www.scsengineers.com

SCS ENGINEERS

Formerly Tracer Environmental Sciences & Technologies, Inc., now a part of SCS Engineers.

August 9, 2021

Santa Barbara County Planning Commission Planning & Development Department 123 East Anapamu Street Santa Barbara, CA 93013

Subject:Cresco/SLO Cultivation Cannabis ProjectOdor and Volatile Organic Compound Sampling Study

To Planning Commissioners:

SCS Engineers (SCS) was retained by Cresco California/SLO Cultivation to conduct a series of odor and Volatile Organic Compound (VOC) sampling at their operational, legal, non-conforming farm located at 3861 Foothill Road, in Carpinteria, California (also known as APN 005-310-024). This sampling study was intended to accomplish three goals:

- 1. Verify the efficacy of the existing vapor-phase odor neutralizing system.
- 2. Make recommendations to improve the performance of the odor abatement system and odor control best management practices.
- 3. Verify that the odor control system and other operations on the Project Site were not producing harmful amounts of VOCs.

Project Site Conditions: At the time of the study, the Project Site included approximately two (2) acres of adult-flowering cannabis cultivation occurring in passively vented greenhouses, one (1) acre of juvenile/nursery cannabis cultivation occurring in passively vented greenhouses, and ancillary harvesting/processing activities. The Project was equipped with one (1) Byers vapor-phase unit and approximately 2,600 linear feet of distribution piping. The Byers system was supplied with a continuous flow of Ecosorb CNB 100.

Odor Sampling Methodology: The sampling study was preceded by analyzing average annual meteorological data associated with the Santa Barbara Air Pollution Control District air monitoring station located in Carpinteria Valley east of the Cresco facility. From this annual meteorological data, three time periods were identified during which meteorological conditions (wind speed and direction) follow consistent different patterns:

- 1. Early Morning Hours
- 2. Late Morning Hours
- 3. Afternoon Hours

Given the probability that the Byers system's performance would be potentially affected by these varying wind patterns, sampling times and procedures were established to capture odor samples throughout each differing time period. The odor samples were taken using a specially designed air displacement sampler consisting of a vacuum pump system and Tedlar sample bags. These samples

were then shipped to an independent third-party laboratory (Odor Science and Engineering, Inc. (OS&E) in Bloomfield, Connecticut) for analysis. The OS&E laboratory has an expert odor panel which conducts blind evaluations of the odor samples (the panel is not informed of the potential type or source of the samples). The odor panel provides a character (e.g., sour, skunk, exhaust, garbage), and a concentration for each odor sample. The concentration of odor is quantified as a dilution to threshold ratio (D/T) with higher numbers reflecting stronger odors. For example, the baseline odors present in most communities range from 8-12 D/T. Eight (8) D/T represents eight (8) parts of clean, purified air for each unit of odor sample. The specially trained and qualified odor panelists can often detect a net increase of 3-5 D/T over this baseline condition. Members of the general public can typically detect a net increase of 5-10 D/T. As a result, SCS typically considers a <u>persistent</u> net increase of odor concentration of seven (7) D/T or greater above baseline to be a potential nuisance odor detectable by the public.

Odor Sampling Event 1 Results: On July 1st and 2nd, 2019, SCS collected a set of twenty-one (21) total odor samples at strategically appropriate times and locations in an effort to capture potential maximum odors during calm winds (early morning), transitional winds (late morning), and steady winds (afternoon), with the Project Facilities' roof vents open, and with active cannabis processing occurring. These sample collections included upwind locations to determine an odor baseline for the region without cannabis, samples taken inside the greenhouse to reflect unmitigated odor released from cannabis cultivation or processing, and samples taken outside the greenhouse, downwind to capture odor conditions after the application of the odor neutralizing vapor.

Baseline Conditions: Results from Sampling Event 1 indicated that the <u>upwind/baseline</u> odor present in Carpinteria had a concentration of nine (9) D/T with a character commonly including odor descriptors such as: sour, stale, plastic, and vegetation. Samples of <u>unmitigated</u> cannabis odors within the Project Site's greenhouse ranged from a net increase in odor concentration of 117 D/T to 140 D/T with a character commonly including odor descriptors such as: skunk, mercaptan, and sour.

Samples Mitigated by Byers/Ecosorb System:

Early Morning/Calm Winds: Samples taken outside the Project Site's greenhouse with <u>odor</u> <u>mitigation from the neutralizing vapor</u> had a net increase ranging from 1 D/T to 32 D/T with character descriptors indicative of cannabis (i.e., skunk, sour, and mercaptan) in 5 of the 6 samples. Cannabis odors remained detectable, although the odorous air mass also remained in close proximity to or within the Project and Ocean Breeze parcels. No nuisance level odors were detected in proximity to offsite receptors.

Late Morning/Transitional Winds: Samples taken outside the Project Site's greenhouse with <u>odor</u> <u>mitigation from the neutralizing vapor</u> had a net increase ranging from 1 D/T to 26 D/T with character descriptors indicative of cannabis (i.e., skunk, sour, and mercaptan) only present within 1 of the 6 samples. Increasing wind movement and turbulence appears to provide superior mixing with the only sample point exceeding nuisance levels and having cannabis character was within 50-feet of the greenhouse on an Ocean Breeze parcel.

Afternoon/Steady Winds: Samples taken outside the Project Site's greenhouse with <u>odor</u> <u>mitigation from the neutralizing vapor</u> had a net increase ranging from 0 D/T to 29 D/T with character descriptors indicative of cannabis (i.e., skunk, sour, and mercaptan) only present within 1 of the 6 samples. Increasing wind movement and turbulence appears to provide superior mixing with the only sample point exceeding nuisance levels and having cannabis character was within 20-feet of the greenhouse on an Ocean Breeze parcel. **Initial Conclusions/Recommendations:** The Byers/Ecosorb System is achieving the desired effect. Odor samples exceeding nuisance intensities with cannabis character were limited to areas on the Cresco and Ocean Breeze parcels at short distances generally within 50-feet of the cannabis activity. The system seems more challenged to provide efficient mixing during no/low wind states. Consider improving the performance of the site by strategically timing the lowering of the side wall ventilation curtains to coincide with increasing winds speeds and install carbon scrubbers to provide supplemental odor control for processing areas.

Odor Sampling Event 2 Results: Cresco implemented multiple recommendations for improved facility odor control recommended by SCS staff. After these recommended actions were implemented, SCS collected an additional set of twelve (12) total odor samples on September 25, 2019 during calm winds (early morning), steady winds (afternoons), with the Project Facilities' roof vents open, and with active cannabis processing occurring. These sample collections included upwind locations to determine an odor baseline for the region without cannabis, samples taken inside the greenhouse to reflect unmitigated odor released from cannabis cultivation or processing, and samples taken outside the greenhouse, downwind to capture odor conditions after the application of the odor neutralizing vapor.

Baseline Conditions: Results from the Sampling Event 1 indicated that the <u>upwind/baseline</u> odor present in Carpinteria had a concentration of nine (9) D/T with a character commonly including odor descriptors such as: musty, stale, plastic, and vegetation. Samples of <u>unmitigated</u> cannabis odors within the Project Site's greenhouse ranged from a net increase in odor concentration of 521 D/T to 1,941 D/T with a character commonly including odor descriptors such as: skunk, weed/pot, and exhaust.

Samples Mitigated by Byers/Ecosorb System:

Early Morning/Calm Winds: Samples taken outside the Project Site's greenhouse with <u>odor</u> <u>mitigation from the neutralizing vapor</u> had a net increase ranging from 0 D/T to 23 D/T with character descriptors indicative of cannabis (i.e., skunk, weed/pot, and mercaptan) in only 2 of the 5 samples one of which only had borderline 7 D/T concentration. Cannabis odors inside the greenhouse were substantially elevated compared to prior Event 1/Early Morning test results presumably due to delaying drop of wall ventilation; however, the desired effect of reduced odors outside greenhouse has also been achieved and odor levels proximal to offsite receptors are essentially back to baseline.

Afternoon/Steady Winds: Samples taken outside the Project Site's greenhouse with <u>odor</u> <u>mitigation from the neutralizing vapor</u> had a net increase ranging from 1 D/T to 2 D/T with no definitive character descriptors indicative of cannabis (i.e., skunk, pot, mercaptan) found in any of the four downwind samples. Increasing wind movement and turbulence appears to provide superior mixing and the system is functioning very well in achieving the desired odor mitigation. **VOC Testing Summary:** During the odor sampling exercise, SCS also captured coincidental VOC samples in real-time utilizing a handheld MiniRae 3000 Photo-Ionization Detector (PID) throughout the greenhouse cultivation spaces, surrounding property, and at targeted locations in proximity to Byer's equipment with the potential to create elevated VOC levels. Additionally, during the July odor sampling event SCS captured a series of seven (7) air samples utilizing SUMMA vacuum canisters. These canisters were sent to an independent laboratory operated by Atmospheric Analysis & Consulting, Inc. for analysis in accordance with EPA Method TO-15 for VOCs.

Table 1- VOC Measurements

	Inside Greenhouse	Byers Output	Inside Greenhouse	Sa	mple Tak Greenh	en Outs Iouses	ide	Reg. Th	resholds
Sample ID	VOC-1	VOC-2	VOC-3	VOC-4	VOC-5	VOC-6	VOC-7	NIOSH REL	OSHA PEL
Ethanol	13.7	ND	2.74	ND	7.02	ND	ND		1,000,000
2-Methylbutane	0.57	ND	ND	ND	2.22	ND	ND	120,000	1,000,000
1-Propanol	ND	ND	ND	ND	1.93	ND	ND	200,000	200,000
2-Methylpentane	ND	ND	ND	ND	1.33	ND	ND	100,000	-
3-Methylpentane	ND	ND	ND	ND	0.75	ND	ND	100,000	-
Methylcyclopentane	ND	ND	ND	ND	0.69	ND	ND	400,000	500,000
alpha-Pinene	4.04	95.5	1.6	ND	ND	ND	ND		100,000

*All units listed are parts per billion (ppb).

Final Conclusions/Recommendations: Based upon this Cresco Project Site Case Study, SCS' findings conclude that the odor neutralizing vapor system was:

- Upon initial testing the system was struggling to provide sufficient odor neutralizing effect during early-morning calm wind periods, presumably due to a lack of air turbulence to drive proper mixing between the odorous mass and surrounding vapor. However, due to the lack of air movement there was also insufficient wind speed need to drive the remaining odors to offsite receptors.
- In transitional and steady wind states in both rounds of testing, the system adequately demonstrated an ability to mitigate odors prior to reaching offsite, downwind receptors.
- Implementation of SCS' recommendations for adjustments in greenhouse venting timing/methodology and installation of carbon scrubbers to assist in odor control at processing areas appears to have assisted the performance of the overall system.
- Testing in the second round (September 25th) showed consistent performance of the system and its ability to mitigate odors back to baseline levels before reaching offsite receptors.
- The percentage of odor mitigation beyond 200-feet from the cannabis odor source ranged from 89% to 97% in the first round of testing and improved to 99% in the second round of

testing after Cresco implemented the recommended facility adjustments. Given that offsite receptors are a minimum of 350-feet from the Project facilities, the combination of the Byers/Ecosorb System and the remaining distance allowed for dispersion and dilution make for a consistent and effective odor mitigation solution for this Project Site.

 Based on the multitude of VOC samples taken, most results had such negligible presence of VOCs the lab analytical testing could not reach the detectable levels. In the single sample which did register VOCs, the VOCs detected do not appear to be related to cannabis operations or the Byer's System as no other samples taken much closer to those sources registered those same compounds. Regardless of the source, these detected VOCs were orders of magnitudes below the Permissible Exposure Levels (PELs). Based on this testing, there is no evidence that the Ecosorb vapor, cannabis cultivation, or combination of onsite activities are capable of producing hazardous levels of VOCs.

SCS will continue to work with the cannabis industry to implement environmental solutions, including evolving odor management technology. Our staff are available as a resource should the Commission have additional questions and concerns regarding odor management in the region. We have appended a complimentary slide deck to this memorandum for a graphical illustration of this case study analysis.

Sincerely,

Nathan Eady Land Use Planner/Project Director

Paul Schafer Air Quality Specialist/Project Director

Attachments Attachment 1- Odor Sampling Exhibit Summary Attachment 2- Laboratory Analytical Data Attachment 1- Odor Sampling Exhibit Summary

CRESCO AIR QUALITY SAMPLING METHODOLOGY & RESULTS

September 2019

METHODOLOGY SAMPLING CONDITIONS ON-SITE

METHODOLOGY SAMPLING CONDITIONS ON-SITE

Medium-Range

PHASE 1 TESTING JULY 2ND & 5TH, 2019 RESULTS PRIOR TO RECOMMENDATIONS

Sampled: 7/2/2019

Wind

Early morning-Relatively calm, wandering or no wind.

Foothill-R

Sampled: 7/2/2019

Early morning-Relatively calm, wandering or no wind.

In Greenhouse Net Concentration & Character (Inferred 9 D/T Baseline)	Short-R (less than 20 Net Concentratio (Inferred 9 D/	ange 0-50 feet) n & Character Γ Baseline)	Long-Range (Approx. 400 feet) Net Concentration & Character (Inferred 9 D/T Baseline)
117	1 Sour, mercaptan, skunk, stale, plastic, exhaust	32 Sour, manure, skunk, mercaptan, rotten cabbage, garbage, oniony, garlic, rubber band, plastic, exhaust	18 Sour, rotten garbage, skunk, mercaptan, sewage, plastic, exhaust
Skunk, mercaptan	14 Sour, rotten grass, mercaptan, skunk, rotten vegetables, manure, burnt rubber, plastic, exhaust	14 Sour, wet paper, rotten vegetables, green leaves, wet grass, watermelon rind, plastic	7 Sour, skunk, mercaptan, sulfur, sewage, rubber, vegetation, sour milk, plastic, exhaust

Sampled: 7/2/2019

Late morning-Wind speed increases, stabilizes in west to east direction.

Sampled: 7/2/2019

Late morning-Wind speed increases, stabilizes in west to east direction.

