From:

Subject:
Attachments:

Board Letters
FW: Tuesday BofS Meeting Pertaining to the Fish Water Release Program
ESAall.pdf; 97-21661.pdf; BiOp_Final_9.11.2000.pdf; gen_cdfg_shapovalovetal_1954.pdf; CachumaPhase2Exhibits-CT90.pdf

From: Jzaleski [mailto:] vzaleski@att.net]
Sent: Saturday, September 06, 2014 1:34 PM
To: saludcarbajal@gmail.com
Cc: Friedman, Eric; tom@montecitowater.com
Subject: Tuesday BofS Meeting Pertaining to the Fish Water Release Program
Hello Salud,

Eric sent me the agenda for the Tuesday BofS meeting where the water release program for the fish will be discussed. Unfortunately I am leaving tomorrow morning on a trip and will not be able to attend. So instead I am sending you this which I hope will find its way into the proceedings.

As the supervisor of the $1^{\text {st }}$ district you are the representative of the people residing in the Montecito Water District, the district that is most severely impacted by the drought. As such I implore you to spearhead an effort by the BofS to file for an emergency injunctive release to immediately relocate the Hilton Creek fish and stop the pumping of Cachuma water into the creek. The BofS should have its legal team prepare grounds for the injunction and have the pumping stopped while your appeal works its way through the courts.

The National Marine Fisheries Service (NMFS) final ruling and the US Bureau of Reclamation Biological Opinion should be reviewed in detailed and challenged on the ground that they do not represent the intended purposes of the Endangered Species Act.

Background

Attached are some key documents:

- Endangered Species Act, 1973
- National Marine Fisheries Service (NMFS) Final Ruling, August, 1997
- US Bureau of Reclamation (USBR) Biological Opinion, September, 2000
- Life Histories of the Rainbow Steelhead Trout, Shapovalov \& Taft, 1954
- Written Testimony by Jim Edmonson to the USBR Water Rights Hearing, October, 2003

Endangered Species Act

Below is an excerpt from the Endangered Species Act of 1973.
Sec. 2. (b) Purposes.-The purposes of this Act are to provide a means whereby the ecosystems upon which endangered species and threatened species depend may be conserved, to provide a program for the conservation of such endangered species and threatened species, and to take such steps as may be appropriate to achieve the purposes of the treaties and conventions set forth in subsection (a) of this section.
Sec. 2. (c) Policy.-(1) It is further declared to be the policy of Congress that all Federal departments and agencies shall seek to conserve endangered species and threatened species and shall utilize their authorities in furtherance of the purposes of this Act.
(2) It is further declared to be the policy of Congress that Federal agencies shall
cooperate with State and local agencies to resolve water resource issues in concert with conservation of endangered species.

This clearly states that the intention is to take steps as may be appropriate to achieve the purpose of the act and that the Federal agencies shall cooperate with State and Local agencies to resolve water resource issues. I question whether the follow on actions taken by the NMFS or the USBR follow this guidance.

National Marine Fisheries Service (NMFS) Final Ruling

The NMFS divided the entire US west coast into 15 separate ESU's (Evolutionary Significant Units) and then examined the fish population in each. Of the 15 ESU's 3 are classified as Threatened and 2 as Endangered. Using this method the NMFS can carve out areas with minimal fish populations and enforce onerous conservation methods without regard for the fact the fish species is abundant and healthy in other ESU's. In the case of Santa Barbara county it was included in the southern most ESU which is considered an endangered ESU resulting in the follow on USBR Biological Opinion which forces the release of water from Cachuma lake. If we were included in the ESU to our north where the fish are considered Threatened the water release wouldn't be required. I didn't see any scientific support called out as to why our area deserves to be a separate ESU. There are criteria for being classified as a separate and distinct ESU but there was no backup provided in the final ruling as to how our area met those criteria. And where in the original act does it say that a species has to be restored everywhere that it once existed? How does the Act enable calling out separate ESU's to be analyzed separately?

There are millions and millions of steelhead trout up the US coast but we must release 2,000,000 gallons a day to preserve a few hundred trout in our ESU. Since the last time there has been any runoff into Cachuma Lake ($21 / 2$ years ago) almost 2 billion gallons of water have been released to keep a few hundred steelhead alive where as the steelhead trout are so plentiful that you can buy steelhead fillets in San Francisco fish markets for \$17/pound. http://www.giovannisfishmarket.com/fish/Steelhead-Trout.aspx

USBR Biological Opinion

NMFS acknowledges that the fish population has always been sparse and that our ESU is drought prone and that puts pressure on the population. But on the other hand the follow-on USBR Biological Opinion makes no exception for drought conditions and enforces remedial action on our drought prone ESU that it applies to any other ESU. So is our area different or not? Why is it deemed different in evolutionary terms of the fish population but not deemed different in terms of the remedial methods required? And how it is environmentally correct to artificially flood a creek that by nature should be dry as a bone in the third year of a historic drought? What kind of pampered fish are being raised to propagate the gene pool?

I have a ranch with the Sespe Creek flowing through it and for the first time last year the creek dried up. All the alder trees along it died including 50' trees with $12^{\prime \prime}$ trunk diameters. And all the fish died too. This spring one lucky 11" rain fall happened over two weeks and the fish are back. Unfortunately the alders aren't but the fish are and no one flooded the creek except mother nature.

I understand that a new Biological Opinion is being developed and it will most likely come out with even more stringent requirements and the BofS must be participating in the deliberation and oppose it based on legal ground.

