2019 North/South Street US 101 SB RAMPS Time Analyzed PM PEAK HOUR Peak Hour Factor 0.92 East-West Intersection Orientation Analysis Time Period (hrs) 0.25 **Project Description** CUMULATIVE + PROJECT CONDITIONS

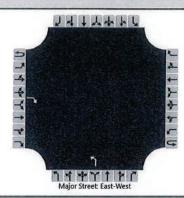
Lanes


Approach		East	bound			West	bound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	Т	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	0	0		0	1	1
Configuration				TR		L	Т							LT		R
Volume (veh/h)			812	90		3	143							2	2	588
Percent Heavy Vehicles (%)						3								3	3	3
Proportion Time Blocked		Taries.														
Percent Grade (%)											100000000000000000000000000000000000000				0	
Right Turn Channelized									S					١	No	
Median Type Storage				Left	Only								2			
Critical and Follow-up H	eadway	/S				N. P.										
Base Critical Headway (sec)						4.1								7.1	6.5	6.2
Critical Headway (sec)				Text!		4.13								7.13	6.53	6.23
Base Follow-Up Headway (sec)						2.2								3.5	4.0	3.3
Follow-Up Headway (sec)						2.23								3.53	4.03	3.33
Delay, Queue Length, an	d Level	of S	ervice													
Flow Rate, v (veh/h)						3								4		639
Capacity, c (veh/h)						700								243		888
v/c Ratio						0.00								0.02		0.72
95% Queue Length, Q ₉₅ (veh)						0.0								0.1		6.4
Control Delay (s/veh)						10.2								20.1		18.7
Level of Service (LOS)						В	-							С		С
Approach Delay (s/veh)						0	.2							18	3.7	
Approach LOS						1	1							(3	

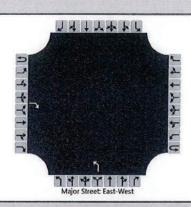
	HCS Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	SAS	Intersection	UVP/US 101 NB RAMPS
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	1/5/2022	East/West Street	UVP
Analysis Year	2019	North/South Street	US 101 NB RAMPS
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	EXISTING CONDITIONS		


Vehicle Volumes and Ad	justme	nts														
Approach		Eastl	oound			West	bound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	T	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	0	1	0	0	0	0		1	0	0		0	0	0
Configuration				R						L						
Volume (veh/h)				933					10.63	92						
Percent Heavy Vehicles (%)										3						
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized		١	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadway	/S										Av. III				
Base Critical Headway (sec)										6.4						
Critical Headway (sec)										5.76						
Base Follow-Up Headway (sec)										3.8						
Follow-Up Headway (sec)						Hotel A				3.83						
Delay, Queue Length, an	d Level	of Se	ervice													
Flow Rate, v (veh/h)	T									100						
Capacity, c (veh/h)										940						
v/c Ratio										0.11						
95% Queue Length, Q ₉₅ (veh)			Kel							0.4						
Control Delay (s/veh)										9.3				7/25		
Level of Service (LOS)										А				p Ca	Chief I	
Approach Delay (s/veh)										9.	3					
Approach LOS			7.17							A						

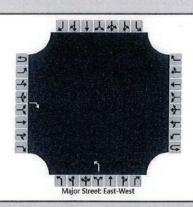
	HCS Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	SAS	Intersection	UVP/US 101 NB RAMPS
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	1/5/2022	East/West Street	UVP
Analysis Year	2019	North/South Street	US 101 NB RAMPS
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	EXISTING + PROJECT CONDITIO	NS	


Approach		Easth	oound			West	bound			North	oound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	0	1	0	0	0	0		1	0	0		0	0	0
Configuration				R						L						
Volume (veh/h)				981						110						
Percent Heavy Vehicles (%)										3						
Proportion Time Blocked																
Percent Grade (%)										0						
Right Turn Channelized		٨	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadway	/S														
Base Critical Headway (sec)	TI									6.4						
Critical Headway (sec)										5.76		3 3 3				
Base Follow-Up Headway (sec)										3.8						
Follow-Up Headway (sec)										3.83						
Delay, Queue Length, an	d Level	of Se	rvice													
Flow Rate, v (veh/h)	T									120						
Capacity, c (veh/h)										940						
v/c Ratio										0.13						
95% Queue Length, Q ₉₅ (veh)										0.4						
Control Delay (s/veh)										9.4						
Level of Service (LOS)		1							South	А				13.4		
Approach Delay (s/veh)										9.4						
Approach LOS								12000	300	A					200	

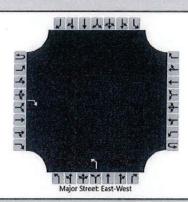
	HCS Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	SAS	Intersection	UVP/US 101 NB RAMPS
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	1/5/2022	East/West Street	UVP
Analysis Year	2019	North/South Street	US 101 NB RAMPS
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	CUMULATIVE CONDITIONS		


Vehicle Volumes and Ad	justme	nts														
Approach	1	Eastl	bound			West	bound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	Т	R	U	L	T	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	0	1	0	0	0	0		1	0	0		0	0	0
Configuration				R						L						
Volume (veh/h)				977						118						
Percent Heavy Vehicles (%)										3						
Proportion Time Blocked																
Percent Grade (%)				-						() -					
Right Turn Channelized		N	lo													
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadway	/s														
Base Critical Headway (sec)	T									6.4						
Critical Headway (sec)										5.76						
Base Follow-Up Headway (sec)										3.8						
Follow-Up Headway (sec)										3.83						
Delay, Queue Length, an	d Level	of Se	ervice													
Flow Rate, v (veh/h)										128						
Capacity, c (veh/h)										940						
v/c Ratio										0.14						
95% Queue Length, Q ₉₅ (veh)				8.814						0.5						
Control Delay (s/veh)			70000						4	9.4					10-2-17-20	
Level of Service (LOS)					1027					А		THE STREET				
Approach Delay (s/veh)			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							9.4	4					
Approach LOS	y I Zajou			III S						A	We de la la			E de la		

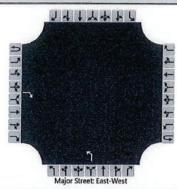
	HCS Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	SAS	Intersection	UVP/US 101 NB RAMPS
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	1/5/2022	East/West Street	UVP
Analysis Year	2019	North/South Street	US 101 NB RAMPS
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	CUMULATIVE + PROJECT COND	ITIONS	


Approach		Eastl	oound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	0	1	0	0	0	0		1	0	0		0	0	0
Configuration				R					2	L						
Volume (veh/h)				1025						136						
Percent Heavy Vehicles (%)										3						
Proportion Time Blocked				100										2 - 6		
Percent Grade (%)										()				Anna and an anna	
Right Turn Channelized		N	lo													
Median Type Storage				Undiv	rided											
Critical and Follow-up He	eadway	/s														
Base Critical Headway (sec)										6.4						
Critical Headway (sec)									10/10	5.76						
Base Follow-Up Headway (sec)										3.8						
Follow-Up Headway (sec)										3.83						
Delay, Queue Length, and	d Level	of Se	ervice	7.7					ZEJIN	1						
Flow Rate, v (veh/h)										148						
Capacity, c (veh/h)										940						
v/c Ratio										0.16						
95% Queue Length, Q ₉₅ (veh)		Na we								0.6						
Control Delay (s/veh)										9.5			and the second			
Level of Service (LOS)										Α			The sin			
Approach Delay (s/veh)					,					9.	5					
Approach LOS	1000				0.000		N. E. W. E.		100120	A						1000

	HCS Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	SAS	Intersection	UVP/US 101 NB RAMPS
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	1/5/2022	East/West Street	UVP
Analysis Year	2019	North/South Street	US 101 NB RAMPS
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	EXISTING CONDITIONS		***************************************

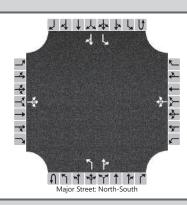

Vehicle Volumes and Ad	justme	nts														
Approach		Eastl	oound			West	bound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	0	1	0	0	0	0		1	0	0		0	0	0
Configuration				R						L						
Volume (veh/h)				731						112						
Percent Heavy Vehicles (%)										3						
Proportion Time Blocked																
Percent Grade (%)										()				-	
Right Turn Channelized		١	lo	unit V							the sale		7.76	No Tra		
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadway	/S														
Base Critical Headway (sec)										6.4						
Critical Headway (sec)						JIC 1				5.76						
Base Follow-Up Headway (sec)										3.8						
Follow-Up Headway (sec)										3.83						
Delay, Queue Length, an	d Level	of Se	ervice									1				
Flow Rate, v (veh/h)										122						
Capacity, c (veh/h)						Til				940						
v/c Ratio										0.13						
95% Queue Length, Q ₉₅ (veh)										0.4						
Control Delay (s/veh)										9.4						
Level of Service (LOS)										А						
Approach Delay (s/veh)					-		-			9.	4					
Approach LOS										A						

	HCS Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	SAS	Intersection	UVP/US 101 NB RAMPS
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	1/5/2022	East/West Street	UVP
Analysis Year	2019	North/South Street	US 101 NB RAMPS
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	EXISTING + PROJECT CONDITIO	NS	


Approach		Easth	oound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	0	1	0	0	0	0		1	0	0		0	0	0
Configuration				R						L						
Volume (veh/h)				761						131					R	
Percent Heavy Vehicles (%)										3						
Proportion Time Blocked									100			dist				
Percent Grade (%)										()					
Right Turn Channelized		١	lo			Yusti										
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadway	/s														
Base Critical Headway (sec)										6.4			1/1.7,227.3			
Critical Headway (sec)										5.76				100		
Base Follow-Up Headway (sec)										3.8						
Follow-Up Headway (sec)										3.83						
Delay, Queue Length, an	d Level	of Se	ervice								S. W. H.					
Flow Rate, v (veh/h)										142						
Capacity, c (veh/h)									113	940						
v/c Ratio										0.15						
95% Queue Length, Q ₉₅ (veh)										0.5			Media			
Control Delay (s/veh)										9.5						
Level of Service (LOS)										Α						
Approach Delay (s/veh)										9.	5					
Approach LOS										A					T.VI.	

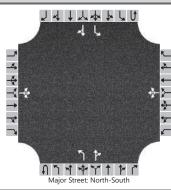
	HCS Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	SAS	Intersection	UVP/US 101 NB RAMPS
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	1/5/2022	East/West Street	UVP
Analysis Year	2019	North/South Street	US 101 NB RAMPS
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	CUMULATIVE CONDITIONS		

Approach		Easth	oound			West	bound			North	oound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	Т	F
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	1
Number of Lanes	0	0	0	1	0	0	0	0		1	0	0		0	0	0
Configuration				R						L						
Volume (veh/h)				784						127						
Percent Heavy Vehicles (%)										3						
Proportion Time Blocked																
Percent Grade (%)										0						
Right Turn Channelized		١	lo												3/8/	
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadway	/s														
Base Critical Headway (sec)										6.4						
Critical Headway (sec)										5.76	w it					
Base Follow-Up Headway (sec)										3.8						
Follow-Up Headway (sec)										3.83						
rollow-op Headway (Sec)					Page 1	NAME OF STREET		20120								
Delay, Queue Length, an	d Level	of Se	ervice													
	d Level	of Se	ervice							138						
Delay, Queue Length, an	d Level	of Se	ervice							138 940						
Delay, Queue Length, an Flow Rate, v (veh/h)	d Level	of Se	ervice													
Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h)	d Level	of Se	ervice							940						
Delay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio	d Level	of Se	ervice							940 0.15						
Pelay, Queue Length, and Flow Rate, v (veh/h) Capacity, c (veh/h) v/c Ratio 95% Queue Length, Q95 (veh)	d Level	of Se	ervice							940 0.15 0.5						


	HCS Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	SAS	Intersection	UVP/US 101 NB RAMPS
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	1/5/2022	East/West Street	UVP
Analysis Year	2019	North/South Street	US 101 NB RAMPS
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	CUMULATIVE + PROJECT COND	ITIONS	

Approach		East	oound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	0	1	0	0	0	0		1	0	0		0	0	0
Configuration				R						L						
Volume (veh/h)				814						146						
Percent Heavy Vehicles (%)										3						
Proportion Time Blocked																
Percent Grade (%)										0)					
Right Turn Channelized		١	lo							To Line						
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadway	/S				Falls.										
Base Critical Headway (sec)										6.4						
Critical Headway (sec)					TWE.					5.76						
Base Follow-Up Headway (sec)										3.8						
Follow-Up Headway (sec)									LIKE .	3.83						
Delay, Queue Length, an	d Level	of Se	ervice													
Flow Rate, v (veh/h)	T									159						
Capacity, c (veh/h)										940			Total Services			
v/c Ratio						. 153.7 11.5 15.7				0.17						
95% Queue Length, Q ₉₅ (veh)	T ATOMA I									0.6			Blog y		Tie!	
Control Delay (s/veh)										9.6						
Level of Service (LOS)					A S	W				Α						
Approach Delay (s/veh)										9.6	5				-	
Approach LOS				47.5				0.7.3		А						

	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	JH	Intersection	ORCUTT/PARCEL 1&2 DRIVEWAYS
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	9/27/22	East/West Street	PARCEL 1&2 DRIVEWAYS
Analysis Year	2022	North/South Street	ORCUTT ROAD
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	CUMULATIVE + PROJECT CONDTIONS		

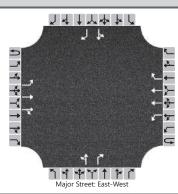

Vehicle Volumes and Ad	justme	nts														
Approach	T	Eastk	ound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	1	0	0	1	1	0	0	1	1	0
Configuration			LTR				LTR			L		TR		L		TR
Volume (veh/h)		4	0	72		82	0	21		75	41	142		26	78	5
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3		
Proportion Time Blocked																
Percent Grade (%)			0				0									
Right Turn Channelized																
Median Type Storage				Left	Only								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	T	7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1		
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13		
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2		
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23		
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)			76				103			75				26		
Capacity, c (veh/h)			947				598			1508				1386		
v/c Ratio			0.08				0.17			0.05				0.02		
95% Queue Length, Q ₉₅ (veh)			0.3				0.6			0.2				0.1		
Control Delay (s/veh)			9.1				12.3			7.5				7.6		
Level of Service (LOS)			А				В			А				А		
Approach Delay (s/veh)	9.1					12.3			2.2				1.8			•
Approach LOS	A B A A								Ą							

Copyright $\ensuremath{\mathbb{C}}$ 2022 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2022 Parcel 1_DrivewayAM_CUM+PROJ.xtw

Generated: 9/27/2022 11:38:45 AM

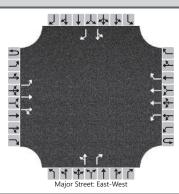
	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	JH	Intersection	ORCUTT/PARCEL 1&2 DRIVEWAYS
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	9/27/22	East/West Street	PARCEL 1&2 DRIVEWAYS
Analysis Year	2022	North/South Street	ORCUTT ROAD
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	1.00
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	CUMULATIVE + PROJECT CONDTIONS		


Vehicle Volumes and Ad	ustille																
Approach		Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	1	0		0	1	0	0	1	1	0	0	1	1	0	
Configuration			LTR				LTR			L		TR		L		TR	
Volume (veh/h)		3	0	55		67	0	17		56	43	105		20	57	3	
Percent Heavy Vehicles (%)		3	3	3		3	3	3		3				3			
Proportion Time Blocked																	
Percent Grade (%)			0			()										
Right Turn Channelized																	
Median Type Storage				Left	Only								1				
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)		7.1	6.5	6.2		7.1	6.5	6.2		4.1				4.1			
Critical Headway (sec)		7.13	6.53	6.23		7.13	6.53	6.23		4.13				4.13			
Base Follow-Up Headway (sec)		3.5	4.0	3.3		3.5	4.0	3.3		2.2				2.2			
Follow-Up Headway (sec)		3.53	4.03	3.33		3.53	4.03	3.33		2.23				2.23			
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)	\top		58				84			56				20			
Capacity, c (veh/h)			979				666			1537				1427			
v/c Ratio			0.06				0.13			0.04				0.01			
95% Queue Length, Q ₉₅ (veh)			0.2				0.4			0.1				0.0			
Control Delay (s/veh)			8.9				11.2			7.4				7.6			
Level of Service (LOS)			А				В		Ì	А				А			
Approach Delay (s/veh)		8	.9			1	1.2			2	.0		1.9				
Approach LOS	A B						A A										

Copyright $\ensuremath{\mathbb{C}}$ 2022 University of Florida. All Rights Reserved.