Baseline/Upwind Concentration & Character	In Greenhouse Net Concentration Increase & Character	Short-Range (50 feet) Net Concentration Increase & Character	Medium-Range (Approx. 200 feet) Net Concentration Increase & Character	Long-Range (Approx. 400-500 feet) Net Concentration Increase & Character
9	117	26	1 Sour, plastic, mercaptan, rubber, milky, exhaust	8 Sour, stale, wet cardboard, paper, garbage, vegetation, milk, plastic, exhaust
Sour, stale, cardboard, vegetation, oily, plastic, exhaust	Sour sewage, mercaptan, skunk, burnt coffee grounds, burnt rubber, plastic	Sour, sewage, mercaptan, skunk, vegetation, milky, plastic	1 Sour, plastic, sewage, mercaptan, rubber, milky, exhaust	3 Sour, plastic, sulfur, burnt match, gasoline, propane, milky, exhaust, vegetation, garbage, plastic, wet cardboard

Sampled: 7/1/2019

Sampled: 7/1/2019

Afternoon-Wind strengthens, remains West to East

Wind Direction

Baseline/Upwind Concentration and Character	In Greenhouse Net Concentration & Character	Short-Range (less than 20 feet) Net Concentration & Character	Medium-Range (Approx. 200 feet) Net Concentration & Character	Long-Range (Approx. 500 feet) Net Concentration & Character
9	140	29	O Sour, rotten garbage, plastic, burnt, rubber, milky, exhaust	4 Stale, plastic, vegetation, sweet, milky, rubber, sewage
Sour, stale, plastic, sweet, milky, rubber, vegetation, lemon	mercaptin, oniony, skunky, sour garbage, earthy	mercaptin, rotten cabbage, skunk, garbage, milk, plastic	7 Sour, sewage, plastic, burnt, rubber, sweet, milk, vegetation, exhaust	1 Sour, stale, plastic, milky, vegetation, rubber, exhaust

PHASE 2 TESTING SEPTEMBER 25, 2019 RESULTS AFTER RECOMMENDATIONS IMPLEMENTED

Sampled: 9/25/2019

Early morning -Relatively calm, oothill-Ro wandering or no wind. 192 NA-AM: D/T=23 WA-AM: D/T=1 a starter illing GH-AM: D/T=1,941 EA-AM: D/T=7 Wind Direction Legend O Upwind **O** Greenhouse Detectable Cannabis Odor \mathbf{O} Elevated But Not Nuisance SA-AM: D/T=0 Nominal Odor Ο WB-AM: D/T=0

Early morning-Relatively calm, wandering or no wind.

Baseline = 9 (based off afternoon wind)

In Greenhouse Net Concentration & Character	Short-Range (31 feet and 55 feet) Net Concentration & Character	Medium Range (Approximately 275 feet) Net Concentration & Character	Long-Range (415 feet and 473) Net Concentration & Character
1,941	23 skunk, burnt, "weed/pot", manure-like, burnt rubber, mercaptan, oily, stale, plastic	O sour, wet/dry cardboard,	O sour, wet cardboard, swampy, oily, vegetation, glue, stale, plastic, exhaust
skunk, "weed/pot", sour, exhaust	7 burnt skunk/rubber, skunk-like, mercaptan, oily, stale food, wet cardboard, exhaust	printing paper, dead grass, stale, vegetation, glue, plastic	sour, stale, cardboard, inner tube, swampy, rubber tires, oily, sour vegetation, plastic

Sampled: 9/25/2019

Early Afternoon-Wind speed increases, oothill-Re LB-PM: D/T=1 stabilizes in southwest to northeast direction. MB-PM: D/T=2 LA-PM: D/T=1 MA-PM: D/T=2 GH-PM: D/T=521 Wind Direction Legend Upwind \bigcirc Greenhouse Detectable Cannabis Odor Elevated But Not Nuisance Nominal Odor \bigcirc UP-PM: D/T=9

Sampled: 9/25/2019

Early Afternoon -Wind speed increases, stabilizes in west to east direction.

Baseline/Upwind Concentration & Character	In Greenhouse Net Concentration Increase & Character	Medium-Range (Approx. 198 feet and 232 feet) Net Concentration Increase & Character	Long-Range (Approx. 325 feet and 465 feet) Net Concentration Increase & Character
9 musty stale wet	521	2 sour, cardboard, swampy, stale, vegetation, fresh grass, oily, plastic, exhaust	1 sour, cardboard, vegetation, stale, plastic, exhaust
cardboard, plastic, exhaust	skunk, "weed/pot", burnt "weed", exhaust	2 sour, wet/dry cardboard, wet paper, stale, vegetation, glue, plastic, exhaust	1 sour, musty, stale, vegetation, glue, plastic, exhaust

AIR SAMPLING RESULTS VOC SUMMARY

All Units are Parts Per Billion (PPB)

	Inside Greenhouse	Beyers Output	Inside Greenhouse						
Sample ID	VOC-1	VOC-2	VOC-3	VOC-4	VOC-5	VOC-6	VOC-7	NIOSH REL	OSHA PEL
Ethanol	13.7	ND	2.74	ND	7.02	ND	ND	1,000	,000
2-Methylbutane	0.57	ND	ND	ND	2.22	ND	ND	120,000	1,000,000
1-Propanol	ND	ND	ND	ND	1.93	ND	ND	200,000	200,000
2-Methylpentane	ND	ND	ND	ND	1.33	ND	ND	100,000	-
3-Methylpentane	ND	ND	ND	ND	0.75	ND	ND	100,000	-
Methylcyclopentane	ND	ND	ND	ND	0.69	ND	ND	400,000	500,000
alpha-Pinene	4.04	95.5	1.6	ND	ND	ND	ND	100,	000

AIR SAMPLING RESULTS VOLUME OF VOCS AND HEALTH/ENVIRONMENTAL IMPACTS

All Units are Parts Per Billion (PPB)

Sample ID	Inside Greenhous e	Beyers Output	Inside Greenhouse	VOC- 4	VOC- 5	VOC- 6	VOC- 7
alpha-Pinene	4.04	95.5	1.6	ND	ND	ND	ND
beta-Myrcene	27.7	28.8	14.6	1.73	ND	ND	ND
1-Methyl-4-(1- methylethyl)-7- oxabicyclo[2.2.1]heptane	ND	22.6	ND	ND	ND	ND	ND
1-Methyl-(1-methylethyl)- benzene	ND	63.1	0.75	ND	ND	ND	ND
D-Limonene	7.34	189	2.84	0.53	ND	ND	ND
1-Methyl-4-(1- methylethylidene)- cyclohexene	12.9	60.3	5.45	0.49	ND	ND	ND
Total Non-Methane Hydro Carbons (TNMHC)	196	171	146	29.3	65.3	10.2	10.4

Formaldehyde- OSHA

Permissible Exposure Level (PEL) of 750 ppb; Action Level of 500 ppb

Attachment 2- Laboratory Analytical Data

Odor Science & Engineering, Inc. 105 Filley Street, Bloomfield, CT 06002

(860) 243-9380 Fax: (860) 243-9431

July 10, 2019

Paul Schafer SCS Tracer Environmental 5963 LaPlace Court Suite 207 Carlsbad, CA 92008

RE: Odor Panel Analysis – July 2nd & 5th, 2019 OS&E Project No. 2116-M-00 SCS Tracer Sampling Site: CARP

Dear Paul:

This letter presents the results of the recent odor panel analyses conducted by Odor Science & Engineering, Inc. (OS&E) for SCS Tracer Environmental. A total of twenty one (21) odor emission samples were collected over a two-day period (July 1st & 2nd, 2019) by on-site SCS personnel. The odor samples were collected into preconditioned Tedlar gas sampling bags provided by OS&E. Each day following sample collection, the sample bags were shipped via UPS Overnight to OS&E's Olfactory Laboratory in Bloomfield, CT for sensory analysis the next day. The first set (7 samples) were collected on Monday, July 1st and arrived for analysis on Tuesday, July 2nd. Due to a shipping error the samples collected on Tuesday, July2nd did not arrive to OS&E until Friday July 3rd (due to the July 4th holiday). **These samples were beyond the normal 30 hour hold time, but were analyzed upon delivery per authorization from SCS**. Each day the samples arrived intact with a chain of custody requesting sensory analysis attached.

Upon arrival the samples were analyzed by dynamic dilution olfactometry using a trained and screened odor panel of 8 members. The odor panelists were chosen from OS&E's pool of panelists from the Greater Hartford area who actively participate in ongoing olfactory research and represent an average to above average sensitivity when compared to a large population. The samples were quantified in terms of dilution-to-threshold (D/T) ratio and odor intensity in accordance with ASTM Methods E-679-04 and E-544-10, respectively. The odor panelists were also asked to describe the odor character of the samples at varying dilution levels. The odor panel methodology is further described in Attachment A.

The results of the odor panel tests are presented in the attached Tables 1 and 2.

We appreciate the opportunity to be of continued service to SCS Tracer Environmental. Please feel free to call Martha O'Brien or me if you have any questions concerning these results.

Sincerely, ODOR SCIENCE & ENGINEERING, INC.

ary K. Drumley

Gary K. Grumley Associate Scientist

PSchafer@scsengineers.com

	Table 1. Results of dynamic dilution olfactometry analysis – July 2 nd , 2019 SCS Tracer Environmental – Sampling Site: CARP OS&E Project No. 2116-M-00											
			Odor Conc	Steven	ns' Law	Odor Character ⁽³⁾						
Date	Conc.ConstantsDateTimeSample IDD/T $7/01/2019$ 15:001-MB16sour, sewage, H ₂ S, plastic, burnt, rubber, sweet, milk, vegetation, exhaust											
7/01/2019	15:00	1-MB	16			sour, sewage, H ₂ S, plastic, burnt, rubber, sweet, milk, vegetation, exhaust						
7/01/2019 15:16 1-MA 9 sour, rotten garbage/vegetation, plastic, burnt, rubber, milky, exhaust												
7/01/2019	15:12	1-G	149	.48	.65	rotten cabbage/mercaptan, oniony, skunky, sour garbage, earthy						
7/01/2019	15:07	1-S	38	.62	.68	sour, stagnant water, mercaptan, rotten greens/cabbage, skunk, garbage, milk, plastic						
7/01/2019	15:00	1-U	9			sour, stale, plastic, sweet, milky, rubber, vegetation, lemon						
7/01/2019	15:17	1-LA	13			stale, plastic, vegetation, sweet, milky, rubber, sewage						
7/01/2019	15:00	1-LB	10			sour, stale plastic, milky, vegetation, rubber, exhaust						

1. D/T = dilutions-to-threshold

2. Stevens' Law correlates odor concentration (C) and odor intensity (I): $I = aC^b$. The constants a and b were determined by regression analysis based on the intensity ratings of the odor panel at varying dilution levels. I = 0-8 (based on the n-butanol intensity scale), C = odor concentration (D/T) typical of ambient odor levels.

3. Summary of all odor character descriptors used by the odor panelists at varying dilution levels.

-- Sample D/T too low for dose response calculations

Odor Science & Engineering, Inc. 105 Filley Street Bloomfield, CT 06002 Phone (860) 243-9380 Fax (860) 243-9431 <u>www.odorscience.com</u>

	Table 2. Results of dynamic dilution olfactometry analysis – July 5th, 2019SCS Tracer Environmental – Sampling Site: CARPOS&E Project No. 2116-M-00										
Dete	T:	Comple ID	Odor Conc.	Steven Const	is' Law tants ⁽²⁾	Odor Character ⁽³⁾					
Date	1 ime	Sample ID	D/T ⁽¹⁾	а	D						
7/02/19	10:35	3-M-A	10			sour, plastic, mercaptan, rubber, milky, exhaust					
7/02/19	10:38	3-M-B	10			sour, plastic, sewage, mercaptan, rubber, milky, exhaust					
7/02/19	10:43	3-LB	12			sour, plastic, sewage, increaptail, rubber, iniky, exhaust sour, plastic, sulfur, burnt match, gasoline, propane, milky, exhaust, vegetation, gar plastic, wet cardboard, exhaust					
7/02/19	07:45	2-E-A	41	.41	.71	sour, manure, skunk, mercaptan, rotten cabbage/garbage, oniony, garlic, rubber band, plastic, exhaust					
7/02/19	07:51	2-E-B	10			sour, mercaptan, skunk, stale, plastic, exhaust					
7/02/19	07:56	2-SA	23	.55	.85	sour, wet paper magazine, rotten vegetables, green leaves, wet grass, watermelon rind, plastic					
7/02/19	07:58	2-G	126	.53	.89	skunk, mercaptan					
7/02/19	07:45	2-WA	27	.48	.79	sour, rotten garbage, skunk, mercaptan, sewage, plastic, exhaust					
7/02/19	07:51	2-N-A	23	.37	.82	sour, rotten grass, mercaptan, skunk, rotten vegetables, manure, burnt rubber, plastic, exhaust					
7/02/19	07:45	2-W-B	16			sour, skunk, mercaptan, sulfur, sewage, rubber, vegetation, sour milk, plastic, exhaust					
7/02/19	10:43	3-L-A	17			sour, stale, wet cardboard, paper, garbage, vegetation, milk, plastic, exhaust					
7/02/19	10:35	3-UP	9			sour, stale, cardboard, vegetation, oily, plastic, exhaust					
7/02/19	10:43	3-G	126	.45	.77	sour sewage, mercaptan, skunk, burnt coffee grounds, burnt rubber, plastic					
7/02/19	10:35	3-S-A	35	.39	.83	sour, sewage, mercaptan, skunk, vegetation, milky, plastic					

1. D/T = dilutions-to-threshold

2. Stevens' Law correlates odor concentration (C) and odor intensity (I): $I = aC^b$. The constants a and b were determined by regression analysis based on the intensity ratings of the odor panel at varying dilution levels. I = 0-8 (based on the n-butanol intensity scale), C = odor concentration (D/T) typical of ambient odor levels.

3. Summary of all odor character descriptors used by the odor panelists at varying dilution levels.

-- Sample D/T too low for dose response calculations

* Samples over the normal 30 hour hold time

\wedge	
	(
www.odorscience.co	m

.