Life Histories of the Rainbow Steelhead Trout, 1954

I've included this as an attachment for interest and frankly did not review it for relevance or issues. But it is an important scientific work that much of the follow on action is based.

Jim Edmonson Testimony, October 2003

Mr. Edmonson, an executive with California Trout provided written testimony for a hearing with the USBR water rights permit for the Cachuma water project. It provides the history of the deliberations considering the Cachuma dam project on the Santa Ynez river fishery. It provides lots of data and discussion of the impact of the Bradbury dam and acknowledges that the final Secretary of Interior report states that the water needs for irrigation and municipal uses took exclusive priority. See the excerpt below. Since then of course the original ruling is being "reinterpreted" at will.

Bureau's Cachuma Project 1948 Balancing Decision

> To gain Congressional approval for the Cachuma Project, the Secret behalf of the Bureau, filed its report. While the Bureau recognized the impo the pre-Cachuma Project steelhead resources, and that the fishery would be approximately 50% due to its eliminating steelhead access to habitat above 1948 they recommended discarding the entire list of the Service's fish main recommendations, as the water needs for irrigation and municipal uses took Nevertheless the Bureau stated, "Every effort will be made to provide water Cachuma Reservoir as to maintain the existing spawning grounds below the Dam."15

Summary

Almost 2 billion gallons of water have been released from our drought diminished water supply over the past $21 / 2$ years to keep a few hundred trout alive in Hilton Creek while they flourish in the millions up the west coast of the US. Steelhead trout fillets can be purchased at the fish market in San Francisco for 17 bucks a pound. The daily release of $2,000,000$ gallons represents the personal essential daily use of 13,000 people based on the Montecito Water Districts definition of $300 \mathrm{HCF} /$ year per household of 4 . This misguided program is due to overreach by the NMFS and USBR.
a) Our Southern Cal ESU is one of 15 ESU's and is on the southern fringe of the steelhead habitat which was been historically challenged especially in time of drought like we are in now. The ESU's to the north of use are classified as threatened and 10 ESU's have no classifications. There are millions of trout surviving in the other ESU's and only 500 in our ESU, 200 of which are supposedly in the Santa Ynez river.
b) The water release program has had no tangible positive results and it unlikely that it ever will. So continued water release will not improve the situation. Even in wet years with spillage over the dam where enormous amounts of water flow to the ocean did not help a comeback in those wet years.
c) The arguments in the summary section ($p 71$) of the USBR Biological Opinion basically say the trout population in our ESU is minuscule in size and there is no evidence that the efforts expended are working but we should continue to try anyway.
d) Despite opinions that artificially flooding a dry creek during a historic drought is necessary the question still needs to be asked, is this the right thing to do? How far does one have to go? Is this what the Endangered Species act intended? Droughts and dried creeks are part of the natural cycle. Are these extreme measures necessary in one historically drought challenged ESU while there are the other 14 ESU's that are much more viable than ours? Perhaps reviewing the Congressional committee hearings leading up to the enactment of the Endangered Species Act would provide light on the intentions.

It is yours and the boards' responsibility to its citizens to file an emergency injunction in circuit court to immediately stop this pumping. The fish can be captured and relocated to another active stream until the drought is over.

And the country must have legal representation at the ongoing deliberations concerning an update to the existing USBR Biological Opinion letter that is underway to counter new, onerous requirements that are sure to come out of it.

Please feel free to share this with other supervisors on the board.

Jim Zaleski
1474 E. Mountain Drive
Montecito

Department of the Interior
U.S. Fish and Wildlife Service

Washington, D.C. 20240

TABLE OF CONTENTS

Page
Sec. 2. Findings, purposes, and policy 1
Sec. 3. Definitions 2
Sec. 4. Determination of endangered species and threatened species 4
Sec. 5. Land acquisition 11
Sec. 6. Cooperation with the States 11
Sec. 7. Interagency cooperation 15
Sec. 8. International cooperation 23
Sec. 8A. Convention implementation 24
Sec. 9. Prohibited Acts 25
Sec. 10. Exceptions 28
Sec. 11. Penalties and enforcement 34
Sec. 12. Endangered Plants 39
Sec. 13. Conforming Amendments 39
Sec. 14. Repealer 40
Sec. 15. Authorization of appropriations 40
Sec. 16. Effective date 41
Sec. 17. Marine Mammal Protection Act of 1972 41
Sec. 18. Annual cost analysis by the Fish and Wildlife Service 41

ENDANGERED SPECIES ACT OF 1973*

FINDINGS, PURPOSES, AND POLICY

Sec. 2. (a) Findings.-The Congress finds and declares that-
(1) various species of fish, wildlife, and plants in the United States have been rendered extinct as a consequence of economic growth and development untempered by adequate concern and conservation;
(2) other species of fish, wildlife, and plants have been so depleted in numbers that they are in danger of or threatened with extinction;
(3) these species of fish, wildlife, and plants are of esthetic, ecological, educational, historical, recreational, and scientific value to the Nation and its people;
(4) the United States has pledged itself as a sovereign state in the international community to conserve to the extent practicable the various species of fish or wildlife and plants facing extinction, pursuant to-
(A) migratory bird treaties with Canada and Mexico;
(B) the Migratory and Endangered Bird Treaty with Japan;
(C) the Convention on Nature Protection and Wildlife Preservation in the Western Hemisphere;
(D) the International Convention for the Northwest Atlantic Fisheries;
(E) the International Convention for the High Seas Fisheries of the North Pacific Ocean;
(F) the Convention on International Trade in Endangered Species of Wild Fauna and Flora; and
(G) other international agreements; and
(5) encouraging the States and other interested parties, through Federal financial assistance and a system of incentives, to develop and maintain conservation programs which meet national and international standards is a key to meeting the Nation's international commitments and to better safeguarding, for the benefit of all citizens, the Nation's heritage in fish, wildlife, and plants.
(b) Purposes.-The purposes of this Act are to provide a means whereby the ecosystems upon which endangered species and threatened species depend may be conserved, to provide a program for the conservation of such endangered species and threatened species, and to take such steps as may be appropriate to achieve the purposes of the treaties and conventions set forth in subsection (a) of this section. (c) Policy.-(1) It is further declared to be the policy of Congress that all Federal