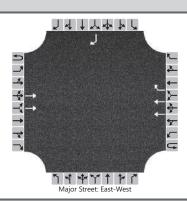
HCSTM TWSC Version 2022 Parcel 1_DrivewayPM_CUM+PROJ.xtw

Generated: 9/27/2022 11:39:44 AM


	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	GOM	Intersection	UVP/PARCEL 2 EASTERLY & PARCEL 4 DWYS
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	8/31/22	East/West Street	UVP
Analysis Year	2022	North/South Street	PARCEL 2 EASTERLY & PARCEL 4 DRIVEWAYS
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	CUMULATIVE + PROJECT CONDTIONS		

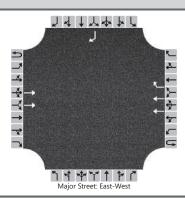
Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	1		0	1	1		0	1	1
Configuration		L	T	TR		L	Т	R		LT		R		LT		R
Volume (veh/h)	0	129	791	11	0	14	903	13		34	0	44		50	0	24
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										(0			(0	
Right Turn Channelized						Ν	lo			Ν	lo			Ν	lo	
Median Type Storage				Left	Only								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9
Critical Headway (sec)		4.16				4.16				7.56	6.56	6.96		7.56	6.56	6.96
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	\top	129				14				34		44		50		24
Capacity, c (veh/h)		734				811				142		596		158		552
v/c Ratio		0.18				0.02				0.24		0.07		0.32		0.04
95% Queue Length, Q ₉₅ (veh)		0.6				0.1				0.9		0.2		1.3		0.1
Control Delay (s/veh)		10.9				9.5				38.1		11.5		37.9		11.8
Level of Service (LOS)		В				А				Е		В		Е		В
Approach Delay (s/veh)		1.5						23.1 2			29	29.5				
Approach LOS		A A C								[D					

Copyright $\ensuremath{\mathbb{C}}$ 2022 University of Florida. All Rights Reserved.


	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	GOM	Intersection	UVP/PARCEL 2 EASTERLY & PARCEL 4 DWYS
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	8/31/22	East/West Street	UVP
Analysis Year	2022	North/South Street	PARCEL 2 EASTERLY & PARCEL 4 DRIVEWAYS
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	CUMULATIVE + PROJECT CONDTIONS		

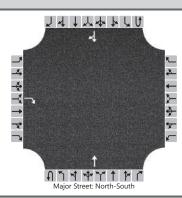
Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	1	2	0	0	1	2	1		0	1	1		0	1	1
Configuration		L	Т	TR		L	Т	R		LT		R		LT		R
Volume (veh/h)	0	95	1052	23	0	31	756	10		13	0	17		45	0	20
Percent Heavy Vehicles (%)	3	3			3	3				3	3	3		3	3	3
Proportion Time Blocked																
Percent Grade (%)										(0			(0	
Right Turn Channelized						Ν	lo			Ν	lo			Ν	lo	
Median Type Storage				Left	Only								1			
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.5	6.5	6.9		7.5	6.5	6.9
Critical Headway (sec)		4.16				4.16				7.56	6.56	6.96		7.56	6.56	6.96
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.23				2.23				3.53	4.03	3.33		3.53	4.03	3.33
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Т	95				31				13		17		45		20
Capacity, c (veh/h)		837				638				123		485		170		617
v/c Ratio		0.11				0.05				0.11		0.04		0.27		0.03
95% Queue Length, Q ₉₅ (veh)		0.4				0.2				0.3		0.1		1.0		0.1
Control Delay (s/veh)		9.9				10.9				37.8		12.7		33.7		11.0
Level of Service (LOS)	Ì	А			Ì	В				Е		В		D		В
Approach Delay (s/veh)		0	.8			0	.4			23	3.6			26	6.7	
Approach LOS		A A C D									D					

Copyright $\ensuremath{\mathbb{C}}$ 2022 University of Florida. All Rights Reserved.


	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	JH	Intersection	UVP/PARCEL 2 WESTERLY DRIVEWAY
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	9/27/22	East/West Street	UVP
Analysis Year	2022	North/South Street	PARCEL 2 WESTERLY DRIVEWAY
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	CUMULATIVE + PROJECT CONDTIONS		

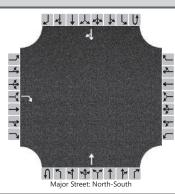
Vehicle Volumes and Ad	justme	nts															
Approach		Eastk	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	0	2	1		0	0	0		0	0	1	
Configuration			Т				Т	R								R	
Volume (veh/h)			931				837	124								204	
Percent Heavy Vehicles (%)																3	
Proportion Time Blocked																	
Percent Grade (%)														(0		
Right Turn Channelized						Υ	es							Ν	lo		
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)																6.9	
Critical Headway (sec)																6.96	
Base Follow-Up Headway (sec)																3.3	
Follow-Up Headway (sec)																3.33	
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)																204	
Capacity, c (veh/h)																581	
v/c Ratio																0.35	
95% Queue Length, Q ₉₅ (veh)																1.6	
Control Delay (s/veh)																14.5	
Level of Service (LOS)																В	
Approach Delay (s/veh)														14.5			
Approach LOS													В				

Generated: 9/27/2022 10:56:34 AM


	HCS Two-Way Stop	-Control Report	
General Information		Site Information	
Analyst	JH	Intersection	UVP/PARCEL 2 WESTERLY DRIVEWAY
Agency/Co.	ATE	Jurisdiction	SANTA MARIA
Date Performed	9/27/22	East/West Street	UVP
Analysis Year	2022	North/South Street	PARCEL 2 WESTERLY DRIVEWAY
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	1.00
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	CUMULATIVE + PROJECT CONDTIONS		

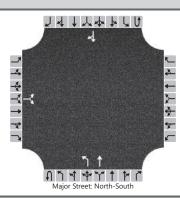
Approach		Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	2	0	0	0	2	1		0	0	0		0	0	1	
Configuration			Т				Т	R								R	
Volume (veh/h)			1170				694	95								170	
Percent Heavy Vehicles (%)																3	
Proportion Time Blocked																	
Percent Grade (%)														(0		
Right Turn Channelized						Y	es							Ν	lo		
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)																6.9	
Critical Headway (sec)																6.96	
Base Follow-Up Headway (sec)																3.3	
Follow-Up Headway (sec)																3.33	
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)	$\overline{}$															170	
Capacity, c (veh/h)																646	
v/c Ratio																0.26	
95% Queue Length, Q ₉₅ (veh)																1.1	
Control Delay (s/veh)																12.5	
Level of Service (LOS)																В	
Approach Delay (s/veh)														12.5			
Approach LOS												В					

Generated: 9/27/2022 10:57:15 AM


	HCS Two-Way Stop	p-Control Report								
General Information		Site Information								
Analyst	JH	Intersection	ORCUTT/PARCEL 3 NORTH DRIVEWAY							
Agency/Co.	ATE	Jurisdiction	SANTA MARIA							
Date Performed	9/27/22	East/West Street	PARCEL 3 NORTH DRIVEWAY							
Analysis Year	2022	North/South Street	ORCUTT ROAD							
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	1.00							
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25							
Project Description	CUMULATIVE + PROJECT CONDTIONS									

Vehicle Volumes and Adj	ustme	nts															
Approach		Eastb	ound			Westl	oound			North	bound			South	bound		
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	1		0	0	0	0	0	1	0	0	0	1	0	
Configuration				R							Т					TR	
Volume (veh/h)				2							414				203	68	
Percent Heavy Vehicles (%)				3													
Proportion Time Blocked																	
Percent Grade (%)			0														
Right Turn Channelized		Ν	10														
Median Type Storage				Undi	vided												
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)				6.2													
Critical Headway (sec)				6.23													
Base Follow-Up Headway (sec)				3.3													
Follow-Up Headway (sec)				3.33													
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)				2													
Capacity, c (veh/h)				800													
v/c Ratio				0.00													
95% Queue Length, Q ₉₅ (veh)				0.0													
Control Delay (s/veh)				9.5													
Level of Service (LOS)				А													
Approach Delay (s/veh)		9.5															
Approach LOS		А															

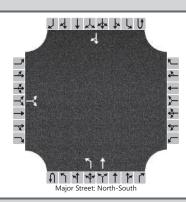
Generated: 9/27/2022 10:03:19 AM


HCS Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	JH	Intersection	ORCUTT/PARCEL 3 NORTH DRIVEWAY									
Agency/Co.	ATE	Jurisdiction	SANTA MARIA									
Date Performed	9/27/22	East/West Street	PARCEL 3 NORTH DRIVEWAY									
Analysis Year	2022	North/South Street	ORCUTT ROAD									
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	1.00									
Intersection Orientation	North-South	Analysis Time Period (hrs) 0.25										
Project Description CUMULATIVE + PROJECT CONDTIONS												

A	$\overline{}$	Facili	ound		T T	14/	oound		Northbound				Southbound				
Approach	_	Easto				vvesti				North	bouna						
Movement	U	L	Т	R	U	L	T	R	U	L	T	R	U	L	T	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	1		0	0	0	0	0	1	0	0	0	1	0	
Configuration				R							Т					TR	
Volume (veh/h)				0							203				202	38	
Percent Heavy Vehicles (%)				3													
Proportion Time Blocked																	
Percent Grade (%)			0														
Right Turn Channelized		No															
Median Type Storage				Undi	vided												
Critical and Follow-up H	eadwa	ys															
Base Critical Headway (sec)	T			6.2													
Critical Headway (sec)				6.23													
Base Follow-Up Headway (sec)				3.3													
Follow-Up Headway (sec)				3.33													
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)	Т			0													
Capacity, c (veh/h)				816													
v/c Ratio				0.00													
95% Queue Length, Q ₉₅ (veh)				0.0													
Control Delay (s/veh)				9.4													
Level of Service (LOS)				А													
Approach Delay (s/veh)																	
Approach LOS																	

Generated: 9/27/2022 10:00:59 AM

HCS Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	JH	Intersection	ORCUTT/PARCEL 3 SOUTH DRIVEWAY									
Agency/Co.	ATE	Jurisdiction	SANTA MARIA									
Date Performed	9/27/22	East/West Street	PARCEL 3 SOUTH DRIVEWAY									
Analysis Year	2022	North/South Street	ORCUTT ROAD									
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	1.00									
Intersection Orientation	North-South	Analysis Time Period (hrs) 0.25										
Project Description CUMULATIVE + PROJECT CONDTIONS												

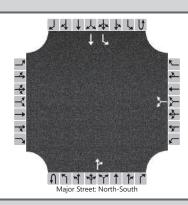


Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	L T R			L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	1	0	0	0	1	0
Configuration			LR							L	Т					TR
Volume (veh/h)		65		2						4	349				205	0
Percent Heavy Vehicles (%)		3		3						3						
Proportion Time Blocked																
Percent Grade (%)		0														
Right Turn Channelized																
Median Type Storage		Left Only								1						
Critical and Follow-up H	leadwa	ys														
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						
Delay, Queue Length, ar	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)			67							4						
Capacity, c (veh/h)			570							1360						
v/c Ratio			0.12							0.00						
95% Queue Length, Q ₉₅ (veh)			0.4							0.0						
Control Delay (s/veh)			12.2							7.7						
Level of Service (LOS)			В							А						
Approach Delay (s/veh)		12	2.2	-				0.1						_		
11 7 1 7			В										A			

Copyright $\ensuremath{\mathbb{C}}$ 2022 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2022
Parcel 3_SOUTH_DrivewayAM_CUM+PROJ.xtw

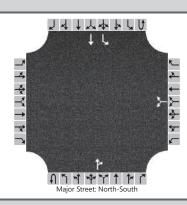
HCS Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	JH	Intersection	ORCUTT/PARCEL 3 SOUTH DRIVEWAY									
Agency/Co.	ATE	Jurisdiction	SANTA MARIA									
Date Performed	9/27/22	East/West Street	PARCEL 3 SOUTH DRIVEWAY									
Analysis Year	2022	North/South Street	ORCUTT ROAD									
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	1.00									
Intersection Orientation	North-South	Analysis Time Period (hrs) 0.25										
Project Description CUMULATIVE + PROJECT CONDTIONS												


Vehicle Volumes and Ad	justme	nts														
Approach		Eastk	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	U L T R U L T R				U	L	Т	R			
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	1	0	0	0	1	0
Configuration			LR							L	Т					TR
Volume (veh/h)		35		2						2	168				202	0
Percent Heavy Vehicles (%)		3		3						3						
Proportion Time Blocked																
Percent Grade (%)		0														
Right Turn Channelized																
Median Type Storage		Left Only								1						
Critical and Follow-up H	leadwa	ys														
Base Critical Headway (sec)		7.1		6.2						4.1						
Critical Headway (sec)		6.43		6.23						4.13						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.53		3.33						2.23						
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)			37							2						
Capacity, c (veh/h)			676							1364						
v/c Ratio			0.05							0.00						
95% Queue Length, Q ₉₅ (veh)		Ì	0.2							0.0			Ì			
Control Delay (s/veh)			10.6							7.6						
Level of Service (LOS)			В							А						
Approach Delay (s/veh)		1(0.6					0.1					•			
Approach LOS	İ		В							A	A					

Copyright $\ensuremath{\mathbb{C}}$ 2022 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2022
Parcel 3_SOUTH_DrivewayPM_CUM+PROJ.xtw

Generated: 9/27/2022 9:59:06 AM


HCS Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	JH	Intersection	ORCUTT/PARCEL 5 DRIVEWAY								
Agency/Co.	ATE	Jurisdiction	SANTA MARIA								
Date Performed	9/27/22	East/West Street	PARCEL 5 DRIVEWAY								
Analysis Year	2022	North/South Street	ORCUTT ROAD								
Time Analyzed	AM PEAK HOUR	Peak Hour Factor	1.00								
Intersection Orientation	North-South	Analysis Time Period (hrs) 0.25									
Project Description CUMULATIVE + PROJECT CONDTIONS											

Vehicle Volumes and Ad	justme	nts														
Approach		Eastk	oound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	1	1	0
Configuration							LR					TR		L	Т	
Volume (veh/h)						3		39			314	1		12	194	
Percent Heavy Vehicles (%)						3		3						3		
Proportion Time Blocked																
Percent Grade (%)		0														
Right Turn Channelized																
Median Type Storage		Left Only 1						1								
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.43		6.23						4.13		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)							42							12		
Capacity, c (veh/h)							711							1240		
v/c Ratio							0.06							0.01		
95% Queue Length, Q ₉₅ (veh)							0.2							0.0		
Control Delay (s/veh)							10.4							7.9		
Level of Service (LOS)							В							А		
Approach Delay (s/veh)					10.4								0.5			
Approach LOS							В						А			

Copyright $\ensuremath{\mathbb{C}}$ 2022 University of Florida. All Rights Reserved.