Project Name		4- <u>4-4-4-4-4-4-4-4-4-4</u>	Project Number			7			ANAL'	YSES		Project No.	
CARP O DOR	-	Client Project No.						7	<u> </u>		/		
CARP			Chem Froject 110	/	/		\/	/.	/	/ /	/		
Contact Person Martha OBnieu	ntact Person Aartha OBrien Martha OBrien Martha Martha			P.O. No.		40-P1	44-1		/ /	/ /			
Sample Identification No.	Date	Time	Lab Sample No.	Type of Sample	74	'/u	۶ <u>/</u> >/				Expected Turnaround Time	R	emarks
1-MB .	07/01	1500		Ariv	×	Y							
1-MB .	u	1516		ч	×	¥							
1-G	a	15/2		u	*	¥							
1-5	ч	1507		બ	ĸ	x							
1-4.	v	1500		u	×	×							
1-LA.	ч	1517		<u> </u>	×	×							
1-LB	u	1500		u	×	×							
		ļ			<u> </u>						····	<u> </u>	
``````````````````````````````````````			<u> </u>			<b> </b>			·	$\mid$			
·						<u> </u>	<b>  </b>						
<u> </u>				. <u></u>								<u> </u>	
Relinquished by: (Signature)		<u> </u>	Date	Time	Receiv	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Sign tur	re)	<u>ا</u> م			Date 7(2(19	Time
Relinquished by: (Signature)			Date	Time	Receiv	ed by: (	Signatur	re)	J			Date	Time
Relinquished by: (Signature)			Date	Time	Receiv	ed by: (	Signatu	re)				Date	Time
Disposal Method					Comm	ents:					<u> </u>	- <b>I</b>	
Disposed by (Signature)			Date	Time	-								

	E Odor S	Science & E 105 Filley Stree (860) 243-9	ngineering, t, Bloomfield, CT 380 Fax: (860) 24:	Inc. 06002 3-9431			Cha	ain (	of C	ust	ody Record		
roject Name			Project Number				/		· · ·			Project No.	
CARP OID	R								ANAI	YSES			
roject Location			Client Project No	).			7	7	7	7			
CARP			CARP (	DOR		/ :	\$/.	0				/	
ontact Person	Sampler (Signat	ure)	•	P.O. No.			2/	7	/	/		/	
Martha UBrien	64 6	n			_/ર	26	<u>, )</u>	/ /	' /	' /	' /		
Sample Identification No.	Date	Time	Lab Sample No.	Type of Sample	7St		ן ה				Expected Turnaround Time	Res	marks
· 3 - M-A ·	07/02	1035		an	X	×					-		
· 3. M.B .	i,	1038		9	¥	¥							
· 3· LB	и	1043		•	*	×							
-2-E.A.	ч	0745		7	×	~						1	
· 2-E.B.	4	0751		٠,	×	×							
2-SA	ч	0756		C.	×	*							
2-G	*	0758		4	×	\$						1	
· 2-WA	4	0745		6,	×	¥							
· 2-NA		0751		A	×	x							
2-W.B	w	0745		4	×	×							
- \$3-L.A	u	1043		9	*	×					· ·		······
				<u> </u>									
(elinquished by: (Signature)			Date	Time	Receiv	A by: C	Signatu	ire)	•			Date	Time
		· · · · · · · · · · · · · · · · · · ·	01102	1335		<u>y</u> .	D	<u> </u>	<u> </u>		·····	7/5/19	10:06
vennyuisteer by: (Signature)			1/808	I IIIIE	Kepel	rea by: (	Signatu	ure)	0			Dâte	Time
Relinquished by: (Signature)			Date	Time	Receiv	ved by: (	Signatu	ire)	- <u></u>			Date	Time
Disposal Method		<u></u>	_L,	<u> </u>	Comr	nents:						_ <b>_</b>	L
Discourse d how (Ciscourses)			Dete	Time	-								

.

S&E www.odorscience.com Odor Science & En 105 Filley Street (860) 243-930			ngineering, et, Bloomfield, CT 380 Fax: (860) 243		Chain of Custody Record								
Project Name			Project Number								Project No.		
CAPP ODOR									ANAI	LYSES			
Project Location		ļ	Client Project No	o DOR									
Contact Person	Sampler (Signatu	re)	•	P.O. No.		10.	72	/	/	/			
Mantha OBrich	on	$\sim$				19	3	/	' /	'. /	' /	/	
Sample Identification No.	Date	Time	Lab Sample No.	Type of Sample	A ST			/	/	/	Expected Turnaround Time	Re	marks
-3- UP	67/02	10:35	•	Oùr	Å	×					· · ·	1	
·3-G	01 02	10:43		air	*	*						· · ·	
·3-S-A	07/02	10:35		ar	¢	¥							
······································			L			ļ							
			ļ		ļ				 				
	· · · · · · · · · · · · · · · · · · ·				ļ								
					ļ	ļ							
Relinquished by: (Signature)			Date 07/02	Time 1353	Receip	ed by: ¢	Hann H	e) 	ج_			Date 7/5/19	Time 10:06
Relinquished by: (Signature)			Date	Time	Regeiv	ed by: 🤇	Signatur	e) 🖌				Date	Time
Relinquished by: (Signature)			Date	Time	Receiv	ed by: (	Signatur	e)			<del></del>	Date	Time
Disposal Method	<u></u>		.1	.I	Comn	ents:						<u> </u>	l
Disposed by: (Signature)			Date	Time	1								

### ATTACHMENT A Odor Science & Engineering, Inc. Odor Panel Methodology

#### Measurement of Odor Levels by Dynamic Dilution Olfactometry

Odor concentration is defined as the dilution of an odor sample with odor-free air, at which only a specified percent of an odor panel, typically 50%, will detect the odor. This point represents odor threshold and is expressed in terms of "dilutions-to-threshold" (D/T).

Odor concentration was determined by means of OS&E's forced choice dynamic dilution olfactometer. The members of the panel who have been screened for their olfactory sensitivity and their ability to match odor intensities, have participated in on-going olfactory research at OS&E for a number of years.

In olfactometry, known dilutions of the odor sample were prepared by mixing a stream of odor-free air with a stream of the odor sample. The odor-free air is generated in-situ by passing the air from a compressor pump through a bed of activated charcoal and a potassium permanganate medium for purification. A portion of the odor free air is diverted into two sniff ports for direct presentation to a panelist who compares them with the diluted odor sample.

Another portion of the odor-free air is mixed in a known ratio with the odor from the sample bag and is then introduced into the third sniff port. A panelist is thus presented with three identical sniff ports, two of which provide a stream of odor-free air and the third one a known dilution of the odor sample. Unaware of which is which, the panelist is asked to identify the sniff port which is different from the other two, i.e., which contains the odor. The flow rate at all three nose cups is maintained at 3 liters per minute.

The analysis starts at high odor dilutions. Odor concentration in each subsequent evaluation is increased by a factor of 2. Initially a panelist is unlikely to correctly identify the sniff port which contains an odor. As the concentration increases, the likelihood of error is reduced and at one point the response at every subsequently higher concentration becomes consistently correct. The lowest odor concentration at which this consistency is first noticed, represents the **detection odor threshold** for that panelist.

As the odor concentration is increased further in the subsequent steps, the panelist becomes aware of the odor character, i.e. becomes able to differentiate the analyzed odor from other odors. The lowest odor concentration at which odor differentiation first becomes possible, represent the **recognition odor threshold** for the panelist. Essentially all of OS&E's work is done with recognition odor threshold. By definition the threshold odor is equal to 1 D/T (i.e. the volume of odorous air after dilution divided by the volume before dilution equals one).

The panelists typically arrive at threshold values at different concentrations. To interpret the data statistically, the geometric mean of the individual panelist's thresholds is calculated.

The olfactometer and the odor presentation procedure meet the recommendations of ASTM Standard Practice for Determination of Odor and Taste Thresholds by a Forced-Choice Ascending Concentration Series of Limits (ASTM E679-04). The analysis was carried out in the OS&E Olfactory Laboratory in Bloomfield, Connecticut.

### **Odor Intensity**

Odor intensity is determined using reference sample method with n-butanol as the reference compound (ASTM Method E-544-10). The n-butanol odor intensity scale is based on n-butanol vapor as odorant at eight concentrations. The concentration increases by a factor of two at each intensity step, starting with approximately 15 ppm at step 1.

Odors of widely different types can be compared on that scale just like the intensities of the lights of different colors can be compared to the intensity of standard, e.g. white light. Odor character and hedonic tone are ignored in that comparison. Odor intensities are routinely measured as part of the dynamic dilution olfactometry measurements. The n-butanol vapor samples are presented to the panelists in closed jars containing the standard solutions of n-butanol in distilled water. The vapor pressure above the butanol solutions corresponds to the steps on the n-butanol scale. To observe the odor intensity, a panelist opens the jar and sniffs the air above the liquid. The panelist then closes the jar so that the equilibrium vapor pressure of butanol can be re-established before the next panelist uses the jar. The odor in the jar is compared with unknown odor present at the olfactometer sniff port.

The relationship between odor concentration and intensity can be expressed as a psychophysical power function also known as Steven's law (Dose-Response Function). The function is of the form:

 $I = aC^b$ 

where:

I = odor intensity on the butanol scaleC = the odor level in dilution-to-threshold ratio (D/T)a,b = constants specific for each odor

The major significance of the dose-response function in odor control work is that it determines the rate at which odor intensity decreases as the odor concentration is reduced (either by atmospheric dispersion or by an odor control device).

Odor emissions are used as input to an odor dispersion model, which predicts odor impacts downwind under a variety of meteorological conditions. Whether or not an odor is judged objectionable depends primarily in its intensity. The dose-response constants are used to convert predicted ambient odor concentration to intensity levels. OS&E experience has shown that odors are almost universally considered objectionable when their intensity is 3 or higher on the 8-point n-butanol scale. In general, the lower the intensity, the lower the probability of complaints.

### **Odor Character Description**

Odor character refers to our ability to recognize the similarity of odors. It allows us to distinguish odors of different substances on the basis of experience. We use three types of descriptors, general such as "sweet", "pungent", "acrid", etc. or specific references to its source such as "orange", "skunk", "paint", "sewage", etc., or to a specific chemical, e.g. "methyl mercaptan", "butyric acid", or "cyclohexane". In the course of the dynamic dilution olfactometry measurements, the odor panelists are asked to describe the character of the odors they detect.



Odor Science & Engineering, Inc. 105 Filley Street, Bloomfield, CT 06002 (860) 243-9380 Fax: (860) 243-9431

October 1, 2019

Paul Schafer SCS Engineers 5963 LaPlace Court Suite 207 Carlsbad, CA 92008

### RE: Odor Panel Analysis – September 26, 2019 OS&E Project No. 2160-M-00 SCS Sampling Site: CARP

Dear Paul:

This letter presents the results of the recent odor panel analyses conducted by Odor Science & Engineering, Inc. (OS&E) for SCS Engineers. A total of twelve (12) odor emission samples were collected on September 25th, 2019 by on-site SCS personnel. The odor samples were collected into Tedlar gas sampling bags provided by OS&E. Following sample collection, the sample bags were shipped via UPS Overnight to OS&E's Olfactory Laboratory in Bloomfield, CT for sensory analysis the next day. The samples arrived intact with a chain of custody requesting sensory analysis attached.

Upon arrival the samples were analyzed by dynamic dilution olfactometry using a trained and screened odor panel of 8 members. The odor panelists were chosen from OS&E's pool of panelists from the Greater Hartford area who actively participate in ongoing olfactory research and represent an average to above average sensitivity when compared to a large population. The samples were quantified in terms of dilution-to-threshold (D/T) ratio and odor intensity in accordance with ASTM Methods E-679-04 and E-544-10, respectively. The odor panelists were also asked to describe the odor character of the samples at varying dilution levels. The odor panel methodology is further described in Attachment A.

The results of the odor panel tests are presented in the attached Table.

We appreciate the opportunity to be of continued service to SCS Engineers. Please feel free to call Martha O'Brien or me if you have any questions concerning these results.

Sincerely, ODOR SCIENCE & ENGINEERING, INC.

Jary K. Drumley

Gary K. Grumley Associate Scientist

PSchafer@scsengineers.com

	Table 1. Results of dynamic dilution olfactometry analysis – September 26 th , 2019         SCS Engineers – Sampling Site: CARP         OS&E Project No. 2160-M-00											
			Odor Conc	Stever	ns' Law	Odor Character ⁽³⁾						
Date	Time	Sample ID	$D/T^{(1)}$	a	b							
9/25/2019	08:29	GH-AM	1,950	.54	.78	skunk, "weed/pot", sour, exhaust						
9/25/2019	08:20	WA-AM	10			sour, stale, cardboard, inner tube, swampy, rubber tires, oily, sour vegetation, plastic						
9/25/2019	08:35	NA-AM	32	.42	.80	skunk, burnt, "weed/pot", manure-like, burnt rubber, mercaptan, oily, stale, plastic						
9/25/2019	08:36	EA-AM	16			burnt skunk/rubber, skunk-like, mercaptan, oily, stale food, wet cardboard, exhaust						
9/25/2019	08:27	SA-AM	9			sour, wet/dry cardboard, printing paper, dead grass, stale, vegetation, glue, plastic						
9/25/2019	08:20	WB-AM	9			sour, wet cardboard, swampy, oily, vegetation, glue, stale, plastic, exhaust						
9/25/2019	13:17	GH-PM	539	.53	.73	skunk, "weed/pot", burnt "weed", exhaust						
9/25/2019	13:10	UP-PM	9			musty, stale, wet cardboard, plastic, exhaust						
9/25/2019	13:14	LB-PM	10			sour, cardboard, vegetation, stale, plastic, exhaust						
9/25/2019	13:21	LA-PM	10			sour, musty, stale, vegetation, glue, plastic, exhaust						
9/25/2019	13:10	MB-PM	11			sour, cardboard, swampy, stale, vegetation, fresh grass, oily, plastic, exhaust						
9/25/2019	13:23	MA-PM	11			sour, wet/dry cardboard, wet paper, stale, vegetation, glue, plastic, exhaust						

1. D/T = dilutions-to-threshold

- 2. Stevens' Law correlates odor concentration (C) and odor intensity (I):  $I = aC^b$ . The constants a and b were determined by regression analysis based on the intensity ratings of the odor panel at varying dilution levels. I = 0-8 (based on the n-butanol intensity scale), C = odor concentration (D/T) typical of ambient odor levels.
- 3. Summary of all odor character descriptors used by the odor panelists at varying dilution levels.
- -- Sample D/T too low for dose response calculations

### ATTACHMENT A Odor Science & Engineering, Inc. Odor Panel Methodology

### Measurement of Odor Levels by Dynamic Dilution Olfactometry

Odor concentration is defined as the dilution of an odor sample with odor-free air, at which only a specified percent of an odor panel, typically 50%, will detect the odor. This point represents odor threshold and is expressed in terms of "dilutions-to-threshold" (D/T).