[^0]departments and agencies shall seek to conserve endangered species and threatened species and shall utilize their authorities in furtherance of the purposes of this Act.
(2) It is further declared to be the policy of Congress that Federal agencies shall cooperate with State and local agencies to resolve water resource issues in concert with conservation of endangered species.

DEFINITIONS

Sec. 3. For the purposes of this Act-
(1) The term "alternative courses of action" means all alternatives and thus is not limited to original project objectives and agency jurisdiction.
(2) The term "commercial activity" means all activities of industry and trade, including, but not limited to, the buying or selling of commodities and activities conducted for the purpose of facilitating such buying and selling: Provided, however, That it does not include exhibition of commodities by museums or similar cultural or historical organizations.
(3) The terms "conserve", "conserving", and "conservation" mean to use and the use of all methods and procedures which are necessary to bring any endangered species or threatened species to the point at which the measures provided pursuant to this Act are no longer necessary. Such methods and procedures include, but are not limited to, all activities associated with scientific resources management such as research, census, law enforcement, habitat acquisition and maintenance, propagation, live trapping, and transplantation, and, in the extraordinary case where population pressures within a given ecosystem cannot be otherwise relieved, may include regulated taking.
(4) The term "Convention" means the Convention on International Trade in Endangered Species of Wild Fauna and Flora, signed on March 3, 1973, and the appendices thereto.
(5)(A) The term "critical habitat" for a threatened or endangered species means-
(i) the specific areas within the geographical area occupied by the species, at the time it is listed in accordance with the provisions of section 4 of this Act, on which are found those physical or biological features (I) essential to the conservation of the species and (II) which may require special management considerations or protection; and
(ii) specific areas outside the geographical area occupied by the species at the time it is listed in accordance with the provisions of section 4 of this Act, upon a determination by the Secretary that such areas are essential for the conservation of the species.
(B) Critical habitat may be established for those species now listed as threatened or endangered species for which no critical habitat has heretofore been established as set forth in subparagraph (A) of this paragraph.
(C) Except in those circumstances determined by the Secretary, critical habitat shall not include the entire geographical area which can be occupied by the threatened or endangered species.
(6) The term "endangered species" means any species which is in danger of extinction throughout all or a significant portion of its range other than a species of the Class Insecta determined by the Secretary to constitute a pest whose protection under the provisions of this Act would present an overwhelming and overriding risk to man.
(7) The term "Federal agency" means any department, agency, or instrumentality of the United States.
(8) The term "fish or wildlife" means any member of the animal kingdom, including without limitation any mammal, fish, bird (including any migratory, nonmigratory, or endangered bird for which protection is also afforded by treaty or other international agreement), amphibian, reptile, mollusk, crustacean, arthropod or other invertebrate, and includes any part, product, egg, or offspring thereof, or the dead body or parts thereof.
(9) The term "foreign commerce" includes, among other things, any transaction-
(A) between persons within one foreign country;
(B) between persons in two or more foreign countries;
(C) between a person within the United States and a person in a foreign country; or
(D) between persons within the United States, where the fish and wildlife in question are moving in any country or countries outside the United States.
(10) The term "import" means to land on, bring into, or introduce into, or attempt to land on, bring into, or introduce into, any place subject to the jurisdiction of the United States, whether or not such landing, bringing, or introduction constitutes an importation within the meaning of the customs laws of the United States.
(11) [Repealed]
(12) The term "permit or license applicant" means, when used with respect to an action of a Federal agency for which exemption is sought under section 7, any person whose application to such agency for a permit or license has been denied primarily because of the application of section 7(a) to such agency action.
(13) The term "person" means an individual, corporation, partnership, trust, association, or any other private entity; or any officer, employee, agent, department, or instrumentality of the Federal Government, of any State, municipality, or political subdivision of a State, or of any foreign government; any State, municipality, or political subdivision of a State; or any other entity subject to the jurisdiction of the United States.
(14) The term "plant" means any member of the plant kingdom, including seeds, roots and other parts thereof.
(15) The term "Secretary" means, except as otherwise herein provided, the Secretary of the Interior or the Secretary of Commerce as program responsibilities are vested pursuant to the provisions of Reorganization Plan Numbered 4 of 1970; except that with respect to the enforcement of the provisions of this Act and the Convention which pertain to the importation or exportation of terrestrial plants, the term also means the Secretary of Agriculture.
(16) The term "species" includes any subspecies of fish or wildlife or plants, and any distinct population segment of any species of vertebrate fish or wildlife which interbreeds when mature.
(17) The term "State" means any of the several States, the District of Columbia, the Commonwealth of Puerto Rico, American Samoa, the Virgin Islands, Guam, and the Trust Territory of the Pacific Islands.
(18) the term "State agency" means any State agency, department, board, commission, or other governmental entity which is responsible for the management and conservation of fish, plant, or wildlife resources within a State.
(19) The term "take" means to harass, harm, pursue, hunt, shoot, wound, kill, trap, capture, or collect, or to attempt to engage in any such conduct.
(20) The term "threatened species" means any species which is likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range.
(21) The term "United States," when used in a geographical context, includes all States.