HCS Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	JH	Intersection	ORCUTT/PARCEL 5 DRIVEWAY								
Agency/Co.	ATE	Jurisdiction	SANTA MARIA								
Date Performed	9/27/22	East/West Street	PARCEL 5 DRIVEWAY								
Analysis Year	2022	North/South Street	ORCUTT ROAD								
Time Analyzed	PM PEAK HOUR	Peak Hour Factor	1.00								
Intersection Orientation	North-South	Analysis Time Period (hrs) 0.25									
Project Description CUMULATIVE + PROJECT CONDTIONS											

Vehicle Volumes and Ad	justme	nts														
Approach		Eastk	oound			Westl	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	1	1	0
Configuration							LR					TR		L	Т	
Volume (veh/h)						2		16			154	2		27	177	
Percent Heavy Vehicles (%)						3		3						3		
Proportion Time Blocked																
Percent Grade (%)		0														
Right Turn Channelized																
Median Type Storage	Left Only 1															
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						7.1		6.2						4.1		
Critical Headway (sec)						6.43		6.23						4.13		
Base Follow-Up Headway (sec)						3.5		3.3						2.2		
Follow-Up Headway (sec)						3.53		3.33						2.23		
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)							18							27		
Capacity, c (veh/h)							854							1418		
v/c Ratio							0.02							0.02		
95% Queue Length, Q ₉₅ (veh)							0.1							0.1		
Control Delay (s/veh)							9.3							7.6		
Level of Service (LOS)							А							А		
Approach Delay (s/veh)						9	.3						1.0			
Approach LOS							A						A			

Copyright $\ensuremath{\mathbb{C}}$ 2022 University of Florida. All Rights Reserved.

HCSTM TWSC Version 2022
Parcel 5_DrivewayPM_CUM+PROJ.xtw

Generated: 9/27/2022 9:57:49 AM

Since 1978

Richard L. Pool, P.E. Scott A. Schell

December 1, 2022 21069L02

Richards Ranch, LLC Re: Michael Stoltey, Managing Member San Luis Obispo, CA

SUPPLEMENTAL TRAFFIC MITIGATION ANALYSIS FOR THE RICHARDS RANCH PROJECT, CITY OF SANTA MARIA

Associated Transportation Engineers (ATE) has prepared the following supplemental traffic mitigation analysis for the Richards Ranch Project (the "Project"). The supplemental analysis provides additional information on the improvements identified for the UVP/Hummel Drive intersection.

INTRODUCTION

The traffic study completed by ATE for the Richards Ranch Project¹ contained an analysis of the future long-term improvements at the UVP/Hummel Drive intersection that included widening of the UVP to its ultimate 4-lane configuration and installation of traffic signals. City staff requested that this analysis be expanded to include an evaluation of the interim improvement plan which includes installation of traffic signals and no widening of the UVP.

UVP/HUMMEL DRIVE INTERSECTION

Interim Improvements

The interim improvement plan for the UVP/Hummel Drive intersection would include installation of traffic signals at the existing intersection with no widening of the UVP at the intersection. Figure 1 (attached) provides a schematic illustration of the interim intersection design without the UVP widening. Table 1 presents the Existing + Project and Cumulative + Project levels of service forecasts for the intersection assuming implementation of the interim improvements (LOS calculations attached).

_

¹ Updated Traffic and Circulation Study for the Richards Ranch Project, ATE, October 7, 2022.

Table 1
Intersection Levels of Service With Interim Improvements

	Existing + F	Project	- Project	
		With		With
Intersection	Existing Geometry	Improvements	Existing Geometry	Improvements
UVP/Hummel Drive AM(a)	>50.0 sec. / LOS F	0.71 / LOS C	>50.0 sec / LOS F	0.75 / LOS C
UVP/Hummel Drive PM(a)	>50.0 sec. / LOS F	0.79 / LOS C	>50.0 sec / LOS F	0.86 / LOS D

⁽a) Assumes traffic signal installation and no UVP widening.

The data presented in Table 1 show that with the interim improvements, the UVP/Hummel Drive intersection will operate in the LOS C range with Existing + Project volumes. Under Cumulative conditions, the intersection operations would degrade to LOS D during the PM peak hour indicating that the long-term improvements would be required as cumulative buildout occurs in the area.

Long-Term Plan

County staff have indicated that the ultimate plan for the UVP adjacent to the Hummel Drive intersection is to widen UVP from two lanes to four lanes with left-turn channelization. This widening will occur west of Hummel Drive to match the four lanes in front of the Project site. In addition, County staff indicated that traffic signals would be installed at the UVP/Hummel Drive intersection in the future. Figure 2 provides a schematic illustration of the future intersection design with the widening. Table 2 presents the Existing + Project and Cumulative + Project levels of service forecasts for the intersection assuming implementation of the long-term improvements (LOS calculations attached).

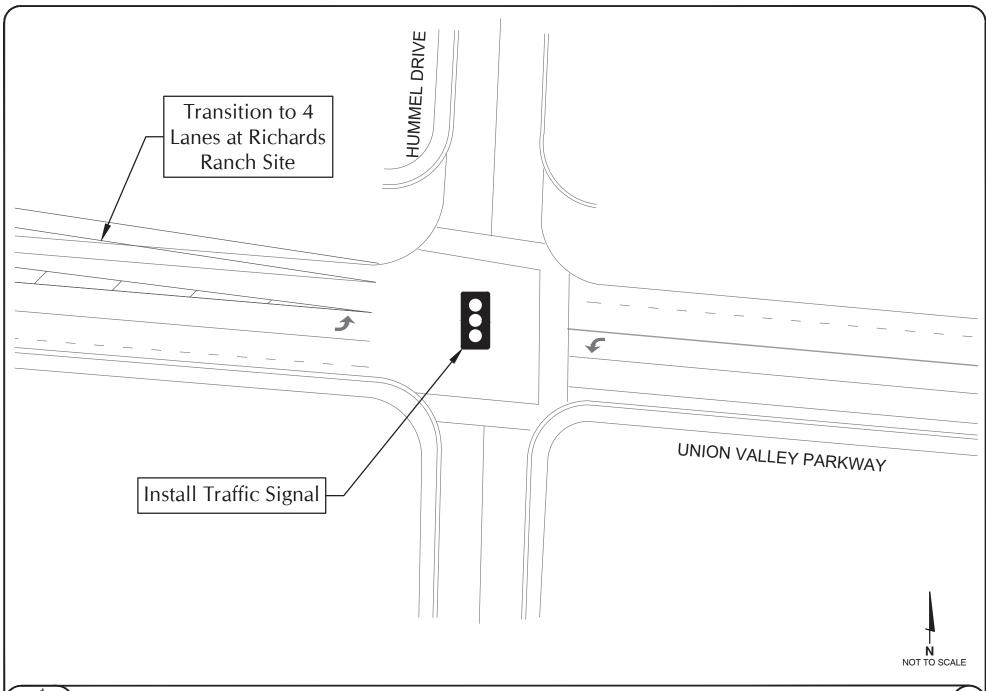
Table 2
Intersection Levels of Service With Long-Term Improvements

	Existing + F	Project	- Project	
		With		With
Intersection	Existing Geometry	Improvements	Existing Geometry	Improvements
UVP/Hummel Drive AM(a)	>50.0 sec. / LOS F	0.47 / LOS A	>50.0 sec / LOS F	0.49 / LOS A
UVP/Hummel Drive PM(a)	>50.0 sec. / LOS F	0.49 / LOS A	>50.0 sec / LOS F	0.52 / LOS A

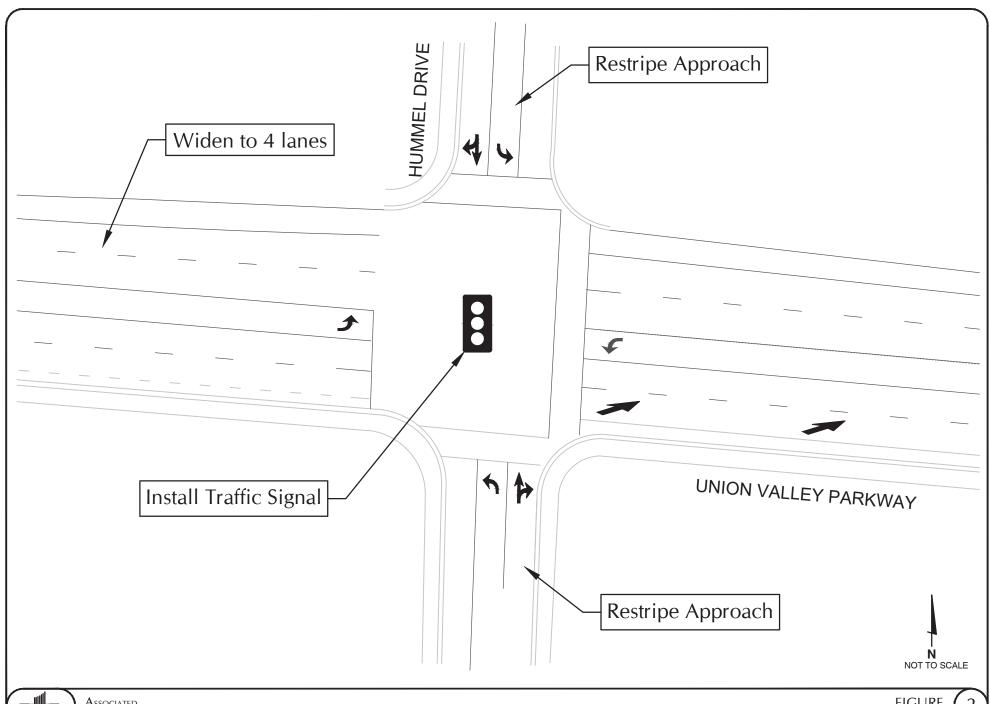
⁽b) Assumes UVP widening and traffic signal installation.

The data presented in Table 2 show that with the long-term improvements, the UVP/Hummel Drive intersection will operate in the LOS A range.

This concludes ATE's supplemental Traffic Mitigation analysis for the Richards Ranch Project.


Associated Transportation Engineers

By: Scott A. Schell


Principal Transportation Planner

Sut A Se

Attachments

FIGURE

FIGURE

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE: 04/27/2022

TIME PERIOD: AM PEAK HOUR

N/S STREET: HUMMEL DRIVE

E/W STREET: **UVP**

CONTROL TYPE: SIGNAL - WITH INTERIM IMPROVEMENTS

TRAFFIC VOLUME SUMMARY													
		SOUTH BOUND			EAST BOUND			WE)				
VOLU	L	T	R	L	Т	R	L	T	R	L	T	R	
(A) (B)	EXISTING: PROJECT-ADDED:	26 14	36 0	86 0	25 0	27 0	18 14	18 14	633 120	23 14	41 0	638 104	10 0
(C)	CUMULATIVE:	26	36	86	25	27	18	18	696	24	41	755	10

REF: 06 AM

GEOMETRICS

NORTH BOUND SOUTH BOUND EAST BOUND WEST BOUND LANE GEOMETRICS L TR L TR L TR L TR

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES(A + B)

SCENARIO 3 = SHORT-TERM CUMULATIVE (C)

SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

LEVEL OF SERVICE CALCULATIONS													
MOVE-	# OF			SCEN	NARIO V	OLUMES	SCENARIO V/C RATIOS						
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4			
NBL	1 1	1600	26	40	26	40	0.016	0.025	0.016	0.025			
NBT	1 1	1600	36	36	36	36	0.076 *	0.076 *	0.076 *	0.076 *			
NBR (a)	0	0	86	86	86	86	-	-	-	-			
SBL	1 1	1600	25	25	25	25	0.016 *	0.016 *	0.016 *	0.016 *			
SBT	1 1	1600	27	27	27	27	0.028	0.037	0.028	0.037			
SBR (b)	0	0	18	32	18	32	-	-	-	-			
EBL	1 1	1600	18	32	18	32	0.011	0.020	0.011	0.020			
EBT	1 1	1600	633	753	696	816	0.410 *	0.494 *	0.450 *	0.534 *			
EBR (c)	0	0	23	37	24	38	-	-	-	-			
WBL	1 1	1600	41	41	41	41	0.026 *	0.026 *	0.026 *	0.026 *			
WBT	1 1	1600	638	742	755	859	0.405	0.470	0.478	0.543			
WBR (d)	0	0	10	10	10	10	-	-	-	-			
						LOST TIME:	0.100 *	0.100 *	0.100 *	0.100 *			
		TOT	ITY UTILIZATION:	0.628	0.712	0.668	0.752						
			В	С	В	С							
NOTES							ļ.						