Odor concentration was determined by means of OS&E's forced choice dynamic dilution olfactometer. The members of the panel who have been screened for their olfactory sensitivity and their ability to match odor intensities, have participated in on-going olfactory research at OS&E for a number of years.

In olfactometry, known dilutions of the odor sample were prepared by mixing a stream of odor-free air with a stream of the odor sample. The odor-free air is generated in-situ by passing the air from a compressor pump through a bed of activated charcoal and a potassium permanganate medium for purification. A portion of the odor free air is diverted into two sniff ports for direct presentation to a panelist who compares them with the diluted odor sample.

Another portion of the odor-free air is mixed in a known ratio with the odor from the sample bag and is then introduced into the third sniff port. A panelist is thus presented with three identical sniff ports, two of which provide a stream of odor-free air and the third one a known dilution of the odor sample. Unaware of which is which, the panelist is asked to identify the sniff port which is different from the other two, i.e., which contains the odor. The flow rate at all three nose cups is maintained at 3 liters per minute.

The analysis starts at high odor dilutions. Odor concentration in each subsequent evaluation is increased by a factor of 2. Initially a panelist is unlikely to correctly identify the sniff port which contains an odor. As the concentration increases, the likelihood of error is reduced and at one point the response at every subsequently higher concentration becomes consistently correct. The lowest odor concentration at which this consistency is first noticed, represents the **detection odor threshold** for that panelist.

As the odor concentration is increased further in the subsequent steps, the panelist becomes aware of the odor character, i.e. becomes able to differentiate the analyzed odor from other odors. The lowest odor concentration at which odor differentiation first becomes possible, represent the **recognition odor threshold** for the panelist. Essentially all of OS&E's work is done with recognition odor threshold. By definition the threshold odor is equal to 1 D/T (i.e. the volume of odorous air after dilution divided by the volume before dilution equals one).

The panelists typically arrive at threshold values at different concentrations. To interpret the data statistically, the geometric mean of the individual panelist's thresholds is calculated.

The olfactometer and the odor presentation procedure meet the recommendations of ASTM Standard Practice for Determination of Odor and Taste Thresholds by a Forced-Choice Ascending Concentration Series of Limits (ASTM E679-04). The analysis was carried out in the OS&E Olfactory Laboratory in Bloomfield, Connecticut.

### **Odor Intensity**

Odor intensity is determined using reference sample method with n-butanol as the reference compound (ASTM Method E-544-10). The n-butanol odor intensity scale is based on n-butanol vapor as odorant at eight concentrations. The concentration increases by a factor of two at each intensity step, starting with approximately 15 ppm at step 1.

Odors of widely different types can be compared on that scale just like the intensities of the lights of different colors can be compared to the intensity of standard, e.g. white light. Odor character and hedonic tone are ignored in that comparison. Odor intensities are routinely measured as part of the dynamic dilution olfactometry measurements. The n-butanol vapor samples are presented to the panelists in closed jars containing the standard solutions of n-butanol in distilled water. The vapor pressure above the butanol solutions corresponds to the steps on the n-butanol scale. To observe the odor intensity, a panelist opens the jar and sniffs the air above the liquid. The panelist then closes the jar so that the equilibrium vapor pressure of butanol can be re-established before the next panelist uses the jar. The odor in the jar is compared with unknown odor present at the olfactometer sniff port.

The relationship between odor concentration and intensity can be expressed as a psychophysical power function also known as Steven's law (Dose-Response Function). The function is of the form:

 $I = aC^b$ 

where:

I = odor intensity on the butanol scaleC = the odor level in dilution-to-threshold ratio (D/T)a,b = constants specific for each odor

The major significance of the dose-response function in odor control work is that it determines the rate at which odor intensity decreases as the odor concentration is reduced (either by atmospheric dispersion or by an odor control device).

Odor emissions are used as input to an odor dispersion model, which predicts odor impacts downwind under a variety of meteorological conditions. Whether or not an odor is judged objectionable depends primarily in its intensity. The dose-response constants are used to convert predicted ambient odor concentration to intensity levels. OS&E experience has shown that odors are almost universally considered objectionable when their intensity is 3 or higher on the 8-point n-butanol scale. In general, the lower the intensity, the lower the probability of complaints.

### **Odor Character Description**

Odor character refers to our ability to recognize the similarity of odors. It allows us to distinguish odors of different substances on the basis of experience. We use three types of descriptors, general such as "sweet", "pungent", "acrid", etc. or specific references to its source such as "orange", "skunk", "paint", "sewage", etc., or to a specific chemical, e.g. "methyl mercaptan", "butyric acid", or "cyclohexane". In the course of the dynamic dilution olfactometry measurements, the odor panelists are asked to describe the character of the odors they detect.



CLIENT:SCS EngineersPROJECT NAME:Carp OdorAAC PROJECT NO.:191056REPORT DATE:07/10/2019

On July 3, 2019, Atmospheric Analysis & Consulting, Inc. received seven (7) Six-Liter Summa Canisters for Volatile Organic Compounds and TICs analysis by EPA method TO-15. Upon receipt, each sample was assigned a unique Laboratory ID number as follows:

Client ID	Lab ID	Return Pressure (mmHga)
VOC-1	191056-119909	760.0
VOC-2	191056-119910	751.4
VOC-3	191056-119911	751.9
VOC-4	191056-119912	722.6
VOC-5	191056-119913	672.0
VOC-6	191056-119914	682.9
VOC-7	191056-119915	653.5

This analysis is accredited under the laboratory's ISO/IEC 17025:2005 accreditation issued by the ANSI-ASQ National Accreditation Board. Refer to certificate and scope of accreditation AT-1908. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. No problems were encountered during receiving, preparation, and/or analysis of these samples.

The Technical Director or his/her designee, as verified by the following signature, has authorized release of the data contained in this hardcopy report.

If you have any questions or require further explanation of data results, please contact the undersigned.

Sucha Parmar, Ph.D

Technical Director

This report consists of 28 pages.



1534 Eastman Ave., Ste. A, Ventura, CA 93003 • (805) 650-1642

Page 1



### Laboratory Analysis Report

CLIENT	: SCS Engineers
PROJECT NO	: 191056
MATRIX	: AIR
UNITS	: PPB (v/v)

DATE RECEIVED : 0 DATE REPORTED : 0

: 07/03/2019 : 07/10/2019

#### VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	VOC-1					VOC-2		Sample	<u>, , , , , , , , , , , , , , , , , , , </u>
AACID		191056-119	909	Sample	. •	191056-119	Denorting	Method	
Date Sampled		07/02/201	9	Reporting	07/02/2019			Reporting	Reporting
Date Analyzed	07/05/2019			Limit (SRL)	07/05/2019			Limit	Limit
Can Dilution Factor	1.34		(MRLxDF's)		1.35	(SRL)	(MRL)		
	Result	Qualifier	Analysis DF		Result	Qualifier	Analysis DF	(MRLxDF's)	(MICC)
Chlorodifluoromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Propene	<srl< td=""><td>U</td><td>1.0</td><td>1.3</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<></td></srl<>	U	1.0	1.3	<srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<>	U	1.0	1.4	1.0
Dichlorodifluoromethane	<srl< td=""><td>U .</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U .	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Chloromethane	0.67		1.0	0.7	0.69		1.0	0.7	0.5
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Vinyl Chloride	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Methanol	72.9		1.0	6.7	10.4		1.0	6.8	5.0
1,3-Butadiene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Bromomethane	<srl< td=""><td>' U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	' U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Chloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Dichlorofluoromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Ethanol	13.7		1.0	2.7	<srl< td=""><td>U</td><td>1.0</td><td>2.7</td><td>2.0</td></srl<>	U	1.0	2.7	2.0
Vinyl Bromide	<srl< td=""><td>U.</td><td>· 1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0'</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U.	· 1.0	0.7	<srl< td=""><td>U</td><td>1.0'</td><td>0.7</td><td>0.5</td></srl<>	U	1.0'	0.7	0.5
Acetone	7.76		1.0	2.7	6.98	•	1.0	2.7	2.0
Trichlorofluoromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
2-Propanol (IPA)	7.78		1.0	2.7	28.6		1.0	2.7	2.0
Acrylonitrile	<srl< td=""><td>U</td><td>1.0</td><td>1.3</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<></td></srl<>	U	1.0	1.3	<srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<>	U	1.0	1.4	1.0
1,1-Dichloroethene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Methylene Chloride (DCM)	<srl< td=""><td>U</td><td>1.0</td><td>1.3</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<></td></srl<>	U	1.0	1.3	<srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<>	U	1.0	1.4	1.0
Allyl Chloride	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Carbon Disulfide	<srl< td=""><td>·U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>.0.7</td><td>0.5</td></srl<></td></srl<>	·U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>.0.7</td><td>0.5</td></srl<>	U	1.0	.0.7	0.5
Trichlorotrifluoroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
trans-1,2-Dichloroethene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,1-Dichloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td> U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Vinyl Acetate	<srl< td=""><td>U</td><td>1.0</td><td>1.3</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<></td></srl<>	U	1.0	1.3	<srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<>	U	1.0	1.4	1.0
2-Butanone (MEK)	<srl< td=""><td>U</td><td>1.0</td><td>1.3</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<></td></srl<>	U	1.0	1.3	<srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<>	U	1.0	1.4	1.0
cis-1,2-Dichloroethene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>· U ·</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>· U ·</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	· U ·	1.0	0.7	0.5
Hexane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Chloroform	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Ethyl Acetate	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Tetrahydrofuran	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,2-Dichloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,1,1-Trichloroethane	<srl< td=""><td>Ū</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	Ū	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5

 $(\mathbf{r})$ 



#### Laboratory Analysis Report

CLIENT	: SCS Engineers
PROJECT NO	: 191056
MATRIX	: AIR
UNITS	: PPB (v/v)

DATE RECEIVED DATE REPORTED

: 07/03/2019 : 07/10/2019

#### **VOLATILE ORGANIC COMPOUNDS BY EPA TO-15**

Client ID	VOC-1			T		VOC-2		0.1	
AACID		191056-119	909	Sample		191056-119	910	Sample	Method
Date Sampled		07/02/201	9	Renorting	07/02/2019			Reporting	Reporting
Date Analyzed	07/05/2019			Limit (SRL)	07/05/2019			Limit	Limit
Can Dilution Factor	1.34			(MRI VDF's)		1.35	(SRL)		
	Result	Qualifier	Analysis DF	(MIKLADI S)	Result	Oualifier	Analysis DF	(MRLxDF's)	(WIRL)
Benzene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Carbon Tetrachloride	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>Ū</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>Ū</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	Ū	1.0	0.7	0.5
Cyclohexane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,2-Dichloropropane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Bromodichloromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,4-Dioxane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>·U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>·U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	·U	1.0	0.7	0.5
Trichloroethene (TCE)	<srl< td=""><td>U.</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U .</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U.	1.0	0.7	<srl< td=""><td>U .</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U .	1.0	0.7	0.5
2,2,4-Trimethylpentane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Heptane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
cis-1,3-Dichloropropene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>Ū</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>Ū</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	Ū	1.0	0.7	0.5
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
trans-1,3-Dichloropropene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,1,2-Trichloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Toluene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
2-Hexanone (MBK)	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Dibromochloromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,2-Dibromoethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U ·</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U ·</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U ·	1.0	0.7	0.5
Tetrachloroethene (PCE)	<srl< td=""><td>· U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	· U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Chlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>· · U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>· · U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	· · U	1.0	0.7	0.5
Ethylbenzene	<srl< td=""><td>Ŭ</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	Ŭ	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