DETERMINATION OF ENDANGERED SPECIES AND THREATENED SPECIES

Sec.4. (a) General.-(1) The Secretary shall by regulation promulgated in accordance with subsection (b) determine whether any species is an endangered species or a threatened species because of any of the following factors:
(A) the present or threatened destruction, modification, or curtailment of its habitat or range;
(B) overutilization for commercial, recreational, scientific, or educational purposes;
(C) disease or predation;
(D) the inadequacy of existing regulatory mechanisms; or
(E) other natural or manmade factors affecting its continued existence.
(2) With respect to any species over which program responsibilities have been vested in the Secretary of Commerce pursuant to Reorganization Plan Numbered 4 of 1970 -
(A) in any case in which the Secretary of Commerce determines that such species should-
(i) be listed as an endangered species or a threatened species, or
(ii) be changed in status from a threatened species to an endangered species, he shall so inform the Secretary of the Interior, who shall list such species in accordance with this section;
(B) in any case in which the Secretary of Commerce determines that such species should-
(i) be removed from any list published pursuant to subsection (c) of this section, or
(ii) be changed in status from an endangered species to a threatened species, he shall recommend such action to the Secretary of the Interior, and the Secretary of the Interior, if he concurs in the recommendation, shall implement such action; an(C) the Secretary of the Interior may not list or remove from any list any such species, and may not change the status of any such species which are listed, without a prior favorable determination made pursuant to this section by the Secretary of Commerce.
(3)(A) The Secretary, by regulation promulgated in accordance with subsection (b) and to the maximum extent prudent and determinable-
(i) shall, concurrently with making a determination under paragraph (1) that a species is an endangered species or a threatened species, designate any habitat of such species which is then considered to be critical habitat; and
(ii) may, from time-to-time thereafter as appropriate, revise such designation.
(B)(i) The Secretary shall not designate as critical habitat any lands or other geographical areas owned or controlled by the Department of Defense, or designated for its use, that are subject to an integrated natural resources management plan prepared under section 101of the Sikes Act (16 U.S.C. 670a), if the Secretary determines
in writing that such plan provides a benefit to the species for which critical habitat is proposed for designation.
(ii) Nothing in this paragraph affects the requirement to consult under section $7(\mathrm{a})(2)$ with respect to an agency action (as that term is defined in that section).
(iii) Nothing in this paragraph affects the obligation of the Department of Defense to comply with section 9 , including the prohibition preventing extinction and taking of endangered species and threatened species.
(b) Basis for Determinations.-(1)(A) The Secretary shall make determinations required by subsection (a)(1) solely on the basis of the best scientific and commercial data available to him after conducting a review of the status of the species and after taking into account those efforts, if any, being made by any State or foreign nation, or any political subdivision of a State or foreign nation, to protect such species, whether by predator control, protection of habitat and food supply, or other conservation practices, within any area under its jurisdiction, or on the high seas.
(B) In carrying out this section, the Secretary shall give consideration to species which have been-
(i) designated as requiring protection from unrestricted commerce by any foreign nation, or pursuant to any international agreement; or
(ii) identified as in danger of extinction, or likely to become so within the foreseeable future, by any State agency or by any agency of a foreign nation that is responsible for the conservation of fish or wildlife or plants.
(2) The Secretary shall designate critical habitat, and make revisions thereto, under subsection (a)(3) on the basis of the best scientific data available and after taking into consideration the economic impact, the impact on national security, and any other relevant impact, of specifying any particular area as critical habitat. The Secretary may exclude any area from critical habitat if he determines that the benefits of such exclusion outweigh the benefits of specifying such area as part of the critical habitat, unless he determines, based on the best scientific and commercial data available, that the failure to designate such area as critical habitat will result in the extinction of the species concerned.
(3)(A) To the maximum extent practicable, within 90 days after receiving the petition of an interested person under section 553(e) of title 5, United States Code, to add a species to, or to remove a species from, either of the lists published under subsection (c), the Secretary shall make a finding as to whether the petition presents substantial scientific or commercial information indicating that the petitioned action may be warranted. If such a petition is found to present such information, the Secretary shall promptly commence a review of the status of the species concerned. The Secretary shall promptly publish each finding made under this subparagraph in the Federal Register.
(B) Within 12 months after receiving a petition that is found under subparagraph (A) to present substantial information indicating that the petitioned action may be warranted, the Secretary shall make one of the following findings:
(i) The petitioned action is not warranted, in which case the Secretary shall promptly publish such finding in the Federal Register.
(ii) The petitioned action is warranted, in which case the Secretary shall promptly publish in the Federal Register a general notice and the complete text of a proposed regulation to implement such action in accordance with paragraph (5).
(iii) The petitioned action is warranted, but that-
(I) the immediate proposal and timely promulgation of a final regulation implementing the petitioned action in accordance with paragraphs (5) and (6) is precluded by pending proposals to determine whether any species is an endangered species or a threatened species, and
(II) expeditious progress is being made to add qualified species to either of the lists published under subsection (c) and to remove from such lists species for which the protections of the Act are no longer necessary, in which case the Secretary shall promptly publish such finding in the Federal Register, together with a description and evaluation of the reasons and data on which the finding is based.
(C)(i) A petition with respect to which a finding is made under subparagraph (B)(iii) shall be treated as a petition that is resubmitted to the Secretary under subparagraph (A) on the date of such finding and that presents substantial scientific or commercial information that the petitioned action may be warranted.
(ii) Any negative finding described in subparagraph (A) and any finding described in subparagraph (B)(i) or (iii) shall be subject to judicial review.
(iii) The Secretary shall implement a system to monitor effectively the status of all species with respect to which a finding is made under subparagraph (B)(iii) and shall make prompt use of the authority under paragraph 7 to prevent a significant risk to the well being of any such species.