NOTES:

RTOR: (a)

(b)

(c)

(d)

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE: 04/27/202
TIME PERIOD: AM PEAK HOUR
N/S STREET: HUMMEL DRIVE

E/W STREET: **UVP**

CONTROL TYPE: SIGNAL - WITH LONG-TERM IMPROVEMENTS

	TRAFFIC VOLUME SUMMARY												
		UND	SOUTH BOUND			EAST BOUND			WE	st bouni)		
VOL	JMES	L	T	R	L	Т	R	L	T	R	L	T	R
(A) (B)	EXISTING: PROJECT-ADDED:	26 14	36 0	86 0	25 0	27 0	18 14	18 14	633 120	23 14	41 0	638 104	10 0
(C)	CUMULATIVE:	26	36	86	25	27	18	18	696	24	41	755	10

REF: 06 AM

GEOMETRICS

NORTH BOUND SOUTH BOUND EAST BOUND WEST BOUND LANE GEOMETRICS L TR L TR L T TR L T TR

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES(A + B)

SCENARIO 3 = SHORT-TERM CUMULATIVE (C)

SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

LEVEL OF SERVICE CALCULATIONS												
MOVE-	# OF			SCEN	NARIO V	OLUMES			SCENARIO '	V/C RATIOS		
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4		
NBL	1	1600	26	40	26	40	0.016	0.025	0.016	0.025		
NBT	1	1600	36	36	36	36	0.076 *	0.076 *	0.076 *	0.076 *		
NBR (a)	0	0	86	86	86	86	-	-	-	-		
SBL	1	1600	25	25	25	25	0.016 *	0.016 *	0.016 *	0.016 *		
SBT	1 1	1600	27	27	27	27	0.028	0.037	0.028	0.037		
SBR (b)	0	0	18	32	18	32	-	-	-	-		
EBL	1	1600	18	32	18	32	0.011	0.020	0.011	0.020		
EBT	2	3200	633	753	696	816	0.205 *	0.247 *	0.225 *	0.267 *		
EBR (c)	0	0	23	37	24	38	-	-	-	-		
WBL	1	1600	41	41	41	41	0.026 *	0.026 *	0.026 *	0.026 *		
WBT	2	3200	638	742	755	859	0.203	0.235	0.239	0.272		
WBR (d)	0	0	10	10	10	10	-	-	-	-		
						LOST TIME:	0.100 *	0.100 *	0.100 *	0.100 *		
		тот	ITY UTILIZATION: OF SERVICE:	0.423 A	0.465 A	0.443 A	0.485 A					

NOTES:

RTOR: (a)

(b)

(c)

(d)

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE: 04/28/2022
TIME PERIOD: PM PEAK HOUR
N/S STREET: HUMMEL DRIVE

E/W STREET: **UVP**

CONTROL TYPE: SIGNAL - WITH INTERIM IMPROVEMENTS

TRAFFIC VOLUME SUMMARY													
NORTH BOUND SOUTH BOUND EAST BOUND WEST BOUND)		
VOLU	JMES	L	Т	R	L	T	R	L	T	R	L	T	R
(A)	EXISTING:	20	19	38	12	21	8	24	828	43	66	559	23
(B)	PROJECT-ADDED:	12	0	0	0	0	11	11	85	11	0	99	0
(C)	CUMULATIVE:	20	19	38	12	21	8	24	940	43	66	646	23

REF: 06 PM

GEOMETRICS

NORTH BOUND SOUTH BOUND EAST BOUND WEST BOUND LANE GEOMETRICS L TR L TR L TR L TR

TRAFFIC SCENARIOS

SCENARIO 1 = EXISTING VOLUMES (A)

SCENARIO 2 = EXISTING + PROJECT VOLUMES(A + B)

SCENARIO 3 = SHORT-TERM CUMULATIVE (C)

SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

LEVEL OF SERVICE CALCULATIONS													
MOVE-	# OF			SCEN	NARIO V	OLUMES	SCENARIO V/C RATIOS						
MENTS	LANES	CAPACITY	1	2	3	4	1	2	3	4			
NBL	1 1	1600	20	32	20	32	0.013	0.020 *	0.013	0.020 *			
NBT	1 1	1600	19	19	19	19	0.036 *	0.036	0.036 *	0.036			
NBR (a)	0	0	38	38	38	38	-	-	-	-			
SBL	1	1600	12	12	12	12	0.008 *	0.008	0.008 *	0.008			
SBT	1	1600	21	21	21	21	0.018	0.025 *	0.018	0.025 *			
SBR (b)	0	0	8	19	8	19	-	-	-	-			
EBL	1	1600	24	35	24	35	0.015	0.022	0.015	0.022			
EBT	1	1600	828	913	940	1025	0.544 *	0.604 *	0.614 *	0.674 *			
EBR (c)	0	0	43	54	43	54	-	-	-	-			
WBL	1	1600	66	66	66	66	0.041 *	0.041 *	0.041 *	0.041 *			
WBT	1	1600	559	658	646	745	0.364	0.426	0.418	0.480			
WBR (d)	0	0	23	23	23	23	-	-	-	-			
						LOST TIME:	0.100 *	0.100 *	0.100 *	0.100 *			
		TOTA	0.729	0.790	0.799	0.860							
			С	С	С	D							
NOTES													

NOTES:

RTOR: (a)

(b)

(c)

(d)

INTERSECTION CAPACITY UTILIZATION WORKSHEET

COUNT DATE: 04/28/2022
TIME PERIOD: PM PEAK HOUR
N/S STREET: HUMMEL DRIVE

E/W STREET: **UVP**

CONTROL TYPE: SIGNAL - WITH LONG-TERM IMPROVEMENTS

	TRAFFIC VOLUME SUMMARY													
		UND	SOUTH BOUND			EAST BOUND			WE	ST BOUNE)			
VOL	JMES	Т	R	L	T	R	L	T	R	L	T	R		
(A) (B)	EXISTING: PROJECT-ADDED:	20 12	19 0	38 0	12 0	21	8 11	24 11	828 85	43 11	66 0	559 99	23 0	
(C)	CUMULATIVE:	20	19	38	12	21	8	24	940	43	66	646		23

REF: 06 PM

GEOMETRICS

NORTH BOUND SOUTH BOUND EAST BOUND WEST BOUND LANE GEOMETRICS L TR L TR L T TR L T TR

TRAFFIC SCENARIOS

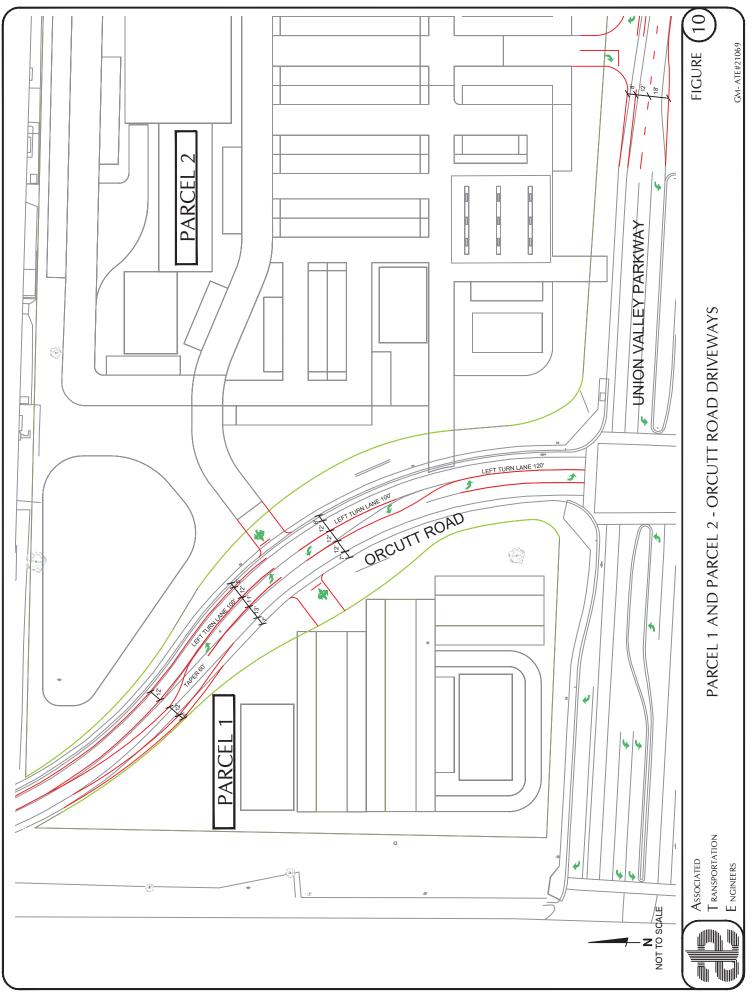
SCENARIO 1 = EXISTING VOLUMES (A)

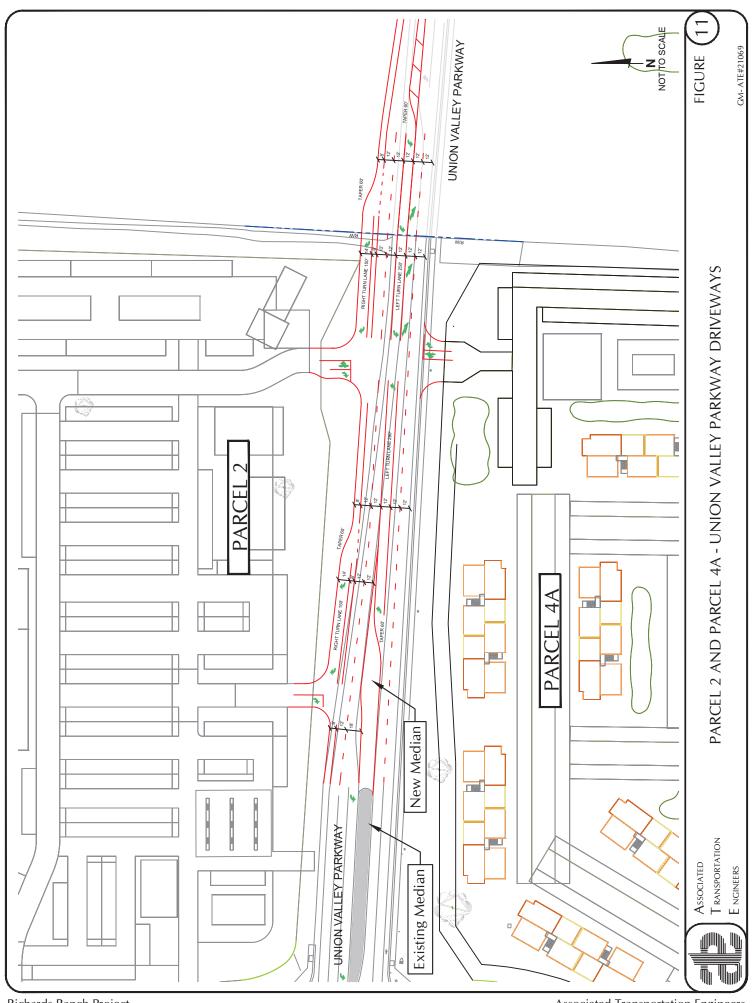
SCENARIO 2 = EXISTING + PROJECT VOLUMES(A + B)

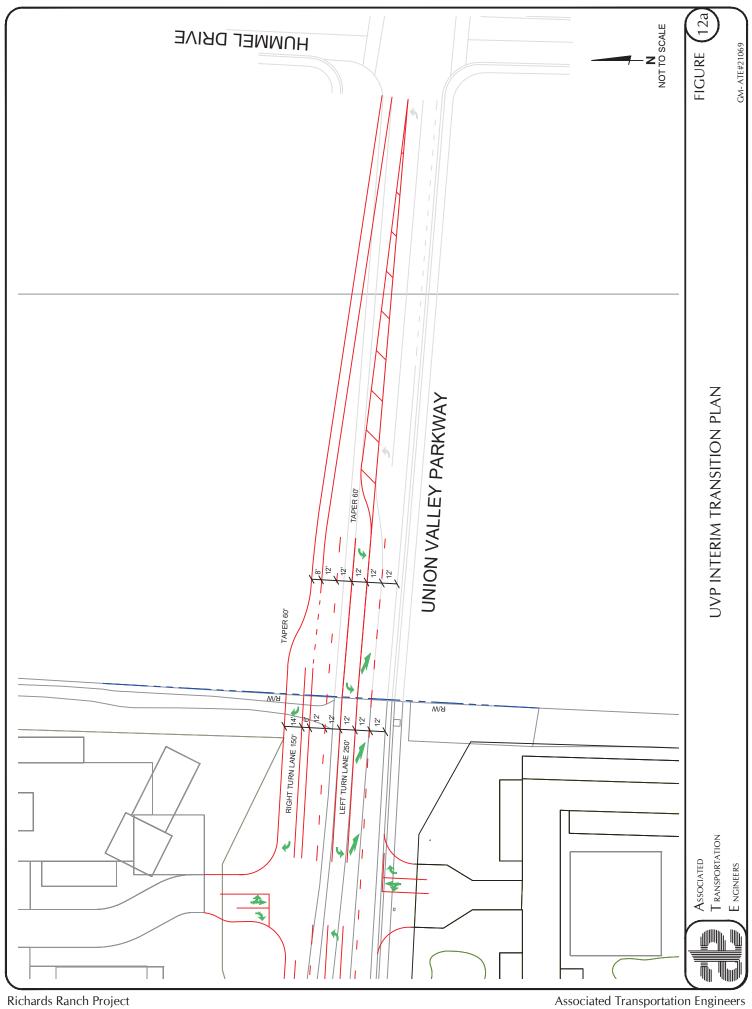
SCENARIO 3 = SHORT-TERM CUMULATIVE (C)

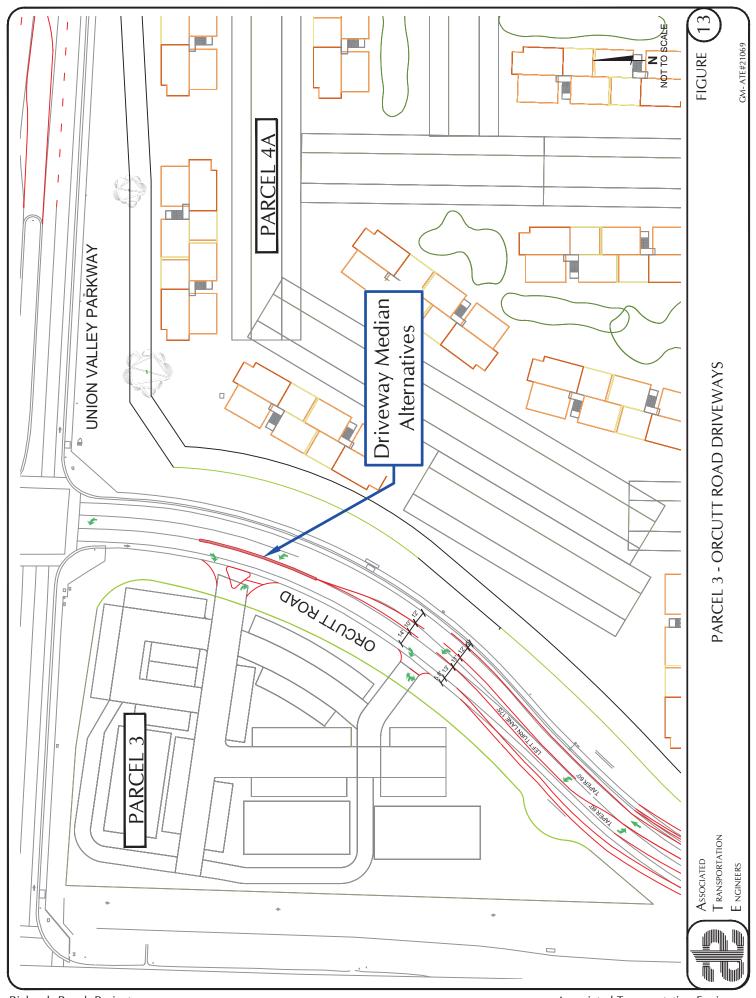
SCENARIO 4 = SHORT-TERM CUMULATIVE + PROJECT VOLUMES (B+C)