m & p-Xylenes	<srl< td=""><td>U</td><td>1.0</td><td>1.3</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<></td></srl<>	U	1.0	1.3	<srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<>	U	1.0	1.4	1.0
Bromoform	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Styrene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,1,2,2-Tetrachloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U.</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U.</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U.	1.0	0.7	0.5
o-Xylene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
4-Ethyltoluene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,3,5-Trimethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,2,4-Trimethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,3-Dichlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U,</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U,</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U,	1.0	0.7	0.5
1,4-Dichlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,2-Dichlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,2,4-Trichlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Hexachlorobutadiene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>· 1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>· 1.0</td><td>0.7</td><td>0.5</td></srl<>	U	· 1.0	0.7	0.5
BFB-Surrogate Std. % Recovery		96%				97%			70-130%

U - Compound was analyzed for, but was not detected at or above the SRL.

Sucha Parmar, Ph.D Technical Director



CLIENT PROJECT NO MATRIX

UNITS

:

# Atmospheric Analysis & Consulting, Inc.

#### Laboratory Analysis Report

SCS Engineers	DATE RECEIVED	: 07/03/2019
191056	DATE REPORTED	: 07/10/2019
AIR		
PPB (v/v)		

#### TENTATIVELY IDENTIFIED COMPOUNDS

Client ID		VOC-1
AAC.ID	19	1056-119909
Date Sampled		07/02/2019
Date Analyzed		07/05/2019
Can Dilution Factor		1.34
Compound	PPB(V/V)	Spectra Identification Ouality
Acetaldehyde	1.07	83
Unknown Hydrocarbon	0.73	NA
2-Methylbutane	0.57	. 83
Pentane	0.59	86
1,3-Pentadiene	0.47	72
.alphaPinene	4.04	94
Camphene	0.44	91
.betaMyrcene	27.7	91
.alphaPhellandrene	0.60	90
3-Carene	0.56	97
D-Limonene	7.34	95
3,7-Dimethyl-1,3,6-octatriene	3,42	92
1-Methyl-4-(1-methylethylidene)-cyclohexene	12.9	98
BFB-Surrogate Std. % Recovery	96%	

#### TENTATIVELY IDENTIFIED COMPOUNDS

Client ID		VOC-2			
AAC ID	191056-119910				
Date Sampled		07/02/2019			
Date Analyzed	07/05/2019				
Can Dilution Factor		1.35			
Compound	PPB(V/V)	Spectra Identification Quality			
.alphaPinene	95.5	94			
.betaMyrcene	28.8	90			
.alphaPheilandrene	3.47	91			
1-Methyl-4-(1-methylethyl)-7-oxabicyclo[2.2.1]heptane	22.6	96			
1-Methyl-(1-methylethyl)-benzene	63.1	95.			
D-Limonene	189	94			
1-Methyl-4-(1-methylethyl)-1,4-cyclohexadiene	11.3	94			
1-Methyl-(1-methylethenyl)-benzene	5.29	95			
1-Methyl-4-(1-methylethylidene)-cyclohexene	60.3	98			
1,3,3-Trimethylbicyclo[2.2.1]heptan-2-ol	3.78	96			
1,7,7-Trimethylbicyclo[2.2.1]heptan-2-one	4.95	98			
Isoborneol	1.94	86			
BFB-Surrogate Std. % Recovery	97%				

Sucha Parmar, Ph.D Technical Director



#### Laboratory Analysis Report

CLIENT	
<b>PROJECT NO</b>	
MATRIX	
TINITS	

: SCS Engineers : 191056 : AIR : PPB (v/v)

DATE	RECEIVED	:	0
DATE	REPORTED	:	0

: 07/03/2019 : 07/10/2019

#### **VOLATILE ORGANIC COMPOUNDS BY EPA TO-15**

Client ID		VOC-3	<u> </u>	T		VOC-4	· · · · · · · · · · · · · · · · · · ·	Sample	
AAC ID		191056-1199	011	Sample	191056-119912			Deporting	Method
Date Sampled		07/02/201	9	Reporting	07/02/2019			Reporting	Reporting
Date Analyzed		07/05/201	9	Limit (SRL)		07/05/201	9	Limit	Limit
Can Dilution Factor		1.36	1	(MRLxDF's)		1.40		(SRL)	(MRI)
	Result	Qualifier	Analysis DF		Result	Qualifier	Analysis DF	(MRLxDF's)	(MINL)
Chlorodifluoromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>. U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>. U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	. U	1.0	0.7	0.5
Propene	<srl< td=""><td>U.</td><td>1.0</td><td>1.4</td><td><srl< td=""><td>U.</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<></td></srl<>	U.	1.0	1.4	<srl< td=""><td>U.</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<>	U.	1.0	1.4	1.0
Dichlorodifluoromethane	<srl< td=""><td>U .</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U .	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Chloromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Vinyl Chloride	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Methanol	<srl< td=""><td>U</td><td>1.0</td><td>6.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>7.0</td><td>5.0</td></srl<></td></srl<>	U	1.0	6.8	<srl< td=""><td>U</td><td>1.0</td><td>7.0</td><td>5.0</td></srl<>	U	1.0	7.0	5.0
1,3-Butadiene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Bromomethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Chloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Dichlorofluoromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Ethanol	2.74		1.0	2.7	<srl< td=""><td>U</td><td>1.0</td><td>2.8</td><td>2.0</td></srl<>	U	1.0	2.8	2.0
Vinyl Bromide	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>·U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>·U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	·U	1.0	0.7	0.5
Acetone	7.83 ·		1.0	2.7	3.62		1.0	2.8	2.0
Trichlorofluoromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
2-Propanol (IPA)	5.41		1.0	2.7	<srl< td=""><td>U</td><td>1.0</td><td>2.8</td><td>2.0</td></srl<>	U	1.0	2.8	2.0
Acrylonitrile	<srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<></td></srl<>	U	1.0	1.4	<srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<>	U	1.0	1.4	1.0
1,1-Dichloroethene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Methylene Chloride (DCM)	<srl< td=""><td><u> </u></td><td>1.0</td><td>1.4</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<></td></srl<>	<u> </u>	1.0	1.4	<srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<>	U	1.0	1.4	1.0
Allyl Chloride	<srl< td=""><td><u> </u></td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	<u> </u>	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Carbon Disulfide	<srl< td=""><td><u> </u></td><td>1.0</td><td>0.7 -</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	<u> </u>	1.0	0.7 -	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Trichlorotrifluoroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
trans-1,2-Dichloroethene	_ <srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U U	1.0	0.7	0.5
1,1-Dichloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U ·</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U ·</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U ·	1.0	0.7	0.5
Vinyl Acetate	<srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<></td></srl<>	U	1.0	1.4	<srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<>	U	1.0	1.4	1.0
2-Butanone (MEK)	<srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>&lt;<u>SRL</u></td><td>· U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<>	U	1.0	1.4	< <u>SRL</u>	· U	1.0	1.4	1.0
cis-1,2-Dichloroethene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Hexane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U .</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U .</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U .	1.0	0.7	0.5
Chloroform	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Ethyl Acetate	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Tetrahydrofuran	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,2-Dichloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,1,1-Trichloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0,5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0,5</td></srl<>	U	1.0	0.7	0,5



: SCS Engineers

: 191056

: PPB (v/v)

: AIR

CLIENT PROJECT NO

MATRIX

UNITS

## Atmospheric Analysis & Consulting, Inc.

#### Laboratory Analysis Report

DATE RECEIVED	:	07/03
DATE REPORTED	:	07/10

/2019 /2019

#### **VOLATILE ORGANIC COMPOUNDS BY EPA TO-15**

Client ID		VOC-3		1		VOC-4		General	
AAC ID		191056-119	911	Sample	191056-119912			Method	
Date Sampled		07/02/201	9	Reporting	07/02/2019			Reporting	Reporting
Date Analyzed		07/05/201	9	Limit (SRL)	07/05/2019			Limit	Limit
Can Dilution Factor		1.36		(MRI vDF'e)		1.40		(SRL)	
	Result	Qualifier	Analysis DF	(WIRLADT S)	Result	Oualifier	Analysis DF	(MRLxDF's)	(WIRL)
Benzene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Carbon Tetrachloride	SRL <	U	1.0	0.7	<srl< td=""><td>Ū</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	Ū	1.0	0.7	0.5
Cyclohexane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U ·</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U ·</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U ·	1.0	0.7	0.5
1,2-Dichloropropane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Bromodichloromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,4-Dioxane	<srl< td=""><td>· U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	· U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Trichloroethene (TCE)	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
2,2,4-Trimethylpentane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Heptane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
cis-1,3-Dichloropropene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
trans-1,3-Dichloropropene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,1,2-Trichloroethane	<srl< td=""><td>U -</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U -	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Toluene	<srl< td=""><td>U -</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U -	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
2-Hexanone (MBK)	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Dibromochloromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>- 0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>- 0.5</td></srl<>	U	1.0	0.7	- 0.5
1,2-Dibromoethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Tetrachloroethene (PCE)	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Chlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Ethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
m & p-Xylenes	<srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<></td></srl<>	U	1.0	1.4	<srl< td=""><td>U</td><td>1.0</td><td>1.4</td><td>1.0</td></srl<>	U	1.0	1.4	1.0
Bromoform	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Styrene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,1,2,2-Tetrachloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
o-Xylene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
4-Ethyltoluene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,3,5-Trimethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,2,4-Trimethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,3-Dichlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,4-Dichlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,2-Dichlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
1,2,4-Trichlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
Hexachlorobutadiene	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.7	<srl< td=""><td>U</td><td>1.0</td><td>0.7</td><td>0.5</td></srl<>	U	1.0	0.7	0.5
BFB-Surrogate Std. % Recovery		100%				90%			70-130%

 $(\mathbf{k})$ 

U - Compound was analyzed for, but was not detected at or above the SRL.

Nmo Sucha Parmar, Ph.D. Technical Director



MATRIX UNITS

# Atmospheric Analysis & Consulting, Inc.

#### Laboratory Analysis Report

CLIENT PROJECT NO MATRIX	: SCS Engineers : 191056 : AIR		DATE RECEIVED DATE REPORTED	: 07/03/2019 : 07/10/2019
UNITS	• PPR $(v/v)$			

#### **TENTATIVELY IDENTIFIED COMPOUNDS**

Client ID	VOC-3					
AACID	191056-119911					
Date Sampled	•	07/02/2019				
Date Analyzed		07/05/2019				
Can Dilution Factor	1.36					
Compound	PPB(V/V)	Spectra Identification Quality				
Unknown Hydrocarbon #1	1.14	NA NA				
.alphaPinene	1.60	95				
Unknown Hydrocarbon #2	1.10	NA				
Unknown Hydrocarbon #3	0.99	NA				
.betaMyrcene	14.6	91				
.alphaPhellandrene	0.90	68				
1-Methyl-(1-methylethyl)-benzene	0.75	94				
D-Limonene	2.84	95				
3,7-Dimethyl-1,3,6-octatriene	2.08	93				
1-Methyl-4-(1-methylethylidene)-cyclohexene	5.45	97				
BFB-Surrogate Std. % Recovery	100%					

#### TENTATIVELY IDENTIFIED COMPOUNDS

Client ID	· · · · · · · · · · · · · · · · · · ·	VOC-4				
AAC ID	19	1056-119912				
Date Sampled		7/02/2019				
Date Analyzed	07/05/2019					
Can Dilution Factor	1.40					
Compound	PPB(V/V)	Spectra Identification Quality				
Acetaldehyde	1.12	83				
.betaMyrcene	1.73	95				
Limonene	0.53	91				
1-Methyl-4-(1-methylethylidene)-cyclohexene	0.49	96				
BFB-Surrogate Std. % Recovery	90%					

Sucha Parmar, Ph.D. Technical Director



: SCS Engineers : 191056

: AIR

: PPB (v/v)

CLIENT PROJECT NO

MATRIX

UNITS

# Atmospheric Analysis & Consulting, Inc.

Laboratory Analysis Report

DATE RECEIVED	: 07/03/2019
DATE REPORTED	: 07/10/2019

#### VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID		VOC-5				VOC-6		Sample	
AAC ID		191056-1199	013	Sample	191056-119914			District	Method
Date Sampled	-	07/02/2019	9	Reporting	07/02/2019			Reporting	Reporting
Date Analyzed		07/05/2019	9	Limit (SRL)		07/05/201	9	Limit	Limit
Can Dilution Factor		1.51		(MRLxDF's)		1.51		(SRL)	(MPI)
	Result	Qualifier	Analysis DF		Result	Qualifier	Analysis DF	(MRLxDF's)	(MICL)
Chlorodifluoromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Propene	<srl< td=""><td>U</td><td>1.0</td><td>1.5</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.5</td><td>1.0</td></srl<></td></srl<>	U	1.0	1.5	<srl< td=""><td>U</td><td>1.0</td><td>1.5</td><td>1.0</td></srl<>	U	1.0	1.5	1.0
Dichlorodifluoromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U ·</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U ·</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U ·	1.0	0.8	0.5
Chloromethane	<srl< td=""><td>U</td><td>· 1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	· 1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U ·</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U ·</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U ·	1.0	0.8	0.5
Vinyl Chloride	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U U	1.0	0.8	0.5
Methanol	<srl< td=""><td>U</td><td>1.0</td><td>7.6</td><td><srl< td=""><td>U.</td><td>1.0</td><td>7.5</td><td>5.0</td></srl<></td></srl<>	U	1.0	7.6	<srl< td=""><td>U.</td><td>1.0</td><td>7.5</td><td>5.0</td></srl<>	U.	1.0	7.5	5.0
1,3-Butadiene	<srl< td=""><td>U.</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>· · 0.5</td></srl<></td></srl<>	U.	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>· · 0.5</td></srl<>	U	1.0	0.8	· · 0.5
Bromomethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Chloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Dichlorofluoromethane	<srl< td=""><td>Ŭ</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U ·</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	Ŭ	1.0	0.8	<srl< td=""><td>U ·</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U ·	1.0	0.8	0.5
Ethanol	7.02		1.0	3.0	<srl< td=""><td>U</td><td>1.0</td><td>3.0</td><td>2.0</td></srl<>	U	1.0	3.0	2.0
Vinyl Bromide	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>Ū</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>Ū</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	Ū	1.0	0.8	0.5
Acetone	<srl< td=""><td>U</td><td>1.0</td><td>3.0</td><td><srl< td=""><td>U</td><td>1.0</td><td>3.0</td><td>2.0</td></srl<></td></srl<>	U	1.0	3.0	<srl< td=""><td>U</td><td>1.0</td><td>3.0</td><td>2.0</td></srl<>	U	1.0	3.0	2.0
Trichlorofluoromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
2-Propanol (IPA)	<srl< td=""><td>U</td><td>1.0</td><td>3.0</td><td><srl< td=""><td>U</td><td>1.0</td><td>3.0</td><td>2.0</td></srl<></td></srl<>	U	1.0	3.0	<srl< td=""><td>U</td><td>1.0</td><td>3.0</td><td>2.0</td></srl<>	U	1.0	3.0	2.0
Acrylonitrile	<srl< td=""><td>U</td><td>1.0</td><td>1.5</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.5</td><td>1.0</td></srl<></td></srl<>	U	1.0	1.5	<srl< td=""><td>U</td><td>1.0</td><td>1.5</td><td>1.0</td></srl<>	U	1.0	1.5	1.0
1,1-Dichloroethene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Methylene Chloride (DCM)	<srl< td=""><td>U</td><td>1.0</td><td>1.5</td><td><srl< td=""><td>U</td><td>1.0.</td><td>1.5</td><td>1.0</td></srl<></td></srl<>	U	1.0	1.5	<srl< td=""><td>U</td><td>1.0.</td><td>1.5</td><td>1.0</td></srl<>	U	1.0.	1.5	1.0
Allyl Chloride	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>SRL &lt;</td><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	SRL <	U	1.0	0.8	0.5
Carbon Disulfide	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Trichlorotrifluoroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U U	1.0	0.8	0.5
trans-1,2-Dichloroethene	<srl< td=""><td>U .</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>Ū</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U .	1.0	0.8	<srl< td=""><td>Ū</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	Ū	1.0	0.8	0.5
1,1-Dichloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Vinyl Acetate	< <u>SRL</u>	U	1.0	1.5	<srl< td=""><td>U</td><td>1.0</td><td>1.5</td><td>1.0</td></srl<>	U	1.0	1.5	1.0
2-Butanone (MEK)	<srl< td=""><td>U</td><td>1.0</td><td>1.5</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.5</td><td>1.0</td></srl<></td></srl<>	U	1.0	1.5	<srl< td=""><td>U</td><td>1.0</td><td>1.5</td><td>1.0</td></srl<>	U	1.0	1.5	1.0
cis-1,2-Dichloroethene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Hexane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U .</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U .</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U .	1.0	0.8	0.5
Chloroform	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U.</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U.</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U.	1.0	0.8	0.5
Ethyl Acetate	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Tetrahydrofuran	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U.</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U.</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U.	1.0	0.8	0.5
1,2-Dichloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
1,1,1-Trichloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5

 $(\mathbf{r})$ 



: SCS Engineers : 191056

: AIR : PPB (v/v)

CLIENT PROJECT NO

MATRIX

UNITS

# Atmospheric Analysis & Consulting, Inc.

#### Laboratory Analysis Report

DATE RECEIVED	: 07/03/2019
DATE REPORTED	: 07/10/2019

#### **VOLATILE ORGANIC COMPOUNDS BY EPA TO-15**

Client ID		VOC-5				VOC-6		Comple	
AACID		191056-119	)13	Sample	191056-119914			Demonstra Method	
Date Sampled		07/02/201	9	Reporting	07/02/2019			Reporting	Reporting
Date Analyzed		07/05/201	9	Limit (SRL)		07/05/201	9	Limit	Limit
Can Dilution Factor	· .	1.51	in the second	(MRI TDF's)		1.51		(SRL)	(MDI)
	Result	Qualifier	Analysis DF	(WINDADE 3)	Result	Qualifier	Analysis DF	(MRLxDF's)	
Benzene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Carbon Tetrachloride	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Cyclohexane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
1,2-Dichloropropane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Bromodichloromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
1,4-Dioxane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Trichloroethene (TCE)	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
2,2,4-Trimethylpentane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Heptane	<srl< td=""><td>·U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	·U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
cis-1,3-Dichloropropene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
trans-1,3-Dichloropropene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U.</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U.</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U.	1.0	0.8	0.5
1,1,2-Trichloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Toluene	0.95		1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
2-Hexanone (MBK)	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Dibromochloromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
1,2-Dibromoethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Tetrachloroethene (PCE)	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Chlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Ethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
m & p-Xylenes	<srl< td=""><td>U</td><td>1.0</td><td>1.5</td><td><srl< td=""><td>U</td><td>1.0</td><td>1.5</td><td>1.0</td></srl<></td></srl<>	U	1.0	1.5	<srl< td=""><td>U</td><td>1.0</td><td>1.5</td><td>1.0</td></srl<>	U	1.0	1.5	1.0
Bromoform	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Styrene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>·U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>·U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	·U	1.0	0.8	0.5
1,1,2,2-Tetrachloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
o-Xylene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
4-Ethyltoluene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U n</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U n</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U n	1.0	0.8	0.5
1,3,5-Trimethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
1,2,4-Trimethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
1,3-Dichlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
1,4-Dichlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
1,2-Dichlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
1,2,4-Trichlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td><srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<></td></srl<>	U	1.0	0.8	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Hexachlorobutadiene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>&lt;<u>SRL</u></td><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	< <u>SRL</u>	U	1.0	0.8	0.5
BFB-Surrogate Std. % Recovery		94%				02%	•		70 130%

U - Compound was analyzed for, but was not detected at or above the SRL.

Sucha Parmar, Ph.D. Technical Director



CLIENT PROJECT NO MATRIX

UNITS

## Atmospheric Analysis & Consulting, Inc.

I aboratory Analysis Report

: SCS Engineers	DATE RECEIVED	: 07/03/2019
: 191056	DATE REPORTED	: 07/10/2019
: AIR : PPB (v/v)		

#### TENTATIVELY IDENTIFIED COMPOUNDS

Client ID	VOC-5					
AAC ID		191056-119913				
Date Sampled		07/02/2019				
Date Analyzed		07/05/2019				
Can Dilution Factor	1.51					
Compound	<b>PPB(V/V)</b>	Spectra Identification Ouality				
Acetaldehyde	0.89	83				
2-Methylbutane	2.22	91				
Pentane	1.66	59				
1-Propanol	1.93	59				
2-Methylpentane	1.33	91				
3-Methylpentane	0.75	74				
Methylcyclopentane	0.69	91				
2-Methylhexane	0.47	91				
3-Methylhexane	0.41	90				
BFB-Surrogate Std. % Recovery	94%					

#### **TENTATIVELY IDENTIFIED COMPOUNDS**

Client ID	VOC-6				
AACID	191056-119914				
Date Sampled	07/02/2019				
Date Analyzed	07/05/2019				
Can Dilution Factor	1.51				
Compound	PPB(V/V)	Spectra Identification Ouality			
Unknown Hydrocarbon #1	0.86	NA			
Acetaldehyde	0.83	83			
Unknown Hydrocarbon #2	0.68	NA			
BFB-Surrogate Std. % Recovery	92%				

vema 1 ucha Parmar, Ph.D Technical Director



#### Laboratory Analysis Report

CLIENT PROJECT NO MATRIX UNITS

: SCS Engineers : 191056 : AIR : PPB (v/v) DATE RECEIVED : DATE REPORTED :

: 07/03/2019 : 07/10/2019

#### **VOLATILE ORGANIC COMPOUNDS BY EPA TO-15**

Client ID		VOC-7		G	Mathad
AACID		191056-119	Sample	Method	
Date Sampled		07/02/201	9	Reporting	Reporting
Date Analyzed		07/08/201	9	Limit (SRL)	Limit
Can Dilution Factor		1.56		(MRLxDF's)	(MRL)
	Result	Qualifier	Analysis DF	(	(
Chlorodifluoromethane	SRL	U	1.0	0.8	0.5
Propene	<u> <srl< u=""></srl<></u>	U ,	1.0	1.6	1.0
Dichlorodifluoromethane	<srl< td=""><td> U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Chloromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Dichlorotetrafluoroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Vinyl Chloride	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Methanol	<srl< td=""><td>U</td><td>1.0</td><td>7.8</td><td>5.0</td></srl<>	U	1.0	7.8	5.0
1,3-Butadiene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Bromomethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Chloroethane	<srl< td=""><td>U.</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U.	1.0	0.8	0.5
Dichlorofluoromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Ethanol	<srl< td=""><td>U</td><td>1.0</td><td>3.1</td><td>2.0</td></srl<>	U	1.0	3.1	2.0
Vinyl Bromide	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Acetone	<srl< td=""><td>U</td><td>1.0</td><td>3.1</td><td>2.0</td></srl<>	U	1.0	3.1	2.0
Trichlorofluoromethane	<srl< td=""><td>U</td><td>+ 1.0</td><td>0.8</td><td>0.5</td></srl<>	U	+ 1.0	0.8	0.5
2-Propanol (IPA)	<srl< td=""><td>U</td><td>1.0</td><td>3.1</td><td>2.0</td></srl<>	U	1.0	3.1	2.0
Acrylonitrile	<srl< td=""><td>U</td><td>1.0</td><td>1.6</td><td>1.0</td></srl<>	U	1.0	1.6	1.0
1,1-Dichloroethene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Methylene Chloride (DCM)	<srl< td=""><td>U</td><td>1.0</td><td>1.6</td><td>1.0</td></srl<>	U	1.0	1.6	1.0
Allyl Chloride	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Carbon Disulfide	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Trichlorotrifluoroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
trans-1,2-Dichloroethene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
1,1-Dichloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Vinyl Acetate	<srl< td=""><td>U</td><td>1.0</td><td>1.6</td><td>1.0</td></srl<>	U	1.0	1.6	1.0
2-Butanone (MEK)	<srl< td=""><td>U</td><td>1.0</td><td>1.6</td><td>1.0</td></srl<>	U	1.0	1.6	1.0
cis-1,2-Dichloroethene	<srl< td=""><td>Ū</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	Ū	1.0	0.8	0.5
Hexane	<srl< td=""><td>Ū</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	Ū	1.0	0.8	0.5
Chloroform	<srl< td=""><td>Ū</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	Ū	1.0	0.8	0.5
Ethyl Acetate	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5
Tetrahydrofuran	<srl< td=""><td>Ū</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	Ū	1.0	0.8	0.5
1,2-Dichloroethane	<srl< td=""><td>Ŭ</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	Ŭ	1.0	0.8	0.5
1,1,1-Trichloroethane	<srl< td=""><td>Ū</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	Ū	1.0	0.8	0.5



#### Laboratory Analysis Report

CLIENT
PROJECT NO
MATRIX
UNITS

: SCS Engineers : 191056 : AIR : PPB (v/v)

DATE RECEIVED DATE REPORTED

: 07/03/2019 : 07/10/2019

#### **VOLATILE ORGANIC COMPOUNDS BY EPA TO-15**

Client ID	VOC-7					
AACID		191056-119	Sample	Method		
Date Sampled		07/02/201	Reporting	Reporting		
Date Analyzed		07/08/201	9	Limit (SRL)	Limit	
Can Dilution Factor		1.56		(MRLxDF's)	(MRL)	
	Result	Qualifier	Analysis DF		(IIIII)	
Benzene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
Carbon Tetrachloride	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
Cyclohexane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
1,2-Dichloropropane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
Bromodichloromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
1,4-Dioxane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
Trichloroethene (TCE)	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
2,2,4-Trimethylpentane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
Heptane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
cis-1,3-Dichloropropene	<srl< td=""><td>Ū</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	Ū	1.0	0.8	0.5	
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td>Ū</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	Ū	1.0	0.8	0.5	
trans-1,3-Dichloropropene	<srl< td=""><td>Ū</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	Ū	1.0	0.8	0.5	
1,1,2-Trichloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
Toluene	<srl< td=""><td>Ū</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	Ū	1.0	0.8	0.5	
2-Hexanone (MBK)	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
Dibromochloromethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
1,2-Dibromoethane	<srl< td=""><td>U .</td><td>1.0 *</td><td>0.8</td><td>0.5</td></srl<>	U .	1.0 *	0.8	0.5	
Tetrachloroethene (PCE)	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
Chlorobenzene	<srl< td=""><td>Ū.</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	Ū.	1.0	0.8	0.5	
Ethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
m & p-Xylenes	<srl< td=""><td>U</td><td>1.0</td><td>1.6</td><td>1.0</td></srl<>	U	1.0	1.6	1.0	
Bromoform	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
Styrene	<srl< td=""><td>Ū</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	Ū	1.0	0.8	0.5	
1,1,2,2-Tetrachloroethane	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
o-Xylene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
4-Ethyltoluene	<srl< td=""><td>U</td><td>- 1.0</td><td>0.8</td><td>0.5</td></srl<>	U	- 1.0	0.8	0.5	
1,3,5-Trimethylbenzene	<srl< td=""><td>U ·</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U ·	1.0	0.8	0.5	
1,2,4-Trimethylbenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
1,3-Dichlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