(D)(i) To the maximum extent practicable, within 90 days after receiving the petition of an interested person under section 553(e) of title 5, United States Code, to revise a critical habitat designation, the Secretary shall make a finding as to whether the petition presents substantial scientific information indicating that the revision may be warranted. The Secretary shall promptly publish such finding in the Federal Register.
(ii) Within 12 months after receiving a petition that is found under clause (i) to present substantial information indicating that the requested revision may be warranted, the Secretary shall determine how he intends to proceed with the requested revision, and shall promptly publish notice of such intention in the Federal Register.
(4) Except as provided in paragraphs (5) and (6) of this subsection, the provisions of section 553 of title 5, United States Code (relating to rulemaking procedures), shall apply to any regulation promulgated to carry out the purposes of this Act.
(5) With respect to any regulation proposed by the Secretary to implement a determination, designation, or revision referred to in subsection (a)(1) or (3), the Secretary shall-
(A) not less than 90 days before the effective date of the regulation-
(i) publish a general notice and the complete text of the proposed regulation in the Federal Register, and
(ii) give actual notice of the proposed regulation (including the complete text of the regulation) to the State agency in each State in which the species is believed to occur, and to each county or equivalent jurisdiction in which the species is believed to occur, and invite the comment of such agency, and each such jurisdiction, thereon;
(B) insofar as practical, and in cooperation with the Secretary of State, give notice of the proposed regulation to each foreign nation in which the species is believed to occur or whose citizens harvest the species on the high seas, and invite the comment of such nation thereon;
(C) give notice of the proposed regulation to such professional scientific organizations as he deems appropriate;
(D) publish a summary of the proposed regulation in a newspaper of general circulation in each area of the United States in which the species is believed to occur; and
(E) promptly hold one public hearing on the proposed regulation if any person files a request for such a hearing within 45 days after the date of publication of general notice.
(6)(A) Within the one-year period beginning on the date on which general notice is published in accordance with paragraph (5)(A)(i) regarding a proposed regulation, the Secretary shall publish in the Federal Register-
(i) if a determination as to whether a species is an endangered species or a threatened species, or a revision of critical habitat, is involved, either-
(I) a final regulation to implement such determination,
(II) a final regulation to implement such revision or a finding that such revision should not be made,
(III) notice that such one-year period is being extended under subparagraph (B)(i), or
(IV) notice that the proposed regulation is being withdrawn under subparagraph (B)(ii), together with the finding on which such withdrawal is based; or
(ii) subject to subparagraph (C), if a designation of critical habitat is involved, either-
(I) a final regulation to implement such designation, or
(II) notice that such one-year period is being extended under such subparagraph.
(B)(i) If the Secretary finds with respect to a proposed regulation referred to in subparagraph (A)(i) that there is substantial disagreement regarding the sufficiency or accuracy of the available data relevant to the determination or revision concerned, the Secretary may extend the one-year period specified in subparagraph (A) for not more than six months for purposes of soliciting additional data.
(ii) If a proposed regulation referred to in subparagraph (A)(i) is not promulgated as a final regulation within such one-year period (or longer period if extension under clause (i) applies) because the Secretary finds that there is not sufficient evidence to justify the action proposed by the regulation, the Secretary shall immediately withdraw the regulation. The finding on which a withdrawal is based shall be subject to judicial review. The Secretary may not propose a regulation that has previously been withdrawn under this clause unless he determines that sufficient new information is available to warrant such proposal.
(iii) If the one-year period specified in subparagraph (A) is extended under clause (i) with respect to a proposed regulation, then before the close of such extended period the Secretary shall publish in the Federal Register either a final regulation to implement the determination or revision concerned, a finding that the revision should not be made, or a notice of withdrawal of the regulation under clause (ii), together with the finding on which the withdrawal is based.
(C) A final regulation designating critical habitat of an endangered species or a threatened species shall be published concurrently with the final regulation implementing the determination that such species is endangered or threatened, unless the Secretary deems that-
(i) it is essential to the conservation of such species that the regulation implementing such determination be promptly published; or
(ii) critical habitat of such species is not then determinable, in which case the Secretary, with respect to the proposed regulation to designate such habitat, may extend the one-year period specified in subparagraph (A) by not more than one additional year, but not later than the close of such additional year the Secretary must publish a final regulation, based on such data as may be available at that time, designating, to the maximum extent prudent, such habitat.
(7) Neither paragraph (4), (5), or (6) of this subsection nor section 553 of title 5, United States Code, shall apply to any regulation issued by the Secretary in regard to any emergency posing a significant risk to the well-being of any species of fish or wildlife or plants, but only if-
(A) at the time of publication of the regulation in the Federal Register the Secretary publishes therein detailed reasons why such regulation is necessary; and
(B) in the case such regulation applies to resident species of fish or wildlife, or plants, the Secretary gives actual notice of such regulation to the State agency in each State in which such species is believed to occur.
Such regulation shall, at the discretion of the Secretary, take effect immediately upon the publication of the regulation in the Federal Register. Any regulation promulgated under the authority of this paragraph shall cease to have force and effect at the close of the 240-day period following the date of publication unless, during such 240-day period, the rulemaking procedures which would apply to such regulation without regard to this paragraph are complied with. If at any time after issuing an emergency regulation the Secretary determines, on the basis of the best appropriate data available to him, that substantial evidence does not exist to warrant such regulation, he shall withdraw it.
(8) The publication in the Federal Register of any proposed or final regulation which is necessary or appropriate to carry out the purposes of this Act shall include a summary by the Secretary of the data on which such regulation is based and shall show the relationship of such data to such regulation; and if such regulation designates or revises critical habitat, such summary shall, to the maximum extent practicable, also include a brief description and evaluation of those activities (whether public or private) which, in the opinion of the Secretary, if undertaken may adversely modify such habitat, or may be affected by such designation.