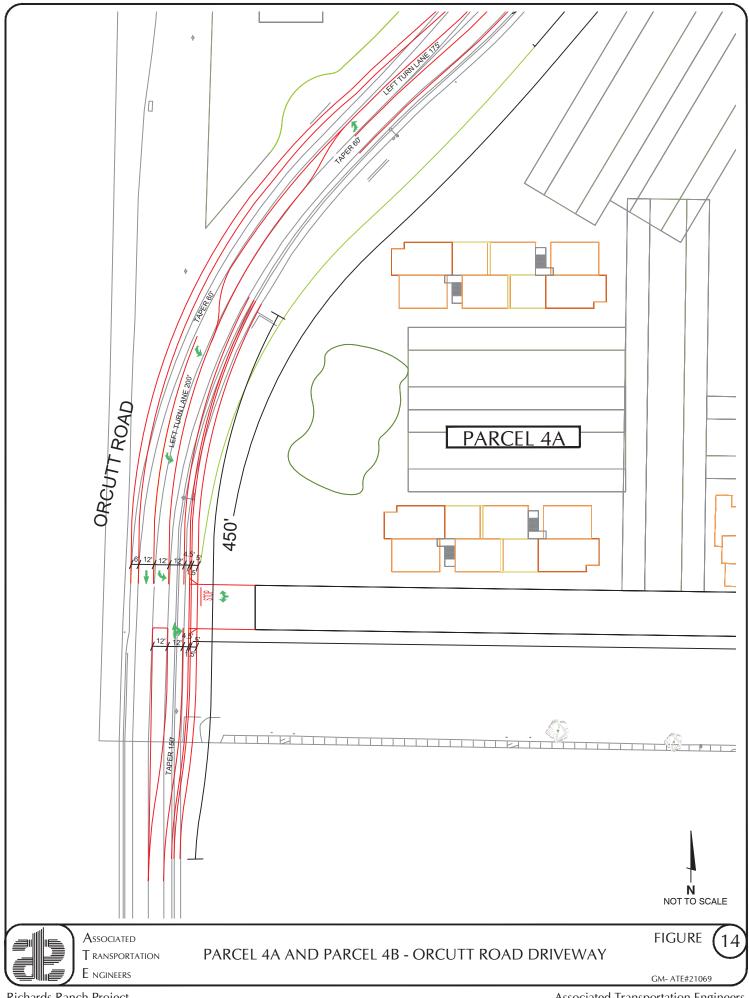
LEVEL OF SERVICE CALCULATIONS												
MOVE-	# OF			SCEN	NARIO N	/OLUMES			SCENARIO V	V/C RATIOS		
MENTS	ENTS LANES CAPACITY 1 2		3	4	1	2	3	4				
NBL	1	1600	20	32	20	32	0.013	0.020 *	0.013	0.020 *		
NBT	1 1	1600	19	19	19	19	0.036 *	0.036	0.036 *	0.036		
NBR (a)	0	0	38	38	38	38	-	-	-	-		
SBL	1 1	1600	12	12	12	12	0.008 *	0.008	0.008 *	0.008		
SBT	1	1600	21	21	21	21	0.018	0.025 *	0.018	0.025 *		
SBR (b)	0	0	8	19	8	19	-	-	-	-		
EBL	1	1600	24	35	24	35	0.015	0.022	0.015	0.022		
EBT	2	3200	828	913	940	1025	0.272 *	0.302 *	0.307 *	0.337 *		
EBR (c)	0	0	43	54	43	54	-	-	-	-		
WBL	1 1	1600	66	66	66	66	0.041 *	0.041 *	0.041 *	0.041 *		
WBT	2	3200	559	658	646	745	0.182	0.213	0.209	0.240		
WBR (d)	0	0	23	23	23	23	-	-	-	-		
						LOST TIME:	0.100 *	0.100 *	0.100 *	0.100 *		
		TOT				CITY UTILIZATION: L OF SERVICE:	0.457	0.488	0.492	0.523		
		A	Α	Α	A							
NOTES			l									


NOTES:

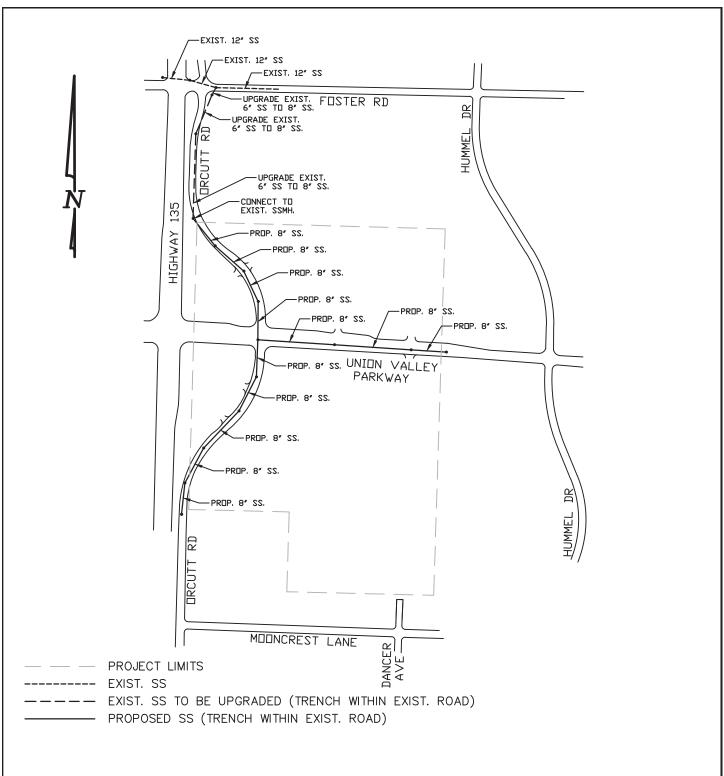

RTOR: (a)

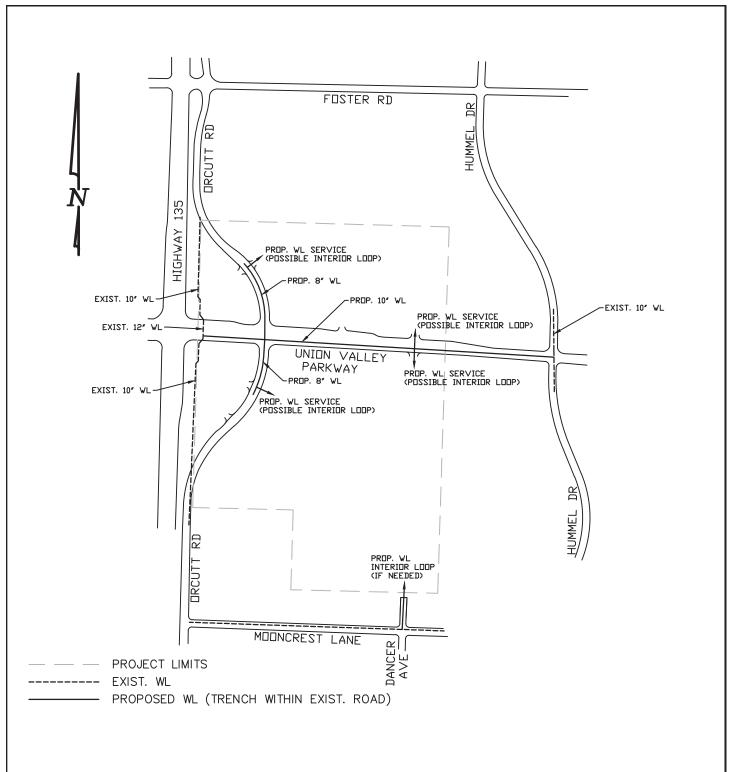

(b)


(c)


(d)