1,4-Dichlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
1,2-Dichlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
1,2,4-Trichlorobenzene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
Hexachlorobutadiene	<srl< td=""><td>U</td><td>1.0</td><td>0.8</td><td>0.5</td></srl<>	U	1.0	0.8	0.5	
BFB-Surrogate Std % Recovery		91%			70-130%	

U - Compound was analyzed for, but was not detected at or above the SRL.

dung 1 Sucha Parmar, Ph.D. Technical Director



CLIENT PROJECT NO MATRIX

UNITS

: SCS Engineers : 191056

: AIR

: **PPB** (v/v)

# Atmospheric Analysis & Consulting, Inc.

Laboratory Analysis Report

	DATE RECEIVED DATE REPORTED	: 07/03/2019 : 07/10/2019

#### TENTATIVELY IDENTIFIED COMPOUNDS

-	VOC-7
	191056-119915
	07/02/2019
	07/08/2019
	1.56
<b>PPB(V/V)</b>	Spectra Identification Ouality
1.51	83
91%	
	<b><i>PPB(V/V)</i></b> 1.51 91%

Sucha Parmar, Ph.D. Technical Director

### Page 13

2225 Sperry Ave., Ventura, CA 93003 • www.aaclab.com





ANALYSIS DATE : 07/05/2019 ANALYST : JJG

**INSTRUMENT ID** : GC/MS-02 CALIBRATION STD ID

: PS041919-05

#### **VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15**

Continuing Calibration Verification of the 06/25/2019 Calibration

Compounds	Conc	Daily Conc	%REC*
4-BFB (surrogate standard)	10.00	9.79	98
Chlorodifluoromethane	10.80	11.23	104
Propene	11.00	12.75	116
Dichlorodifluoromethane	10.20	10.63	104
Chloromethane	10.60	11.28	106
Dichlorotetrafluoroethane	11.00	11.55	105
Vinyl Chloride	10.40	10.84	104
Methanol	22.50	24.14	107
1,3-Butadiene	10.90	12.29	113
Bromomethane	10.30	10.69	· 104
Chloroethane	10.10	12.95	128
Dichlorofluoromethane	10.80	11.45	106
Ethanol	11.00	12.31	112
Vinyl Bromide	10.70	10.99	103
Acetone	10.90	11.95	110
Trichlorofluoromethane	10.10	10.17	101
2-Propanol (IPA)	11.00	11.33	103
Acrylonitrile	11.50	12.52	109
1,1-Dichloroethene	10.70	11.14	104
Methylene Chloride (DCM)	10.60	11.26	106
Allyl Chloride	10.70	11.45	107
Carbon Disulfide	10.50	11.68	111
Trichlorotrifluoroethane	10.60	11.29	107
trans-1,2-Dichloroethene	10.30	11.37	110
1,1-Dichloroethane	10.50	11.26	. 107
Methyl Tert Butyl Ether (MTBE)	10.80	12.21	113
Vinyl Acetate	10.90	12.01	110
2-Butanone (MEK)	10.90	11.91	109
cis-1,2-Dichloroethene	10.90	12.09	111
Hexane	10.70	11.68	109
Chloroform	10.90	11.30	104.
Ethyl Acetate	10.90	11.87	109
Tetrahydrofuran	10.20	11.67	- 114
1,2-Dichloroethane	10.80	11.82	109
1,1,1-Trichloroethane	10.80	11.42	106

Page 14



ANALYSIS DATE : 07/05/2019 ANALYST : JJG

INSTRUMENT ID : GC/MS-02 CALIBRATION STD ID : PS041919-05

#### VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Continuing Calibration Verification of the 06/25/2019 Calibration

Compoands	Conc	Daily Conc	%REC*
Benzene	10.90	11.41	105
Carbon Tetrachloride	10.60	10.99	104
Cyclohexane	10.90	12.15	111
1,2-Dichloropropane	10.80	11.43	106
Bromodichloromethane	10.90	11.64	107
1,4-Dioxane	10.90	11.29	104
Trichloroethene (TCE)	10.90	11.85	109
2,2,4-Trimethylpentane	10.70	11.54	108
Heptane	10.80	12.52	116
cis-1,3-Dichloropropene	10.60	11.30	107
4-Methyl-2-pentanone (MiBK)	10.60	11.32	107
trans-1,3-Dichloropropene	10.20	11.09	109
1,1,2-Trichloroethane	10.90	11.24	103
Toluene	11.00	11.32	103
2-Hexanone (MBK)	10.80	11.70	108
Dibromochloromethane	10.30	10.54	102
1,2-Dibromoethane	10.90	11.24	103
Tetrachloroethene (PCE)	10.90	11.26	103
Chlorobenzene	11.00	11.81	107 ·
Ethylbenzene	10.90	11.95	110
m & p-Xylenes	21.00	23.49	112
Bromoform	10.50	11.24	107
Styrene	10.80	11.91	110
1,1,2,2-Tetrachloroethane	10.70	11.77	110
o-Xylene	10.70	12.06	113
4-Ethyltoluene	10.30	11.60	113
1,3,5-Trimethylbenzene	10.40	11.63	112
1,2,4-Trimethylbenzene	10.40	11.68	112
Benzyl Chloride (a-Chlorotoluene)	9.70	10.61	109
1,3-Dichlorobenzene	10.10	10.46	104
1,4-Dichlorobenzene	10.20	11.13	109
1,2-Dichlorobenzene	10.20	10.83	106
1,2,4-Trichlorobenzene	9.70	11.58	119
Hexachlorobutadiene	10.00	11.23	112

* - %REC should be 70-130%

Sucha Parmar, PhD

Technical Director



### Quality Control/Quality Assurance Report

CLIENT ID	: Laboratory Control Spike	DATE ANALYZED	: 07/05/2019
AAC ID	: LCS/LCSD	DATE REPORTED	: 07/05/2019
MEDIA	: Air	UNITS	: ppbv

#### **TO-15 Laboratory Control Spike Recovery**

Compound	Sample	Spike	Spike	Dup Spike	Spike	Spike Dup	RPD**
Compound	Conc.	Added	Res	Res	% Rec *	% Rec *	%
1,1-Dichloroethene	0.0	10.70	11.14	10.67	104	100	4.3
Methylene Chloride (DCM)	0.0	10.60	11.26	11.06	106	104	1.8
Benzene	0.0	10.90	11.41	11.18	105	103	2.0
Trichloroethene (TCE)	0.0	10.90	11.85	11.35	109	104	4.3
Toluene	0.0	11.00	11.32	11.08	103	101	2.1
Tetrachloroethene (PCE)	0.0	10.90	11.26	10.86	103	100	3.6
Chlorobenzene	0.0	11.00	11.81	11.99	107	109	1.5
Ethylbenzene	0.0	10.90	11.95	11.92	110	109	0.3
m & p-Xylenes	0.0	21.00	23.49	23.58	112	112	0.4
o-Xylene	0.0	10.70	12.06	12.20	113	114	1.2

* Must be 70-130%

** Must be < 25%

Sucha Parmar, PhD

Technical Director





### Method Blank Analysis Report

MATRIX	: AIR	ANALYSIS DATE	: 07/05/2019
UNITS	: ppbv	REPORT DATE	: 07/05/2019

#### VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	Method Blank	
AAC ID	MB 070519	RL
Chlorodifluoromethane	<rl< td=""><td>0.5</td></rl<>	0.5
Propene	<rl< td=""><td>1.0</td></rl<>	1.0
Dichlorodifluoromethane	<rl< td=""><td>0.5</td></rl<>	0.5
Chloromethane	<rl< td=""><td>0.5</td></rl<>	0.5
Dichlorotetrafluoroethane	<rl< td=""><td>0.5</td></rl<>	0.5
Vinvl Chloride	<r1.< td=""><td>0.5</td></r1.<>	0.5
Methanol	<rl< td=""><td>5.0</td></rl<>	5.0
1.3-Butadiene	<ri.< td=""><td>0.5</td></ri.<>	0.5
Bromomethane	<r1.< td=""><td>0.5</td></r1.<>	0.5
Chloroethane	<r1.< td=""><td>0.5</td></r1.<>	0.5
Dichlorofluoromethane	<ri.< td=""><td>0.5</td></ri.<>	0.5
Ethanol	<rl< td=""><td>2.0</td></rl<>	2.0
Vinyl Bromide	<ri.< td=""><td>0.5</td></ri.<>	0.5
Acetone	<ri.< td=""><td>2.0</td></ri.<>	2.0
Trichlorofluoromethane	<ri.< td=""><td>0.5</td></ri.<>	0.5
2-Propanol (IPA)	<r1< td=""><td>2.0</td></r1<>	2.0
Acrylonitrile	<ri< td=""><td>1.0</td></ri<>	1.0
1 1-Dichloroethene	<ri< td=""><td>0.51</td></ri<>	0.51
Methylene Chloride (DCM)	<ri.< td=""><td>1.0</td></ri.<>	1.0
Allyl Chloride	<ri.< td=""><td>0.5</td></ri.<>	0.5
Carbon Disulfide	<ri< td=""><td>0.5</td></ri<>	0.5
Trichlorotrifluoroethane	<ri< td=""><td>0.5</td></ri<>	0.5
trans-1 2-Dichloroethene	<ri< td=""><td>0.5</td></ri<>	0.5
1 1-Dichloroethane	<ri< td=""><td>0.5</td></ri<>	0.5
Methyl Tert Butyl Ether (MTBE)	<ri.< td=""><td>0.5</td></ri.<>	0.5
Vinvl Acetate	<ri< td=""><td>1.0</td></ri<>	1.0
2-Butanone (MEK)	<ri.< td=""><td>1.0</td></ri.<>	1.0
cis-1.2-Dichloroethene	<ri.< td=""><td>0.5</td></ri.<>	0.5
Hexane	<rl< td=""><td>0.5</td></rl<>	0.5
Chloroform	<ri.< td=""><td>0.5</td></ri.<>	0.5
Ethyl Acetate	<rl< td=""><td>0.5</td></rl<>	0.5
Tetrahydrofuran	<rl< td=""><td>0.5</td></rl<>	0.5
1.2-Dichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
1,1,1-Trichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
Benzene	<rl< td=""><td>0.5</td></rl<>	0.5
Carbon Tetrachloride	< <u>RL</u>	0.5
Cyclohexane	<rl< td=""><td>0.5</td></rl<>	0.5
1,2-Dichloropropane	<rl< td=""><td>0.5</td></rl<>	0.5
Bromodichloromethane	~~RL	0.5
1.4-Dioxane	<rl< td=""><td>0.5</td></rl<>	0.5
Trichloroethene (TCE)	< <u>RL</u>	0.5
2,2,4-Trimethylpentane	<rl< td=""><td>0.5</td></rl<>	0.5
Heptane	<rl< td=""><td>0.5</td></rl<>	0.5



### Method Blank Analysis Report

		· · · · · · · · · · · · · · · · · · ·	
MATRIX	: AIR	ANALYSIS DATE	: 07/05/2019
UNITS	: ppbv	REPORT DATE	: 07/05/2019

#### **VOLATILE ORGANIC COMPOUNDS BY EPA TO-15**

Client ID	Method Blank	
AAC ID	MB 070519	
cis-1,3-Dichloropropene	<rl< td=""><td>0.5</td></rl<>	0.5
4-Methyl-2-pentanone (MiBK)	<rl< td=""><td>0.5</td></rl<>	0.5
trans-1,3-Dichloropropene	<rl< td=""><td>0.5</td></rl<>	0.5
1,1,2-Trichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
Toluene	<rl< td=""><td>0.5</td></rl<>	0.5
2-Hexanone (MBK)	<rl< td=""><td>0.5</td></rl<>	0.5
Dibromochloromethane	<rl< td=""><td>0.5</td></rl<>	0.5
1,2-Dibromoethane	<rl< td=""><td>0.5</td></rl<>	0.5
Tetrachloroethene (PCE)	<rl< td=""><td>0.5</td></rl<>	0.5
Chlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Ethylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5
m & p-Xylenes	<rl< td=""><td>1.0</td></rl<>	1.0
Bromoform	<rl< td=""><td>0.5</td></rl<>	0.5
Styrene	<rl< td=""><td>0.5</td></rl<>	0.5
1,1,2,2-Tetrachloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
o-Xylene	<rl< td=""><td>0.5</td></rl<>	0.5
4-Ethyltoluene	<rl< td=""><td>0.5</td></rl<>	0.5
1,3,5-Trimethylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5
1,2,4-Trimethylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Benzyl Chloride (a-Chlorotoluene)	<rl< td=""><td>0.5</td></rl<>	0.5
1,3-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
1,4-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
1,2-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
1,2,4-Trichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Hexachlorobutadiene	<rl< td=""><td>0.5</td></rl<>	0.5
System Monitoring Com	pounds	
BFB-Surrogate Std. % Recovery	93%	

RL - Reporting Limit

CS Portman Sucha-Parmar, PhD **Technical Director** 



#### Quality Control/Quality Assurance Report

AAC ID	: 191056-119909	DATE ANALYZED	: 07/05/2019
MATRIX	: Air	DATE REPORTED	: 07/05/2019
		UNITS	• hhn

#### **TO-15 Duplicate Analysis**

Compound	Sample Conc	Duplicate Cone	% RPD
Chlorodifluoromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Propene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Dichlorodifluoromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Chloromethane	0.67	0.68	1.5
Dichlorotetrafluoroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Vinyl Chloride	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Methanol	72.9	76.3	4.6
1,3-Butadiene	<srl< td=""><td><srl td="" ·<=""><td>0.0</td></srl></td></srl<>	<srl td="" ·<=""><td>0.0</td></srl>	0.0
Bromomethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Chloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Dichlorofluoromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Ethanol	13.7	13.3	3.0
Vinyl Bromide	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Acetone	7.76	8.22	5.8
Trichlorofluoromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
2-Propanol (IPA)	7.78	7.95	- 2.2
Acrylonitrile	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,1-Dichloroethene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Methylene Chloride (DCM)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Allyl Chloride	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Carbon Disulfide	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Trichlorotrifluoroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
trans-1,2-Dichloroethene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,1-Dichloroethane	<srl< td=""><td>SRL SRL</td><td>0.0</td></srl<>	SRL SRL	0.0
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Vinyl Acetate	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
2-Butanone (MEK)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
cis-1,2-Dichloroethene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Hexane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Chloroform	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Ethyl Acetate	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Tetrahydrofuran	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,2-Dichloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,1,1-Trichloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Benzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Carbon Tetrachloride	<srl< td=""><td><srl td="" ·<=""><td>0.0</td></srl></td></srl<>	<srl td="" ·<=""><td>0.0</td></srl>	0.0

 $(\mathbf{x})$ 



#### **Quality Control/Quality Assurance Report**

AAC ID	: 191056-119909	DATE ANALYZED	: 07/05/2019
MATRIX	: Air	DATE REPORTED	: 07/05/2019
		UNITS	: ppbv

#### **TO-15 Duplicate Analysis**

Compound	Sample Cooc	Duplicate Cone	% RPD		
Cyclohexane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
1,2-Dichloropropane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
Bromodichloromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
1,4-Dioxane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
Trichloroethene (TCE)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
2,2,4-Trimethylpentane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
Heptane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
cis-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td><srl< td=""><td>0.0'</td></srl<></td></srl<>	<srl< td=""><td>0.0'</td></srl<>	0.0'		
trans-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
1,1,2-Trichloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
Toluene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
2-Hexanone (MBK)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
Dibromochloromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
1,2-Dibromoethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
Tetrachloroethene (PCE)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
Chlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
Ethylbenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
m & p-Xylenes	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
Bromoform	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
Styrene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
1,1,2,2-Tetrachloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
o-Xylene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
4-Ethyltoluene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
1,3,5-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
1,2,4-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
1,3-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
1,4-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
1,2-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
1,2,4-Trichlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0		
Hexachlorobutadiene	SRL	<srl< td=""><td>0.0</td></srl<>	0.0		
System Monitoring Compounds					
BFB-Surrogate Std. % Recovery	96%	96%	0.3		

 $(\mathbf{r})$ 

SRL - Sample Reporting Limit

fainger Sucha Parmar, PhD Technical Director



ANALYSIS DATE : 07/08/2019 ANALYST : JJG

**INSTRUMENT ID** CALIBRATION STD ID

: GC/MS-02 : PS041919-05

#### **VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15**

Continuing Calibration Verification of the 06/25/2019 Calibration

Compounds	Conc	Daily Conc	%REC*
4-BFB (surrogate standard)	10.00	9.60	96
Chlorodifluoromethane	10.80	11.78	109
Propene	11.00	13.02	118
Dichlorodifluoromethane	10.20	10.92	107
Chloromethane	10.60	11.55	109
Dichlorotetrafluoroethane	11.00	11.71	106