(c) Lists.-(1) The Secretary of the Interior shall publish in the Federal Register a list of all species determined by him or the Secretary of Commerce to be endangered species and a list of all species determined by him or the Secretary of Commerce to be threatened species. Each list shall refer to the species contained therein by scientific and common name or names, if any, specify with respect to each such species over what portion of its range it is endangered or threatened, and specify any critical habitat within such range. The Secretary shall from time to time revise each list published under the authority of this subsection to reflect recent determinations, designations, and revisions made in accordance with subsections (a) and (b).
(2) The Secretary shall-
(A) conduct, at least once every five years, a review of all species included in
a list which is published pursuant to paragraph (1) and which is in effect at the time of such review; and
(B) determine on the basis of such review whether any such species should-
(i) be removed from such list;
(ii) be changed in status from an endangered species to a threatened species; or
(iii) be changed in status from a threatened species to an endangered species.
Each determination under subparagraph (B) shall be made in accordance with the provisions of subsections (a) and (b).
(d) Protective Regulations.-Whenever any species is listed as a threatened species pursuant to subsection (c) of this section, the Secretary shall issue such regulations as he deems necessary and advisable to provide for the conservation of such species. The Secretary may by regulation prohibit with respect to any threatened species any act prohibited under section 9(a)(1), in the case of fish or wildlife, or section $9(a)(2)$, in the case of plants, with respect to endangered species; except that with respect to the taking of resident species of fish or wildlife, such regulations shall apply in any State which has entered into a cooperative agreement pursuant to section 6(c) of this Act only to the extent that such regulations have also been adopted by such State.
(e) Similarity of Appearance Cases.-The Secretary may, by regulation of commerce or taking, and to the extent he deems advisable, treat any species as an endangered species or threatened species even though it is not listed pursuant to section 4 of this Act if he finds that-
(A) such species so closely resembles in appearance, at the point in question, a species which has been listed pursuant to such section that enforcement personnel would have substantial difficulty in attempting to differentiate between the listed and unlisted species;
(B) the effect of this substantial difficulty is an additional threat to an endangered or threatened species; and
(C) such treatment of an unlisted species will substantially facilitate the enforcement and further the policy of this Act.
(f)(1) Recovery Plans.-The Secretary shall develop and implement plans (hereinafter in this subsection referred to as "recovery plans") for the conservation and survival of endangered species and threatened species listed pursuant to this section, unless he finds that such a plan will not promote the conservation of the species. The Secretary, in developing and implementing recovery plans, shall, to the maximum extent practicable-
(A) give priority to those endangered species or threatened species, without regard to taxonomic classification, that are most likely to benefit from such plans, particularly those species that are, or may be, in conflict with construction or other development projects or other forms of economic activity;
(B) incorporate in each plan-
(i) a description of such site-specific management actions as may be necessary to achieve the plan's goal for the conservation and survival of the species;
(ii) objective, measurable criteria which, when met, would result in a determination, in accordance with the provisions of this section, that the species be removed from the list; and
(iii) estimates of the time required and the cost to carry out those measures needed to achieve the plan's goal and to achieve intermediate steps toward that goal.
(2) The Secretary, in developing and implementing recovery plans, may procure the services of appropriate public and private agencies and institutions, and other qualified persons. Recovery teams appointed pursuant to this subsection shall not be subject to the Federal Advisory Committee Act.
(3) The Secretary shall report every two years to the Committee on Environment and Public Works of the Senate and the Committee on Merchant Marine and Fisheries of the House of Representatives on the status of efforts to develop and implement recovery plans for all species listed pursuant to this section and on the status of all species for which such plans have been developed.
(4) The Secretary shall, prior to final approval of a new or revised recovery plan, provide public notice and an opportunity for public review and comment on such plan. The Secretary shall consider all information presented during the public comment period prior to approval of the plan.
(5) Each Federal agency shall, prior to implementation of a new or revised recovery plan, consider all information presented during the public comment period under paragraph (4).
(g) Monitoring.-(1) The Secretary shall implement a system in cooperation with the States to monitor effectively for not less than five years the status of all species which have recovered to the point at which the measures provided pursuant to this Act are no longer necessary and which, in accordance with the provisions of this section, have been removed from either of the lists published under subsection (c).
(2) The Secretary shall make prompt use of the authority under paragraph 7 of subsection (b) of this section to prevent a significant risk to the well being of any such recovered species.
(h) Agency GUidelines.-The Secretary shall establish, and publish in the Federal Register, agency guidelines to insure that the purposes of this section are achieved efficiently and effectively. Such guidelines shall include, but are not limited to-
(1) procedures for recording the receipt and the disposition of petitions submitted under subsection (b)(3) of this section;
(2) criteria for making the findings required under such subsection with respect to petitions;
(3) a ranking system to assist in the identification of species that should receive priority review under subsection (a)(1) of this section; and
(4) a system for developing and implementing, on a priority basis, recovery plans under subsection (f) of this section. The Secretary shall provide to the public notice of, and opportunity to submit written comments on, any guideline (including any amendment thereto) proposed to be established under this subsection.
(i) If, in the case of any regulation proposed by the Secretary under the authority of this section, a State agency to which notice thereof was given in accordance with subsection (b)(5)(A)(ii) files comments disagreeing with all or part of the proposed regulation, and the Secretary issues a final regulation which is in conflict with such comments, or if the Secretary fails to adopt a regulation pursuant to an action petitioned by a State agency under subsection (b)(3), the Secretary shall submit to the State agency a written justification for his failure to adopt regulations consistent with the agency's comments or petition.