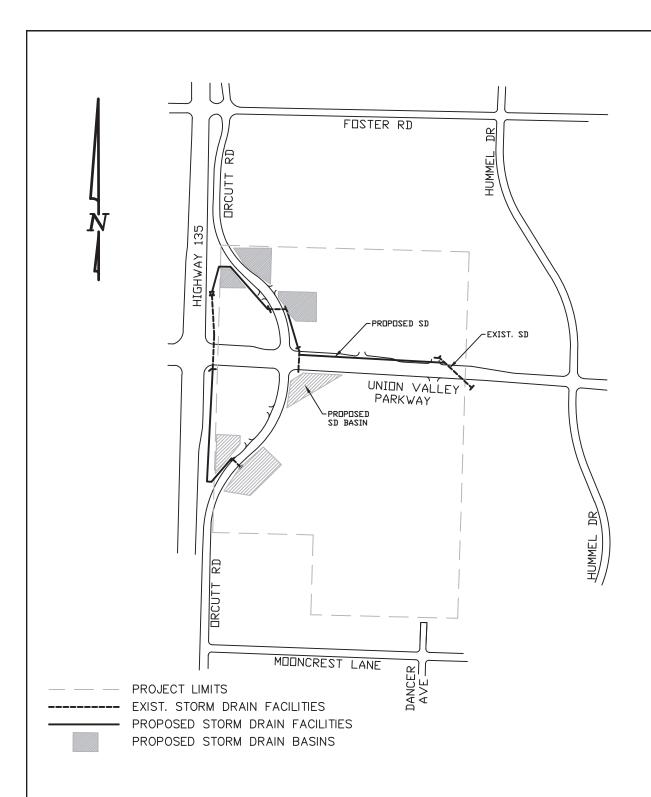






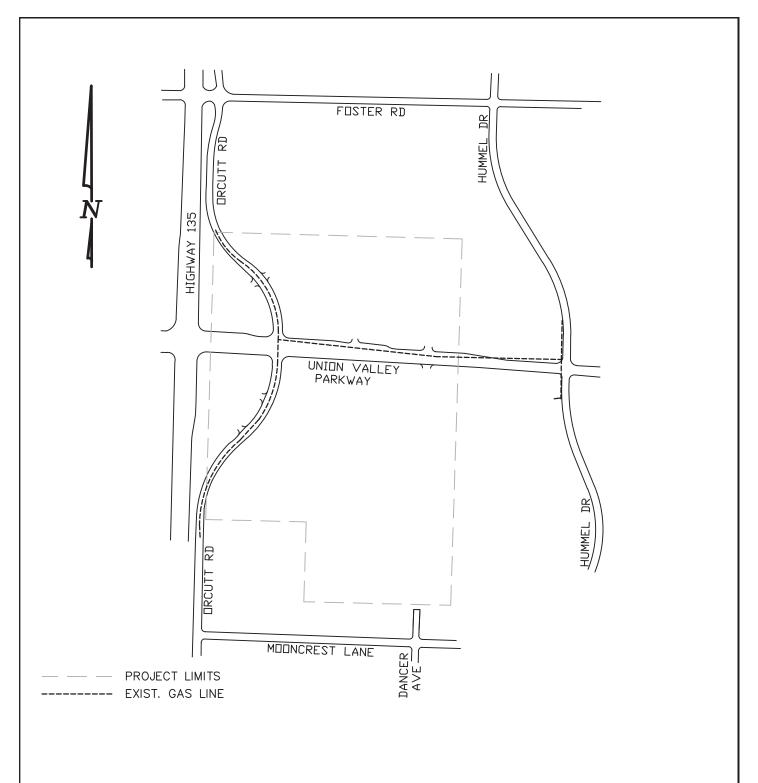
SEWER FACILITIES EXHIBIT

2450 Professional Parkway, Suite 120 Santa Maria, California 93455 805/934-5760



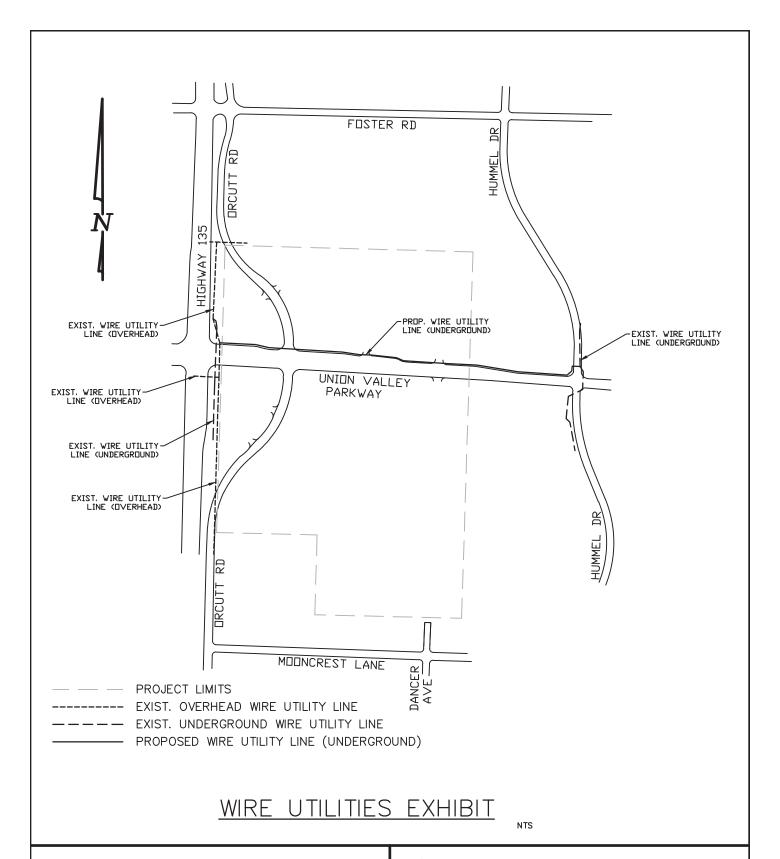
WATER FACILITIES EXHIBIT

2450 Professional Parkway, Suite 120 Santa Maria, California 93455 805/934-5760



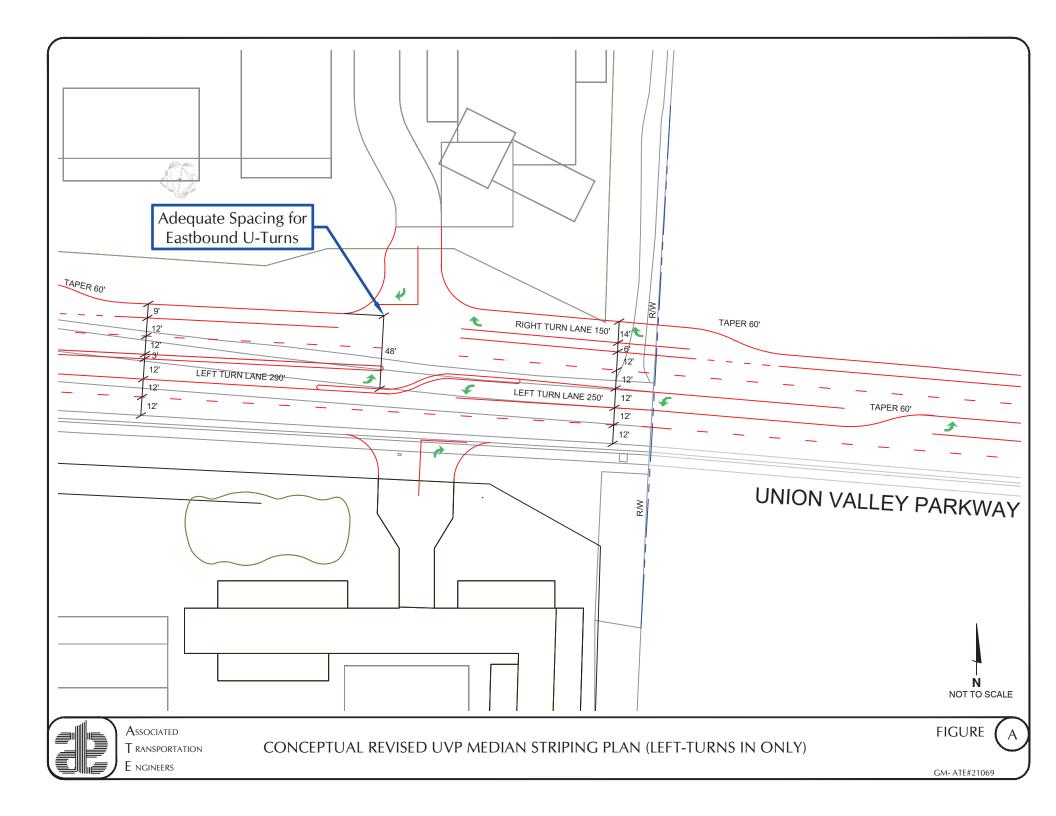
STORM WATER FACILITIES EXHIBIT

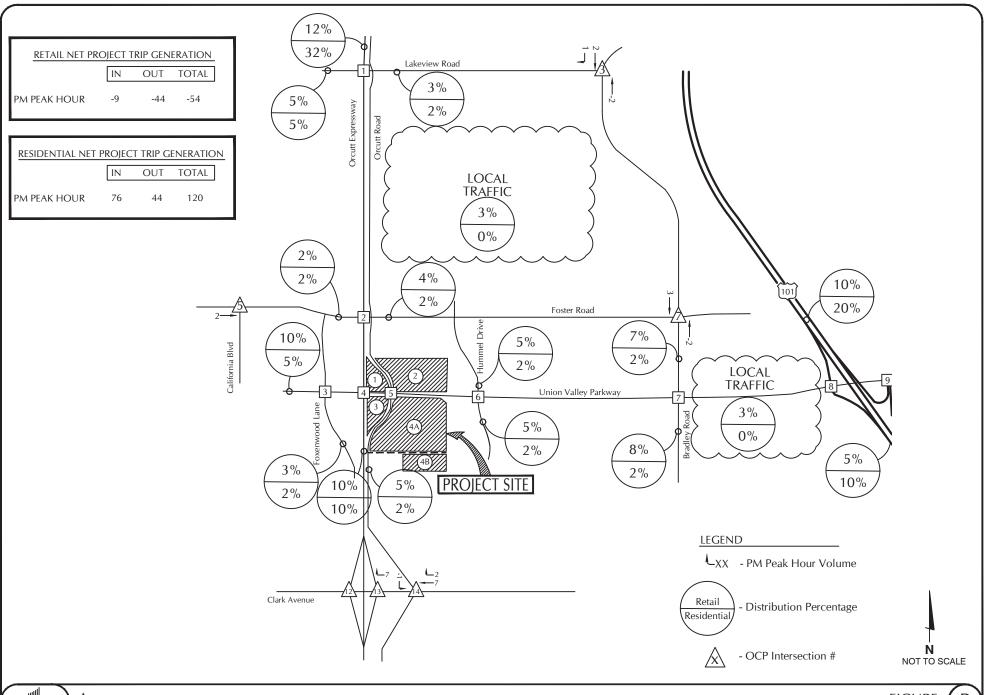
2450 Professional Parkway, Suite 120 Santa Maria, California 93455 805/934-5760


GAS FACILITIES EXHIBIT

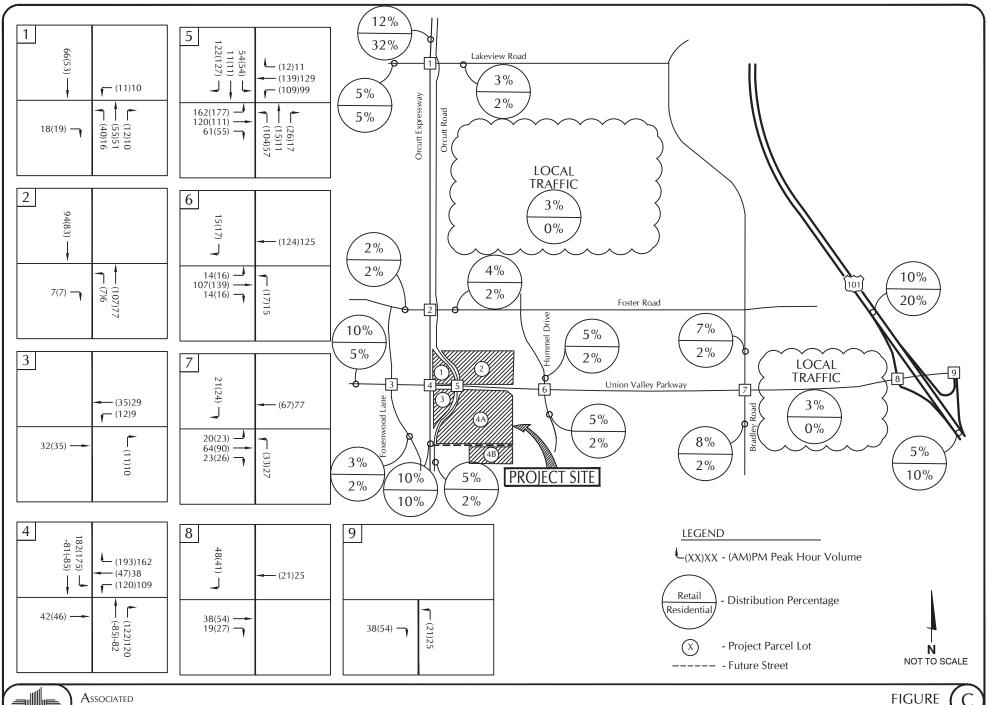
NTS

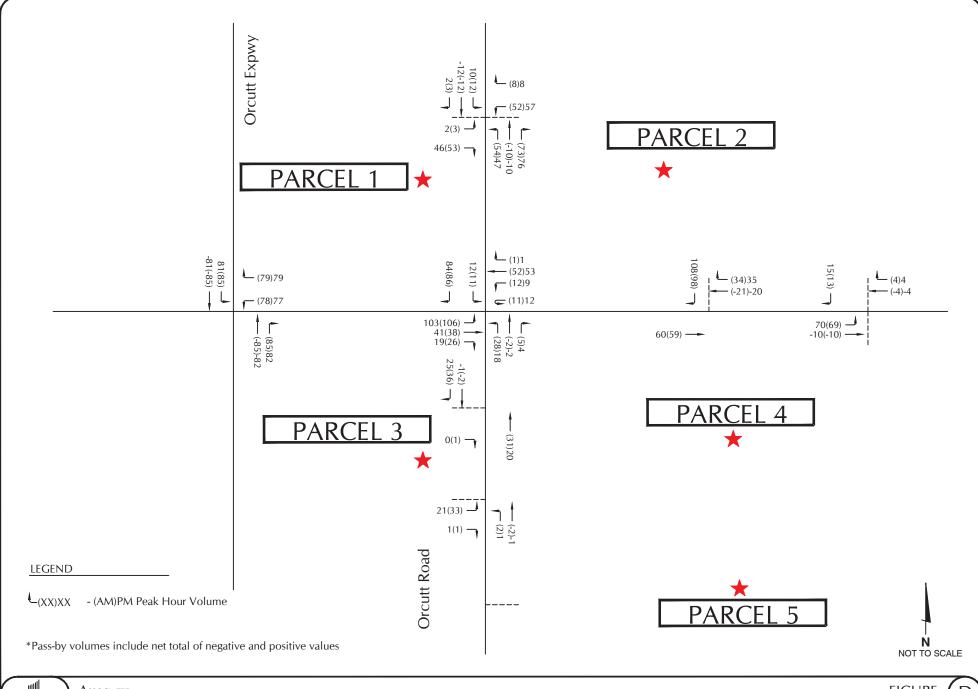
2450 Professional Parkway, Suite 120 Santa Maria, California 93455 805/934-5760



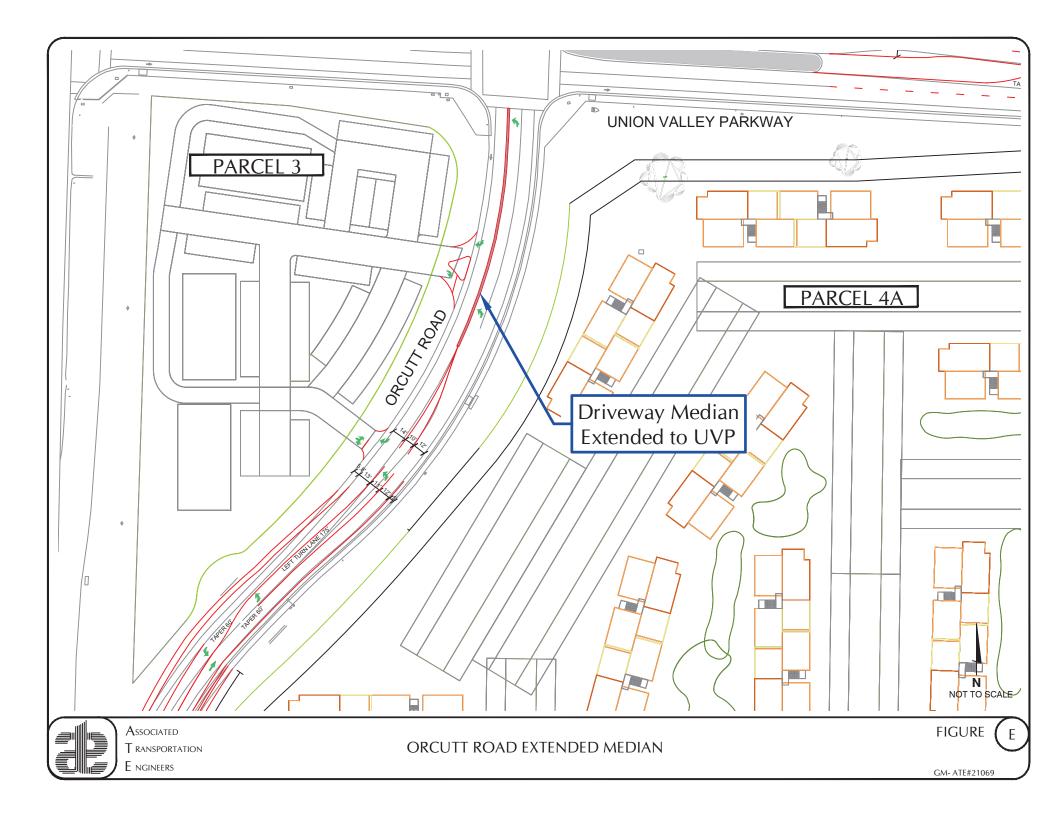


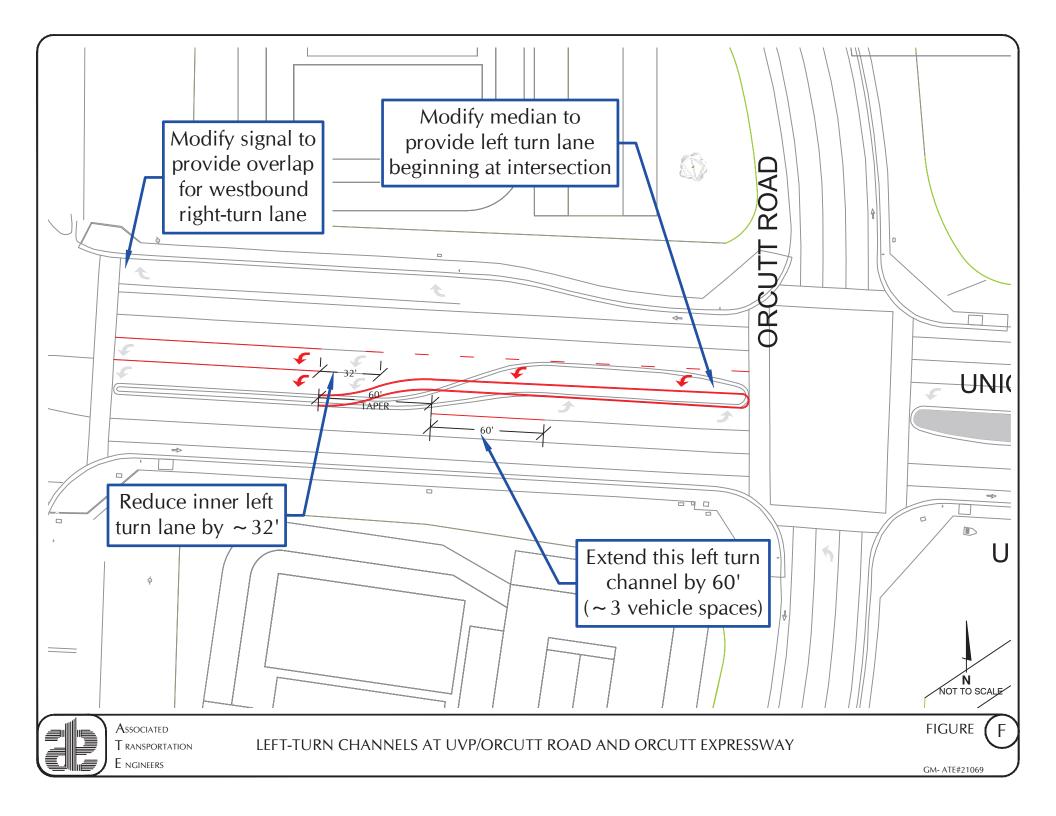
2450 Professional Parkway, Suite 120 Santa Maria, California 93455 805/934-5760





FIGURE




FIG

FIGURE

ASSOCIATED TRANSPORTATION ENGINEERS

Memo

To: Michael Stoltey & Laurie Tamura

From: Scott Schell, ATE

cc:

Date: June 6, 2023

Re: Richards Ranch Project

ATE 21069M02

ATE conducted video traffic counts in May 2023 at the Orcutt Expressway/Union Valley Parkway intersection in order to validate the 2019 (pre-Covid) traffic volumes that were used in the traffic study completed for the Richards Ranch Project. Tables A and B compare the 2023 and 2019 traffic volumes at the intersection.

Table A
Traffic Volume Comparison
Orcutt Expressway (SR 135) North of Union Valley Parkway

	2	023 Count Data		2019 Count Data	
Peak Hour	May 23	May 24	Average	December 17	% Difference
PM Peak Hour	2,434 VPH	2,488 VPH	2,461 VPH	2,625 VPH	-6.2%

Table B
Traffic Volume Comparison
Union Valley Parkway East of Orcutt Expressway (SR 135)

	2	023 Count Data		2019 Count Data	
Peak Hour	May 23	May 24	Average	December 17	% Difference
PM Peak Hour	1,370 VPH	1,432 VPH	1,401 VPH	1,512 VPH	-7.3%

The data presented in Tables A and B show that the traffic counts collected adjacent to the Orcutt Expressway/Union Valley Parkway intersection in 2023 are approximately 6% to 7% *lower* than the 2019 traffic counts that were used for the Richards Ranch traffic study. The volumes used in the traffic study are therefore more conservative than the current count data.