Vinyl Chloride	10.40	10.96	105
Methanol	22.50	26.02	116
1,3-Butadiene	10.90	12.16	112
Bromomethane	10.30	10.83	105
Chloroethane	10.10	10.19	101
Dichlorofluoromethane	10.80	11.23	104
Ethanol	11.00	12.24	111
Vinyl Bromide	10.70	10.91	102
Acetone	10.90	10.92	100
Trichlorofluoromethane	10.10	10.38	103
2-Propanol (IPA)	11.00	11.93	108
Acrylonitrile	11.50	12.59	109
1,1-Dichloroethene	10.70	10.64	99
Methylene Chloride (DCM)	10.60	11.43	108
Allyl Chloride	10.70	11.35	106
Carbon Disulfide	10.50	10.91	104
Trichlorotrifluoroethane	10.60	10.99	104
trans-1,2-Dichloroethene	10.30	11.11	108
1,1-Dichloroethane	10.50	11.32	108
Methyl Tert Butyl Ether (MTBE)	10.80	11.27	104
Vinyl Acetate	10.90	11.84	109
2-Butanone (MEK)	10.90	11.67	107
cis-1,2-Dichloroethene	10.90	11.72	108
Hexane	10.70	11.79	110
Chloroform	10.90	11.34	104
Ethyl Acetate	10.90	11.92	109
Tetrahydrofuran	10.20	11.04	108
1,2-Dichloroethane	10.80	11.99	111
1,1,1-Trichloroethane	10.80	11 34	105

Page 21



#### ANALYSIS DATE : 07/08/2019 ANALYST : JJG

INSTRUMENT ID CALIBRATION STD ID : PS041919-05

: GC/MS-02

### VOLATILE ORGANIC COMPOUNDS BY EPA METHOD TO-15

Continuing Calibration Verification of the 06/25/2019 Calibration

Compounds	Conc	Daily Conc	%REC*
Benzene	10.90	11.65	107
Carbon Tetrachloride	10.60	11.29	107
Cyclohexane	10.90	12.02	110
1,2-Dichloropropane	10.80	11.63	108
Bromodichloromethane	10.90	11.84	109
1,4-Dioxane	10.90	11.10	102
Trichloroethene (TCE)	10.90	11.49	105
2,2,4-Trimethylpentane	10.70	11.95	112
Heptane	10.80	12.41	115
cis-1,3-Dichloropropene	10.60	11.33	107
4-Methyl-2-pentanone (MiBK)	10.60	11.73	111
trans-1,3-Dichloropropene	10.20	10.96	107
1,1,2-Trichloroethane	10.90	11.65	107
Toluene	11.00	11.72	107
2-Hexanone (MBK)	10.80	11.99	111
Dibromochloromethane	10.30	10.59	103
1,2-Dibromoethane	- 10.90	11.08	102
Tetrachloroethene (PCE)	10.90	11.48	105
Chlorobenzene	11.00	12.25	111
Ethylbenzene	10.90	12.29	113
m & p-Xylenes	21.00	23.36	111
Bromoform	10.50	11.22	107
Styrene	10.80	11.68	108
1,1,2,2-Tetrachloroethane	10.70	11.86	111
o-Xylene	10.70	12.19	114
4-Ethyltoluene	10.30	11.59	113
1,3,5-Trimethylbenzene	10.40	11.72	113
1,2,4-Trimethylbenzene	10.40	11.95	115
Benzyl Chloride (a-Chlorotoluene)	9.70 ·	11.26	116
1,3-Dichlorobenzene	10.10	11.25	111
1,4-Dichlorobenzene	10.20	11.02	108
1,2-Dichlorobenzene	10.20	11.08	109
1,2,4-Trichlorobenzene	9.70	11.43	118
Hexachlorobutadiene	10.00	11.22	112

* - %REC should be 70-130%

 $(\mathbf{x})$ 

Sucha Parmar, PhD

Technical Director

Page 22



### **Quality Control/Quality Assurance Report**

CLIENT ID	: Laboratory Control Spike	DATE ANALYZED	: 07/08/2019
AAC ID	: LCS/LCSD	DATE REPORTED	: 07/08/2019
MEDIA	: Air	UNITS	: ppbv

#### TO-15 Laboratory Control Spike Recovery

Compound	Sample	Spike	Spike	Dup Spike	Spike	Spike Dup	RPD**
Compound	Conc.	Added	Res	Res	% Rec *	% Rec *	%
1,1-Dichloroethene	0.0	10.70	10.64	11.10	99	104	4.2
Methylene Chloride (DCM)	0.0	10.60	11.43	11.43	108	108	0.0
Benzene	0.0	10.90	11.65	11.43	107	105	1.9
Trichloroethene (TCE)	0.0	10.90	11.49	11.92	105	109	3.7
Toluene	0.0	11.00	11.72	12.05	107	110	2.8
Tetrachloroethene (PCE)	0.0	10.90	11.48	11.60	105	106	1.0
Chlorobenzene	0.0	11.00	12.25	12.04	111	109	1.7
Ethylbenzene	0.0	10.90	12.29	12.31	113	113	0.2
m & p-Xylenes	0.0	21.00	23.36	23.41	111	111	0.2
o-Xylene	0.0	10.70	12.19	12.26	114	115	0.6

* Must be 70-130%

** Must be < 25%

Sucha Parmar, PhD

Technical Director

### Page 23





#### **Method Blank Analysis Report**

MATRIX	: AIR	ANALYSIS DATE	: 07/08/2019
UNITS	: ppbv	<b>REPORT DATE</b>	: 07/08/2019

#### VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	Method Blank	RL		
AAC ID	MB 070819			
Chlorodifluoromethane	<rl< td=""><td>0.5</td></rl<>	0.5		
Propene	<rl< td=""><td>1.0</td></rl<>	1.0		
Dichlorodifluoromethane	<rl< td=""><td>0.5</td></rl<>	0.5		
Chloromethane	<rl< td=""><td>0.5</td></rl<>	0.5		
Dichlorotetrafluoroethane	<rl< td=""><td>0.5</td></rl<>	0.5		
Vinyl Chloride	<rl< td=""><td>0.5</td></rl<>	0.5		
Methanol	<rl< td=""><td>5.0</td></rl<>	5.0		
1,3-Butadiene	<rl< td=""><td>0.5</td></rl<>	0.5		
Bromomethane	<rl< td=""><td>0.5</td></rl<>	0.5		
Chloroethane	<rl< td=""><td>0.5</td></rl<>	0.5		
Dichlorofluoromethane	<rl< td=""><td>0.5</td></rl<>	0.5		
Ethanol	<rl< td=""><td>2.0</td></rl<>	2.0		
Vinyl Bromide	<rl< td=""><td>0.5</td></rl<>	0.5		
Acetone	<rl< td=""><td>2.0</td></rl<>	2.0		
Trichlorofluoromethane	<rl< td=""><td>0.5</td></rl<>	0.5		
2-Propanol (IPA)	<rl< td=""><td>2.0</td></rl<>	2.0		
Acrylonitrile	<rl< td=""><td>1.0</td></rl<>	1.0		
1,1-Dichloroethene	<rl< td=""><td>0.5</td></rl<>	0.5		
Methylene Chloride (DCM)	<r1.< td=""><td>1.0</td></r1.<>	1.0		
Allyl Chloride	<rl< td=""><td>0.5</td></rl<>	0.5		
Carbon Disulfide	<rl< td=""><td>0.5</td></rl<>	0.5		
Trichlorotrifluoroethane	<rl< td=""><td>0.5</td></rl<>	0.5		
trans-1.2-Dichloroethene	<rl< td=""><td>0.5</td></rl<>	0.5		
1.1-Dichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5		
Methyl Tert Butyl Ether (MTBE)	<rl< td=""><td>0.5</td></rl<>	0.5		
Vinyl Acetate	<rl< td=""><td>1.0</td></rl<>	1.0		
2-Butanone (MEK)	<rl< td=""><td>1.0</td></rl<>	1.0		
cis-1,2-Dichloroethene	<rl< td=""><td>0.5</td></rl<>	0.5		
Hexane	<rl< td=""><td>0.5</td></rl<>	0.5		
Chloroform	<rl< td=""><td>0.5</td></rl<>	0.5		
Ethyl Acetate	<rl< td=""><td>0.5</td></rl<>	0.5		
Tetrahydrofuran	<rl< td=""><td>0.5</td></rl<>	0.5		
1,2-Dichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5		
1,1,1-Trichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5		
Benzene	<rl< td=""><td>0.5</td></rl<>	0.5		
Carbon Tetrachloride	<rl< td=""><td>0.5</td></rl<>	0.5		
Cyclohexane	<rl< td=""><td>0.5</td></rl<>	0.5		
1,2-Dichloropropane	<rl< td=""><td>0.5</td></rl<>	0.5		
Bromodichloromethane	<rl< td=""><td>0.5</td></rl<>	0.5		
1,4-Dioxane	<rl< td=""><td>0.5</td></rl<>	0.5		
Trichloroethene (TCE)	<rl< td=""><td>0.5</td></rl<>	0.5		
2,2,4-Trimethylpentane	<rl< td=""><td>0.5</td></rl<>	0.5		
Heptane	<r1.< td=""><td>0.5</td></r1.<>	0.5		



#### **Method Blank Analysis Report**

MATRIX	: AIR	ANALYSIS DATE	: 07/08/2019
UNITS	: ppbv	REPORT DATE	: 07/08/2019

#### VOLATILE ORGANIC COMPOUNDS BY EPA TO-15

Client ID	Method Blank	1
AACID	MB 070819	RL
cis-1,3-Dichloropropene	<rl< td=""><td>0.5</td></rl<>	0.5
4-Methyl-2-pentanone (MiBK)	<rl< td=""><td>0.5</td></rl<>	0.5
trans-1,3-Dichloropropene	<rl< td=""><td>0.5</td></rl<>	0.5
1,1,2-Trichloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
Toluene	<rl< td=""><td>0.5</td></rl<>	0.5
2-Hexanone (MBK)	<rl< td=""><td>0.5</td></rl<>	0.5
Dibromochloromethane	<rl< td=""><td>0.5</td></rl<>	0.5
1,2-Dibromoethane	<rl< td=""><td>0.5</td></rl<>	0.5
Tetrachloroethene (PCE)	<rl< td=""><td>0.5</td></rl<>	0.5
Chlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Ethylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5
m & p-Xylenes	<rl< td=""><td>1.0</td></rl<>	1.0
Bromoform	<rl< td=""><td>0.5</td></rl<>	0.5
Styrene	<rl< td=""><td>0.5</td></rl<>	0.5
1,1,2,2-Tetrachloroethane	<rl< td=""><td>0.5</td></rl<>	0.5
o-Xylene	<rl< td=""><td>0.5</td></rl<>	0.5
4-Ethyltoluene	<rl< td=""><td>0.5</td></rl<>	0.5
1,3,5-Trimethylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5
1,2,4-Trimethylbenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Benzyl Chloride (a-Chlorotoluene)	<rl td="" ·<=""><td>0.5</td></rl>	0.5
1,3-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
1,4-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
1,2-Dichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
1,2,4-Trichlorobenzene	<rl< td=""><td>0.5</td></rl<>	0.5
Hexachlorobutadiene	<rl< td=""><td>0.5</td></rl<>	0.5
System Monitoring Con	npounds	
BFB-Surrogate Std. % Recovery	94%	

 $(\mathfrak{B})$ 

RL - Reporting Limit

larmon Sucha Parmar, PhD Technical Director



#### Quality Control/Quality Assurance Report

AAC ID	: 190958-119507	DATE ANALYZED	: 07/08/2019
MATRIX	: Air	DATE REPORTED	: 07/08/2019
		UNITS	: ppbv

#### **TO-15 Duplicate Analysis**

Compound	Sample	Duplicate	% RPD
Chlorodifluoromethone		CONC	0.0
Propene	2160	- SRL	0.0
Dichloradifluoromothono		2100	0.0
Chlassesthere	<srl (SDI</srl 	<srl <srl< td=""><td>0.0</td></srl<></srl 	0.0
	<srl (D)</srl 	<9KL	0.0
Dichlorotetrafiuoroetnane	<srl (D)</srl 	<srl (ODI</srl 	0.0
Vinyi Chioride	<srl (D)</srl 	<srl (CDI</srl 	0.0
	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,3-Butadiene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Bromomethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Chloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Dichlorofluoromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Ethanol	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Vinyl Bromide	<srl< td=""><td>SRL &lt;</td><td>0.0</td></srl<>	SRL <	0.0
Acetone	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Trichlorofluoromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
2-Propanol (IPA)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Acrylonitrile	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,1-Dichloroethene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Methylene Chloride (DCM)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Allyl Chloride	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Carbon Disulfide	<srl< td=""><td>· <srl< td=""><td>0.0</td></srl<></td></srl<>	· <srl< td=""><td>0.0</td></srl<>	0.0
Trichlorotrifluoroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
trans-1,2-Dichloroethene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,1-Dichloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Methyl Tert Butyl Ether (MTBE)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Vinyl Acetate	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
2-Butanone (MEK)	<srl< td=""><td><srl< td=""><td>. 0.0</td></srl<></td></srl<>	<srl< td=""><td>. 0.0</td></srl<>	. 0.0
cis-1,2-Dichloroethene	<srl< td=""><td><srl< td=""><td>· 0.0</td></srl<></td></srl<>	<srl< td=""><td>· 0.0</td></srl<>	· 0.0
Hexane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Chloroform	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Ethyl Acetate	. <srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Tetrahydrofuran	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,2-Dichloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,1,1-Trichloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Benzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Carbon Tetrachloride	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0

 $(\mathbf{x})$ 



#### **Quality Control/Quality Assurance Report**

AAC ID	: 190958-119507	DATE ANALYZED	: 07/08/2019
MATRIX	: Air	DATE REPORTED	: 07/08/2019
		UNITS	: ppbv

#### **TO-15 Duplicate Analysis**

Compound	Sample Conc	Duplicate Conc	% RPD
Cyclohexane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,2-Dichloropropane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Bromodichloromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,4-Dioxane	<srl td="" ·<=""><td><srl< td=""><td>0.0</td></srl<></td></srl>	<srl< td=""><td>0.0</td></srl<>	0.0
Trichloroethene (TCE)	<srl< td=""><td><srl .<="" td=""><td>0.0</td></srl></td></srl<>	<srl .<="" td=""><td>0.0</td></srl>	0.0
2,2,4-Trimethylpentane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Heptane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
cis-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
4-Methyl-2-pentanone (MiBK)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
trans-1,3-Dichloropropene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,1,2-Trichloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Toluene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
2-Hexanone (MBK)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Dibromochloromethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,2-Dibromoethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Tetrachloroethene (PCE)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Chlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Ethylbenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
m & p-Xylenes	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Bromoform	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Styrene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,1,2,2-Tetrachloroethane	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
o-Xylene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
4-Ethyltoluene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,3,5-Trimethylbenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,2,4-Trimethylbenzene	<srl< td=""><td>SRL</td><td>0.0</td></srl<>	SRL	0.0
Benzyl Chloride (a-Chlorotoluene)	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,3-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,4-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,2-Dichlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
1,2,4-Trichlorobenzene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
Hexachlorobutadiene	<srl< td=""><td><srl< td=""><td>0.0</td></srl<></td></srl<>	<srl< td=""><td>0.0</td></srl<>	0.0
System Monitoring Compounds			
BFB-Surrogate Std. % Recovery	93%	96%	3.2

 $(\mathbf{k})$ 

SRL - Sample Reporting Limit

Or forman Sucha Parmar, PhD

Technical Director

	Relinquished by (Signature): Print I	Relinquished by (Signature): Print I					119915 " 1035 "	" Strol " h16611	119913 " 1040 "	119912 " 0927 "	119911 " 0922	119910 , 0914 ,	119909 07 02 0851 a	AAC Date Time Sar Sample No. Sampled Sampled Ty	Sampler's Name (Print Name) Samı	Project Mgr (Print Name) PAW SCIV after	Client Name SCS Proje	
	Name:	Nome: EValut					VOC-7 ( 849)	$VOC-C$ ( $\frac{can io}{826}$ )	VOC-5 (can is)	VOC-4 (can io)	$\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$ $\frac{1}{1000}$	(Sin 1) 2-701	vr VOC-1 (can iv)	nple Client Sample ID/Description	pler's Signature GW M	CARP ODR	ict Name CARP 0 DDIC	
4h	Date/Time \ Rece	Date/Time 07 02 1414 Rece					Summer X X	Summer 1 X X	summa 1 x x	Swmmer 1 x x	Summa 1 × ×	Summa 1 × ×	× × 1 rowins	Containers	TO-1 + Tic ANS (- 12 Hyd	5 Scan - S TO-12 Wocarbo	And	
t s	vived by (signature):	ived by (signature):															alysis Requested	
-x cans i no thous	7/3/19 11 20	Print Name	· ·	V0C-2	3-4 day TAT tor.	Special Instructions/remarks:	Other (Specify)	5 Day Normal X	Turnaround Time 24-Hr 48-Hr	P.O. #	Attn:		Send invoice to:	Phone#. 619 . 823 . 5333 Fax#	Attn: Yall Johnafer		Send report: pschafer@Scsenaine=ut	

ATMOSPHERIC ANALYSIS & CONSULTING, INC. 1534 Eastman Avenue, Suite A Ventura, California 93003 Phone (805) 650-1642 Fax (805) 650-1644

E-mail: info@aaclab.com

AAC Project No. 191056

Page ____ of