LAND ACQUISITION

Sec. 5. (a) Program.-The Secretary, and the Secretary of Agriculture with respect to the National Forest System, shall establish and implement a program to conserve fish, wildlife, and plants, including those which are listed as endangered species or threatened species pursuant to section 4 of this Act. To carry out such a program, the appropriate Secretary-
(1) shall utilize the land acquisition and other authority under the Fish and Wildlife Act of 1956, as amended, the Fish and Wildlife Coordination Act, as amended, and the Migratory Bird Conservation Act, as appropriate; and
(2) is authorized to acquire by purchase, donation, or otherwise, lands, waters, or interests therein, and such authority shall be in addition to any other land acquisition authority vested in him.
(b) Acquisitions.-Funds made available pursuant to the Land and Water Conservation Fund Act of 1965, as amended, may be used for the purpose of acquiring lands, waters, or interest therein under subsection (a) of this section.

COOPERATION WITH THE STATES

Sec. 6. (a) General.-In carrying out the program authorized by this Act, the Secretary shall cooperate to the maximum extent practicable with the States. Such cooperation shall include consultation with the States concerned before acquiring any land or water, or interest therein, for the purpose of conserving any endangered species or threatened species.
(b) Management Agreements.-The Secretary may enter into agreements with any State for the administration and management of any area established for the conservation of endangered species or threatened species. Any revenues derived from the administration of such areas under these agreements shall be subject to the provisions of section 401 of the Act of June 15, 1935 (49 Stat. 383; 16 U.S.C. 715 s).
(c) Cooperative Agreements.-(1) In furtherance of the purposes of this Act, the Secretary is authorized to enter into a cooperative agreement in accordance with this section with any State which establishes and maintains an adequate and active program for the conservation of endangered species and threatened species. Within one hundred and twenty days after the Secretary receives a certified copy of such a proposed State program, he shall make a determination whether such program is in accordance with this Act. Unless he determines, pursuant to this paragraph that the State program is not in accordance with this Act, he shall enter into a cooperative agreement with the State for the purpose of assisting in implementation of the State program. In order for a State program to be deemed an adequate and active program for the conservation of endangered species and threatened species, the Secretary must find, and annually thereafter reconfirm such finding, that under the State program -
(A) authority resides in the State agency to conserve resident species of fish or wildlife determined by the State agency or the Secretary to be endangered or threatened;
(B) the State agency has established acceptable conservation programs, consistent with the purposes and policies of this Act, for all resident species of fish or
wildlife in the State which are deemed by the Secretary to be endangered or threatened, and has furnished a copy of such plan and program together with all pertinent details, information, and data requested to the Secretary;
(C) the State agency is authorized to conduct investigations to determine the status and requirements for survival of resident species of fish and wildlife;
(D) the State agency is authorized to establish programs, including the acquisition of land or aquatic habitat or interests therein, for the conservation of resident endangered or threatened species of fish or wildlife; and
(E) provision is made for public participation in designating resident species of fish or wildlife as endangered or threatened; or that under the State pro-gram-
(i) the requirements set forth in subparagraphs (C), (D), and (E) of this paragraph are complied with, and
(ii) plans are included under which immediate attention will be given to those resident species of fish and wildlife which are determined by the Secretary or the State agency to be endangered or threatened and which the Secretary and the State agency agree are most urgently in need of conservation programs; except that a cooperative agreement entered into with a State whose program is deemed adequate and active pursuant to clause (i) and this clause shall not affect the applicability of prohibitions set forth in or authorized pursuant to section 4(d) or section 9(a)(1) with respect to the taking of any resident endangered or threatened species.
(2) In furtherance of the purposes of this Act, the Secretary is authorized to enter into a cooperative agreement in accordance with this section with any State which establishes and maintains an adequate and active program for the conservation of endangered species and threatened species of plants. Within one hundred and twenty days after the Secretary receives a certified copy of such a proposed State program, he shall make a determination whether such program is in accordance with this Act. Unless he determines, pursuant to this paragraph, that the State program is not in accordance with this Act, he shall enter into a cooperative agreement with the State for the purpose of assisting in implementation of the State program. In order for a State program to be deemed an adequate and active program for the conservation of endangered species of plants and threatened species of plants, the Secretary must find, and annually thereafter reconfirm such finding, that under the State program-
(A) authority resides in the State agency to conserve resident species of plants determined by the State agency or the Secretary to be endangered or threatened;
(B) the State agency has established acceptable conservation programs, consistent with the purposes and policies of this Act, for all resident species of plants in the State which are deemed by the Secretary to be endangered or threatened, and has furnished a copy of such plan and program together with all pertinent details, information, and data requested to the Secretary;
(C) the State agency is authorized to conduct investigations to determine the status and requirements for survival of resident species of plants; and
(D) provision is made for public participation in designating resident species of plants as endangered or threatened; or that under the State program-
(i) the requirements set forth in subparagraphs (C) and (D) of this paragraph are complied with, and
(ii) plans are included under which immediate attention will be given to
those resident species of plants which are determined by the Secretary or the State agency to be endangered or threatened and which the Secretary and the State agency agree are most urgently in need of conservation programs; except that a cooperative agreement entered into with a State whose program is deemed adequate and active pursuant to clause (i) and this clause shall not affect the applicability of prohibitions set forth in or authorized pursuant to section 4(d) or section 9(a)(1) [16 USCS § § 1533(d), 1538(a)(1)] with respect to the taking of any resident endangered or threatened species.
(d) Allocation of Funds.-(1) The Secretary is authorized to provide financial assistance to any State, through its respective State agency, which has entered into a cooperative agreement pursuant to subsection (c) of this section to assist in development of programs for the conservation of endangered and threatened species or to assist in monitoring the status of candidate species pursuant to subparagraph (C) of section 4(b)(3) and recovered species pursuant to section 4(g). The Secretary shall allocate each annual appropriation made in accordance with the provisions of subsection (i) of this section to such States based on consideration of-
(A) the international commitments of the United States to protect endangered species or threatened species;
(B) the readiness of a State to proceed with a conservation program consistent with the objectives and purposes of this Act;
(C) the number of endangered species and threatened species within a State;
(D) the potential for restoring endangered species and threatened species within a State;
(E) the relative urgency to initiate a program to restore and protect an endangered species or threatened species in terms of survival of the species;
(F) the importance of monitoring the status of candidate species within a State to prevent a significant risk to the well being of any such species; and
(G) the importance of monitoring the status of recovered species within a State to assure that such species do not return to the point at which the measures provided pursuant to this Act are again necessary.
So much of the annual appropriation made in accordance with provisions of subsection (i) of this section allocated for obligation to any State for any fiscal year as remains unobligated at the close thereof is authorized to be made available to that State until the close of the succeeding fiscal year. Any amount allocated to any State which is unobligated at the end of the period during which it is available for expenditure is authorized to be made available for expenditure by the Secretary in conducting programs under this section.
(2) Such cooperative agreements shall provide for (A) the actions to be taken by the Secretary and the States; (B) the benefits that are expected to be derived in connection with the conservation of endangered or threatened species; (C) the estimated cost of these actions; and (D) the share of such costs to be borne by the Federal Government and by the States; except that-
(i) the Federal share of such program costs shall not exceed 75 percent of the estimated program cost stated in the agreement; and
(ii) the Federal share may be increased to 90 percent whenever two or more States having a common interest in one or more endangered or threatened species, the conservation of which may be enhanced by cooperation of such States, enter jointly into an agreement with the Secretary.