Memo

To: Michael Stoltey & Laurie Tamura

From: Scott Schell, ATE

cc:

Date: June 14, 2023

Re: Richards Ranch Project

ATE 21069M03

Additional traffic counts were conducted in May 2023 adjacent to the Orcutt Expressway/Union Valley Parkway intersection in order to validate the 2019 (pre-Covid) traffic volumes that were used in the traffic study completed for the Richards Ranch Project. Tables A and B compare the 2023 and 2019 traffic volumes at the intersection.

Table A
Traffic Volume Comparison
Orcutt Expressway (SR 135) South of Union Valley Parkway

		2023 Cou	nt Data		2019 Count Data	% Difference
Peak Hour	May 30	May 31	June 1	Average	December 17	
AM Peak Hour	2,039 VPH	1,997 VPH	2,014 VPH	2,017 VPH	2,269 VPH	-11.1%
PM Peak Hour	2,520 VPH	2,575 VPH	2,544 VPH	2,546 VPH	2,520 VPH	+1.0%

Table B
Traffic Volume Comparison
Union Valley Parkway East of Orcutt Expressway (SR 135)

		2023 Cou	ınt Data	-	2019 Count Data	% Difference
Peak Hour	May 30	May 31	June 1	Average	December 17	
AM Peak Hour	1,224 VPH	1,156 VPH	1,194 VPH	1,191 VPH	1,436 VPH	-17.1%
PM Peak Hour	1,404 VPH	1,437 VPH	1,428 VPH	1,423 VPH	1,512 VPH	-5.9%

The data presented in Tables A and B show that the AM and PM peak hour traffic counts collected adjacent to the Orcutt Expressway/Union Valley Parkway intersection in 2023 are approximately 6% to 17% *lower* than the 2019 traffic counts that were used for the Richards Ranch traffic study. It is noted that the PM peak hour traffic counts collected on Orcutt Expressway (SR 135) south of Union Valley Parkway are similar (1% higher) to the 2019 traffic counts that were used for the Richards Ranch traffic study. The volumes used in the traffic study are therefore more conservative than the current count data.

Associated Transportation Engineers Trip Generation Worksheet - October 2023 Update

RICHARDS RANCH - SANTA MARIA (#21069) - WITH INTERNAL TRIP FACTORS

		ADT	AM Internal	PM Internal		DT			AM DE A	K HOUF	,				DM DEA	K HOUR		
Use	Size	Factor	Factor	Factor	Rate	Trips	Rate	Trips	In %	Trips	Out %	Trips	Rate	Trips	In %	Trips	Out %	Trips
Use	Size	Factor	ractor	ractor	Nate	TTIPS	Nate	TTIPS	111 /0	TTIPS	Out /6	TTIPS	Nate	IIIþa	111 /0	TTIPS	Out /6	TTIPS
COMMERCIAL																		
High Turnover Sit Down Restaurant (a)	5,000 SF	0.81	0.92	0.70	107.20	434	9.57	44	55%	24	45%	20	9.05	32	61%	20	39%	12
2 Restaurants without Drive Thru (b)	6,000 SF	0.81	0.92	0.70	97.14	472	1.43	8	50%	4	50%	4	12.55	53	55%	29	45%	24
6 Drive Thru Restaurants (c)	18,750 SF	0.81	0.92	0.70	467.48	7,100	44.61	770	51%	393	49%	377	33.03	434	52%	226	48%	208
Shopping Center (d)	55,000 SF	0.81	0.92	0.70	94.49	4,210	3.53	179	62%	111	38%	68	9.84	379	48%	182	52%	197
Gas Station with Mart (e)	10 Fueling Position	s 0.81	0.92	0.70	200.80	1,626	16.06	148	50%	74	50%	74	18.42	129	50%	65	50%	64
Car Wash-Automated (f)	1 Tunnel	0.55	0.55	0.55	249.00	137	8.50	5	50%	3	50%	2	23.70	13	50%	7	50%	6
Lube Station (g)	3 Bays	0.81	0.92	0.70	40.00	97	3.00	8	67%	5	33%	3	4.85	10	56%	6	44%	4
Mini Storage (h)	39,500 SF	0.81	0.92	0.70	1.45	46	0.09	3	59%	2	41%	1	0.15	4	47%	2	53%	2
Subtotals:	124,250 SF					14,122		1,165		616		549		1,054		537		517
RESIDENTIAL																		
Three Story Apartments (i)	400 DU	0.81	0.92	0.70	6.60	2.138	0.37	135	24%	32	76%	103	0.48	135	63%	85	37%	50
Two Story Townhomes (i)	95 DU	0.81	0.92	0.70	6.60	508	0.37	32	24%	8	76%	24	0.48	32	63%	20	37%	12
Subtotals:	495 DU					2,646		167		40		127		167		105		62
Totals:						16,768		1,332		656		676		1,221		642		579

- (a) Trip generation based on ITE rates for High-Turnover (Sit-Down) Restaurant (ITE #932) Average Rate.
 (b) Trip generation based on ITE rates for Fast Casual Restaurant (ITE #930) Average Rate.
 (c) Trip generation based on ITE rates for Fast-Foot Restaurant with Driver Through Window (ITE #934) Average Rate.
- (c) This persentation based on TIE rates for Per-Popular Resident (FE 872). Over Indige Plant (FE 872) eveninger Plant (F
- (g) Trip generation based on ITE rates for Quick Lubrication Vehicle Shop (ITE #941) Average Rate.
- (i) Trip generation based on ITE rates for Mini-Warehouse (ITE #151).
 (i) Trip generation based on ITE rates for Multifamily Housing (Low-Rise) (ITE #220) Fitted Curve Equation.

SHOPPING CENTER PASS-BY & PRIMARY TRIPS	ADT	AM Total	AM In	AM Out	PM Total	PM In	РМ О
Commercial External Trips - Retail	4,210	179	111	68	379	182	19
30% ADT, 20% AM, 40% PM Pass-By Trips - Applied to Retail	1,263	36	22	14	152	73	79
70% ADT, 80% AM, 60% PM Primary Trips - Remainder Retail	2,947	143	89	54	227	109	11
SIT DOWN RESTAURANT PASS-BY & PRIMARY TRIPS	ADT	AM Total	AM In	AM Out	PM Total	PM In	РМО
Commercial External Trips - Restaurant - Shopping Center and No Drive Thru	906	52	28	24	85	49	36
32% ADT, 20% AM, 43% PM Pass-By Trips - Applied to Restaurant - Shopping Center and No Drive Thru	290	10	6	4	37	21	1
38% ADT, 80% AM, 57% PM Primary Trips - Remainder Restaurant - Shopping Center and No Drive Thru	616	42	22	20	48	28	2
FAST FOOD RESTAURANT PASS-BY & PRIMARY TRIPS	ADT	AM Total	AM In	AM Out	PM Total	PM In	PM (
Commercial External Trips - Restaurant Pads	7.100	770	393	377	434	226	20
53% ADT, 50% AM, 55% PM Pass-By Trips - Applied to Restaurant Pads	3.763	385	197	188	239	125	11
17% ADT, 50% AM, 45% PM Primary Trips - Remainder Restaurant Pads	3,337	385	196	189	195	101	9
GAS STATION PASS-BY & PRIMARY TRIPS	ADT	AM Total	AM In	AM Out	PM Total	PM In	PM
Commercial External Trips - Gas Station	1.626	148	74	74	129	65	6
76% ADT, 76% AM, 75% PM Pass-By Trips - Applied to Gas Station	1.236	113	57	56	97	49	- 2
24% ADT, 24% AM, 25% PM Primary Trips - Remainder Gas Station	390	35	17	18	32	16	1
CAR WASH PASS-BY & PRIMARY TRIPS	ADT	AM Total	AM In	AM Out	PM Total	PM In	PM
Commercial External Trips - Car Wash	137	5	3	2	13	7	- 6
20% Pass-By Trips - Applied to Car Wash	27	1	1	0	3	2	
30% Primary Trips - Remainder Car Wash	110	4	2	2	10	5	
TOTAL PASS-BY TRIPS	ADT	AM Total	AM In	AM Out	PM Total	PM In	PM
Shopping Center	1,263	36	22	14	152	73	7
Sit Down Restaurant and Fast Casual Restaurant	290	10	6	4	37	21	1
Fast Food Restaurant	3,763	385	197	188	239	125	11
Gas Station	1,236	113	57	56	97	49	4
Car Wash Total Pass-By Trips	27 6.579	1 545	1 283	0 262	3 528	2 270	2
Total Pass-By Trips	6,579	545	283	262	528	270	
TOTAL EXTERNAL PRIMARY TRIPS	ADT	AM Total	AM In	AM Out	PM Total	PM In	РМ
Commercial - External	7,400	609	326	283	512	259	2
Lube Station - External	97	8	5	3	10	6	
Mini Storage - External	46	3	2	1	4	2	
Residential - External	2,646	167	40	127	167	105	6
Total External Trips	10,189	787	373	414	693	372	32

RICHARDS RANCH - SANTA MARIA (#21069) - PARCEL 1 WITH INTERNAL TRIP FACTORS

		ADT Internal	AM Internal	PM Internal	Al	DT			AM PEA	K HOUR					PM PEA	K HOUR	!	
Use	Size	Factor	Factor	Factor	Rate	Trips	Rate	Trips	In %	Trips	Out %	Trips	Rate	Trips	In %	Trips	Out %	Trips
COMMERCIAL																		
Gas Station with Mart	10 Fueling Positions	0.81	0.92	0.70	200.80	1,626	16.06	148	50%	74	50%	74	18.42	129	50%	65	50%	64
Lube Station	3 Bays	0.81	0.92	0.70	40.00	97	3.00	8	67%	5	33%	3	4.85	10	56%	6	44%	4
Totals:						1,723		156		79		77		139		71		68

⁽a) Trip generation based on ITE rates for Convenience Store/Gas Station (ITE #945). Fitted Curve Equation for ADT. Average Rate for AM/PM Peak Hours.

⁽b) Trip generation based on ITE rates for Quick Lubrication Vehicle Shop (ITE #941) Average Rate.

GAS STATION PASS-BY & PRIMARY TRIPS Commercial External Trips - Gas Station 76% ADT, 76% AM, 75% PM Pass-By Trips - Applied to Gas Station 24% ADT, 24% AM, 25% PM Primary Trips - Remainder Gas Station	<u>ADT</u>	AM Total	AM In	AM Out	PM Total	PM In	PM Out
	1,626	148	74	74	129	65	64
	1,236	113	57	56	97	49	48
	390	35	17	18	32	16	16
TOTAL EXTERNAL PRIMARY TRIPS Commercial External Lube Station - External Total External Trips	ADT	AM Total	AM In	AM Out	PM Total	<u>PM In</u>	PM Out
	390	35	17	18	32	16	16
	97	8	5	3	10	6	4
	487	43	22	21	42	22	20

RICHARDS RANCH - SANTA MARIA (#21069) - PARCEL 2A WITH INTERNAL TRIP FACTORS

		ADT Internal	AM Internal	PM Internal	Δ.	.DT			AM PEA	K HOUF	ł.				PM PEA	K HOUR	2	
Use	Size	Factor	Factor	Factor	Rate	Trips	Rate	Trips	In %	Trips	Out %	Trips	Rate	Trips	In %	Trips	Out %	Trips
COMMERCIAL																		
Shopping Center(a)	55,000 SF	0.81	0.92	0.70	94.49	4,210	3.53	179	62%	111	38%	68	9.84	379	48%	182	52%	197
Restaurant - Shopping Center (b)	5,000 SF	0.81	0.92	0.70	107.20	434	9.57	44	55%	24	45%	20	9.05	32	61%	20	39%	12
Restaurant Pad 1 - Drive Thru (c)	3,750 SF	0.81	0.92	0.70	467.48	1,420	44.61	154	51%	79	49%	75	33.03	87	52%	46	48%	41
Restaurant Pad 2 - Drive Thru (c)	3,500 SF	0.81	0.92	0.70	467.48	1,325	44.61	144	51%	73	49%	71	33.03	81	52%	42	48%	39
Restaurant Pad 3 - No Drive Thru (d)	3,000 SF	0.81	0.92	0.70	97.14	236	1.43	4	50%	2	50%	2	12.55	26	55%	14	45%	12
Restaurant Pad 4 - No Drive Thru (d)	3,000 SF	0.81	0.92	0.70	97.14	236	1.43	4	50%	2	50%	2	12.55	26	55%	14	45%	12
Restaurant Pad 5 - Drive Thru (c)	2,500 SF	0.81	0.92	0.70	467.48	947	44.61	103	51%	53	49%	50	33.03	58	52%	30	48%	28
Restaurant Pad 6 - Drive Thru (c)	3,000 SF	0.81	0.92	0.70	467.48	1,136	44.61	123	51%	63	49%	60	33.03	70	52%	37	48%	33
Restaurant Pad 7 - Drive Thru (c)	2,500 SF	0.81	0.92	0.70	467.48	947	44.61	102	51%	52	49%	50	33.03	58	52%	30	48%	28
Totals:	81,250 SF					10,891		857		459		398		817		415		402

⁽d) Trip generation based on ITE rates for Fast Casual Restaurant (ITE #930) Average Rate.

SHOPPING CENTER PASS-BY & PRIMARY TRIPS	ADT	AM Total	AM In	AM Out	PM Total	PM In	PM Out
Commercial External Trips - Retail	4,210	179	111	68	379	182	197
30% ADT, 20% AM, 40% PM Pass-By Trips - Applied to Retail	1,263	36	22	14	152	73	79
70% ADT, 80% AM, 60% PM Primary Trips - Remainder Retail	2,947	143	89	54	227	109	118
SIT DOWN RESTAURANT PASS-BY & PRIMARY TRIPS	ADT	AM Total	AM In	AM Out	PM Total	PM In	PM Out
Commercial External Trips - Restaurant - Shopping Center and No Drive Thru	906	52	28	24	84	48	36
32% ADT, 20% AM, 43% PM Pass-By Trips - Applied to Restaurant - Shopping Center and No Drive Thru	290	10	6	4	36	21	15
68% ADT, 80% AM, 57% PM Primary Trips - Remainder Restaurant - Shopping Center and No Drive Thru	616	42	22	20	48	27	21
FAST FOOD RESTAURANT PASS-BY & PRIMARY TRIPS	ADT	AM Total	AM In	AM Out	PM Total	PM In	PM Out
Commercial External Trips - Restaurant Drive Thru	5,775	626	320	306	354	185	169
53% ADT, 50% AM, 55% PM Pass-By Trips - Applied to Restaurant Pads	3,061	313	160	153	195	102	93
47% ADT, 50% AM, 45% PM Primary Trips - Remainder Restaurant Pads	2,714	313	160	153	159	83	76
TOTAL EXTERNAL PRIMARY TRIPS	ADT	AM Total	AM In	AM Out	PM Total	PM In	PM Out
Commercial External	6,277	498	271	227	434	219	215
Total External Trips	6,277	498	271	227	434	219	215

⁽a) Trip generation based on ITE rates for Shopping Plaza (ITE #821). Average Rate for ADT and AM Peak Hour. Fitted Curve Equation for PM Peak Hour. (b) Trip generation based on ITE rates for High-Turnover (Sit-Down) Restaurant (ITE #932) Average Rate.

⁽c) Trip generation based on ITE rates for Fast-Food Restaurant with Drive-Through Window (ITE #934) Average Rate.

RICHARDS RANCH - SANTA MARIA (#21069) - PARCEL 2B WITH INTERNAL TRIP FACTORS

		ADT Internal	AM Internal	PM Internal	Al	DT			AM PEA	K HOUR					PM PEA	K HOUF	1	
Use	Size	Factor	Factor	Factor	Rate	Trips	Rate	Trips	In %	Trips	Out %	Trips	Rate	Trips	In %	Trips	Out %	Trips
COMMERCIAL Mini Storage(c) Totals:	39,500 SF 39,500 SF	0.81	0.92	0.70	1.45	46 46	0.09	3 3	59%	2 2	41%	1 1	0.15	4 4	47%	2 2	53%	2 2

⁽a) Trip generation based on ITE rates for Mini-Warehouse (ITE #151).

RICHARDS RANCH - SANTA MARIA (#21069) - PARCEL 3 WITH INTERNAL TRIP FACTORS

			AM Internal	PM Internal	AI	т			AM PEA	K HOUR					PM PEA	K HOUF	₹	
Use	Size	Factor	Factor	Factor	Rate	Trips	Rate	Trips	In %	Trips	Out %	Trips	Rate	Trips	In %	Trips	Out %	Trips
COMMERCIAL Car Wash-Automated (a)	1 Tunnel	0.55	0.55	0.55	249.00	137	8.50	5	50%	3	50%	2	23.70	13	50%	7	50%	6
Restaurant Pad 8 - Drive Thru (c) Totals:	3,500 SF	0.81	0.92	0.70	467.48	1,325 1,462	44.61	144 149	51%	73 76	49%	71 73	33.03	81 94	52%	42 49	48%	39 45

⁽a) Trip generation for Car Wash-Automated derived from local studies.

⁽b) Trip generation based on ITE rates for Fast-Food Restaurant with Drive-Through Window (ITE #934) Average Rate.

CAR WASH PASS-BY & PRIMARY TRIPS	ADT	AM Total	AM In	AM Out	PM Total	PM In	PM Out
Commercial External Trips - Car Wash 20% Pass-By Trips - Applied to Car Wash	137 27	5	3	2	13	7	6
80% Primary Trips - Remainder Car Wash	110	4	2	2	10	5	5
FAST FOOD RESTAURANT PASS-BY & PRIMARY TRIPS	<u>ADT</u>	AM Total	AM In	AM Out	PM Total	PM In	PM Out
Commercial External Trips - Restaurant Pads	1,325	144	73	71	81	42	39
53% ADT, 50% AM, 55% PM Pass-By Trips - Applied to Restaurant Pads	702	72	37	35	45	23	22
47% ADT, 50% AM, 45% PM Primary Trips - Remainder Restaurant Pads	623	72	36	36	36	19	17
TOTAL EXTERNAL PRIMARY TRIPS	ADT	AM Total	AM In	AM Out	PM Total	PM In	PM Out
Commercial External	733	76	38	38	46	24	22
Total External Trips	733	76	38	38	46	24	22

RICHARDS RANCH - SANTA MARIA (#21069) - PARCEL 4 WITH INTERNAL TRIP FACTORS

		ADT	AM	PM		D.			*** 55 *						D14 DE 4			
		Internal	Internal	Internal		DT			AM PEA						PM PEA			
Use	Size	Factor	Factor	Factor	Rate	Trips	Rate	Trips	In %	Trips	Out %	Trips	Rate	Trips	In %	Trips	Out %	Trips
RESIDENTIAL Three Story Apartments(a) Totals:	400 DU 400 DU	0.81	0.92	0.70	6.60	2,138 2,138	0.37	135 135	24%	32 32	76%	103 103	0.48	135 135	63%	85 85	37%	50 50

⁽a) Trip generation based on ITE rates for Multifamily Housing (Low-Rise) (ITE #220) Fitted Curve Equation.

RICHARDS RANCH - SANTA MARIA (#21069) - PARCEL 5 WITH INTERNAL TRIP FACTORS

		ADT Internal	AM Internal	PM Internal	А	DT			AM PEA	K HOUR	l				PM PEA	K HOUR	!	
Use	Size	Factor	Factor	Factor	Rate	Trips	Rate	Trips	In %	Trips	Out %	Trips	Rate	Trips	In %	Trips	Out %	Trips
RESIDENTIAL Two Story Townhomes(a) Totals:	95 DU 95 DU	0.81	0.91	0.70	6.60	508 508	0.37	32 32	24%	8 8	76%	24 24	0.48	32 32	63%	20 20	37%	12 12

⁽a) Trip generation based on ITE rates for Multifamily Housing (Low-Rise) (ITE #220) Fitted Curve Equation.

	NCHRP 684 Internal Trip C	Сар	ture Estimation Tool	
Project Name:	RICHARDS RANCH		Organization:	ATE
Project Location:	SANTA MARIA		Performed By:	GOM
Scenario Description:	UPDATED WITH FACTORS		Date:	17-Oct-23
Analysis Year:			Checked By:	SAS
Analysis Period:	AM Street Peak Hour		Date:	17-Oct-23

	Table 1	-A: Base Vehicl	e-Trip Generation	ı Es	stimates (Single-Use Si	e Estimate)				
Land Use	Developme	ent Data (<i>For Int</i>	formation Only)		Estimated Vehicle-Trips ³					
Land Ose	ITE LUCs1	Quantity	Units		Total	Entering	Exiting			
Office				1	0					
Retail	821/945/941	55,000	SF		194	120	74			
Restaurant	930/932/934	29,750	SF		893	457	436			
Cinema/Entertainment					0					
Residential	220	495	DU	1	182	43	139			
Hotel					0					
All Other Land Uses ²	151	39,500	SF		4	2	2			
					1,273	622	651			

		Table 2-A: I	Mode Split and Veh	nicl	e Occupancy Estimates	;				
Land Use		Entering Trip	os		Exiting Trips					
Land Ose	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized			
Office										
Retail	1.72	2%	4%		1.72	2%	4%			
Restaurant	1.72	2%	4%		1.72	2%	4%			
Cinema/Entertainment										
Residential	1.75	2%	4%		1.75	2%	4%			
Hotel										
All Other Land Uses ²	1.72	2%	4%		1.72	2%	4%			

	Table 3	B-A: Average La	ınd Use Interchan	ge Distances (Feet Walking	Distance)							
Origin (From)	Destination (To)											
Origin (From)	Office	Office Retail Restaurant Cinema/Entertainment Residential Hotel										
Office												
Retail												
Restaurant												
Cinema/Entertainment												
Residential												
Hotel												

		Table 4-A: Ir	nternal Person-Tri	Origin-Destination Matrix	*								
Origin (Frame)			-	Destination (To)									
Origin (From)	Office	Office Retail Restaurant Cinema/Entertainment Residential Hotel											
Office		0	0	0	0	0							
Retail	0		17	0	2	0							
Restaurant	0	16		0	4	0							
Cinema/Entertainment	0	0	0		0	0							
Residential	0	2	49	0		0							
Hotel	0	0	0	0	0								

Table 5-A	: Computatio	ns Summary						
	Total	Entering	Exiting					
All Person-Trips	1,069	1,122						
Internal Capture Percentage 8% 8% 8%								
	•	•						
External Vehicle-Trips ⁵	1,099	536	563					
External Transit-Trips ⁶	40	19	21					
External Non-Motorized Trips ⁶ 81 40 41								

Table 6-A: Interna	al Trip Capture Percentaç	ges by Land Use
Land Use	Entering Trips	Exiting Trips
Office	N/A	N/A
Retail	9%	15%
Restaurant	8%	3%
Cinema/Entertainment	N/A	N/A
Residential	8%	21%
Hotel	N/A	N/A

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.

⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

	NCHRP 684 Internal Trip C	Сар	ture Estimation Tool								
Project Name:	Project Name: RICHARDS RANCH Organization: ATE										
Project Location:	SANTA MARIA	1	Performed By:	GOM							
Scenario Description:	UPDATED WITH FACTORS	1	Date:	17-Oct-23							
Analysis Year:			Checked By:	SAS							
Analysis Period:	PM Street Peak Hour		Date:	17-Oct-23							

	Table 1	-P: Base Vehicle	e-Trip Generation	Estima	ates (Single-Use S	te Estimate)				
Land Use	Developme	ent Data (For Info	ormation Only)		Estimated Vehicle-Trips ³					
Land USE	ITE LUCs1	Quantity Units		1 🗀	Total	Entering	Exiting			
Office					0					
Retail	821/945/941	55,000	SF		541	260	281			
Restaurant	930/932/934	29,750	SF	1 🗀	739	390	349			
Cinema/Entertainment				1 🗀	0					
Residential	220	495	DU	1 🗀	239	151	88			
Hotel				1 🗀	0					
All Other Land Uses ²	151	39,500	SF		6	3	3			
					1,525	804	721			

Table 2-P: Mode Split and Vehicle Occupancy Estimates							
Land Use		Entering Trips			Exiting Trips		
Land USE	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized
Office							
Retail	1.72	2%	4%		1.72	2%	4%
Restaurant	1.72	2%	4%		1.72	2%	4%
Cinema/Entertainment							
Residential	1.75	2%	4%		1.75	2%	4%
Hotel							
All Other Land Uses ²	1.72	2%	4%		1.72	2%	4%

	Table :	3-P: Average La	and Use Interchan	ge Distances (Feet Walking	Distance)	
Origin (From)	Destination (To)					
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office						
Retail					1200	
Restaurant					1300	
Cinema/Entertainment						
Residential		1200	1300			
Hotel						

Table 4-P: Internal Person-Trip Origin-Destination Matrix*						
Origin (From)	Destination (To)					
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		0	0	0	0	0
Retail	0		140	0	109	0
Restaurant	0	223		0	42	0
Cinema/Entertainment	0	0	0		0	0
Residential	0	31	22	0		0
Hotel	0	0	0	0	0	

Table 5-P: Computations Summary					
	Total	Entering	Exiting		
All Person-Trips	2,625	1,385	1,240		
Internal Capture Percentage	43% 41%		46%		
	•				
External Vehicle-Trips ⁵	815	447	368		
External Transit-Trips ⁶	30	16	14		
External Non-Motorized Trips ⁶	59	33	26		

Table 6-P: Internal Trip Capture Percentages by Land Use					
Land Use	Entering Trips	Exiting Trips			
Office	N/A	N/A			
Retail	57%	52%			
Restaurant	24%	44%			
Cinema/Entertainment	N/A	N/A			
Residential	57%	34%			
Hotel	N/A	N/A			

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made ⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

ASSOCIATED TRANSPORTATION ENGINEERS

100 N. Hope Avenue, Suite 4, Santa Barbara, CA 93110 ● (805) 687-4418 ● (805) 682-8509-F

ACCIDENT RATE CALCULATION SHEET - FOR INTERSECTIONS

roje	ect:	Richards Ranch	File Name:	Accident Rate Worksheet 3 Year
------	------	----------------	------------	--------------------------------

 Project #:
 021069

 Analyst:
 GOM

 Date:
 11/7/2023

N/S Street: Orcutt Expressway
E/W Street: Union Valley Parkway

Weekday:

PM Peak Hour Entering Volume: 3735
Peak Hour Factor: 10.8
-----OR------

Total Approach ADT: N/A

Weekend:

PM Peak Hour Entering Volume OR ADT: 75% (as a percentage of Weekday PM Peak Hour Entering Volume OR ADT)

Period Analyzed (years): 3

Number of Accidents: 29

Million Entering Vehicle Miles: 41.02 million entering vehicle miles (mevm)

Accident Rate: .71 accidents per million entering vehicle miles (mevm)

Intersection Rate Group: 109

California State Average Collision Rate: 0.55

DEFINITIONS

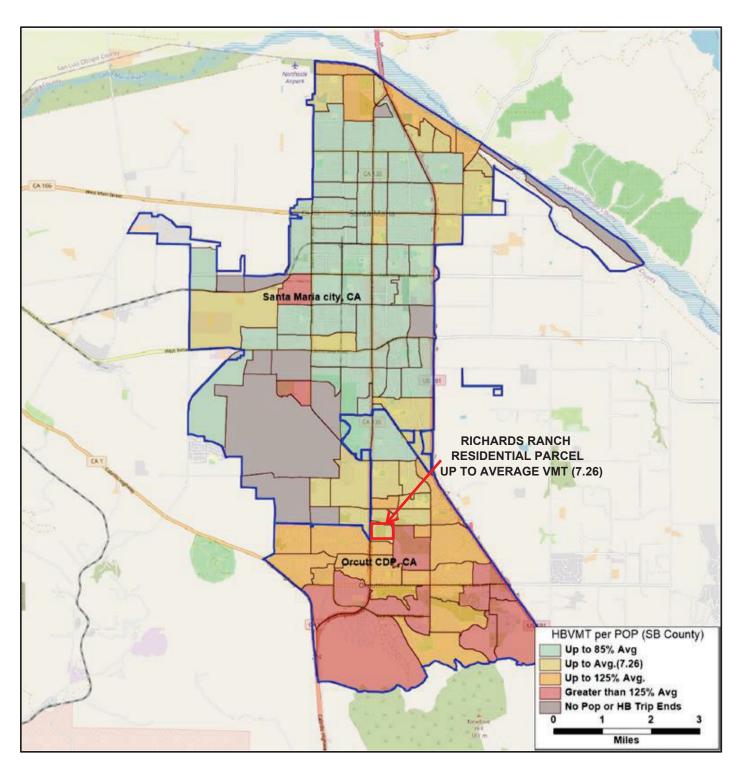
Number Expected = ADT x Time x Rate Expected x Length
1000000

Number Significant = Number Expected + $(2.576 \times (Number Expected)^{1/2}))$ + 1.329

NOTES: Number Significant using 99.5% confidence level.

For intersections, use annual number of entering vehicles in place of ADT and delete length. The NR is the same as for roadway segments.

CALCULATIONS - ORCUTT EXPRESSWAY/UVP INTERSECTION (Three Year Period)


Number Expected = 13,674,634 x 3 x 0.55 x 1 = 22.5631

Number Significant = 36.1283213

Number of Accidents Recorded = 29

Santa Maria Environmental Procedures and Guidelines Appendix B

Countywide Average: Home-Based VMT per Population (Residential Land Uses)

Adopted by the City Council on November 3, 2020 (City Council Resolution 2020-111)