The Secretary may, in his discretion, and under such rules and regulations as he may prescribe, advance funds to the State for financing the United States pro rata share agreed upon in the cooperative agreement. For the purposes of this section, the non-Federal share may, in the discretion of the Secretary, be in the form of money or real property, the value of which will be determined by the Secretary, whose decision shall be final.
(e) Review of State Programs.-Any action taken by the Secretary under this section shall be subject to his periodic review at no greater than annual intervals.
(f) Conflicts Between Federal and State Laws.-Any State law or regulation which applies with respect to the importation or exportation of, or interstate or foreign commerce in, endangered species or threatened species is void to the extent that it may effectively (1) permit what is prohibited by this Act or by any regulation which implements this Act, or (2) prohibit what is authorized pursuant to an exemption or permit provided for in this Act or in any regulation which implements this Act. This Act shall not otherwise be construed to void any State law or regulation which is intended to conserve migratory, resident, or introduced fish or wildlife, or to permit or prohibit sale of such fish or wildlife. Any State law or regulation respecting the taking of an endangered species or threatened species may be more restrictive than the exemptions or permits provided for in this Act or in any regulation which implements this Act but not less restrictive than the prohibitions so defined.
(g) Transition.-(1) For purposes of this subsection, the term "establishment period" means, with respect to any State, the period beginning on the date of enactment of this Act and ending on whichever of the following dates first occurs: (A) the date of the close of the 120-day period following the adjournment of the first regular session of the legislature of such State which commences after such date of enactment, or (B) the date of the close of the 15 -month period following such date of enactment.
(2) The prohibitions set forth in or authorized pursuant to sections 4(d) and $9(\mathrm{a})(1)(\mathrm{B})$ of this Act shall not apply with respect to the taking of any resident endangered species or threatened species (other than species listed in Appendix I to the Convention or otherwise specifically covered by any other treaty or Federal law) within any state-
(A) which is then a party to a cooperative agreement with the Secretary pursuant to section 6(c) of this Act (except to the extent that the taking of any such species is contrary to the law of such State); or
(B) except for any time within the establishment period when-
(i) the Secretary applies such prohibition to such species at the request of the State, or
(ii) the Secretary applies such prohibition after he finds, and publishes his finding, that an emergency exists posing a significant risk to the wellbeing of such species and that the prohibition must be applied to protect such species. The Secretary's finding and publication may be made without regard to the public hearing or comment provisions of section 553 of title 5 , United States Code, or any other provision of this Act; but such prohibition shall expire 90 days after the date of its imposition unless the Secretary further extends such prohibition by publishing notice and a statement of justification of such extension.
(h) Regulations.-The Secretary is authorized to promulgate such regulations as may be appropriate to carry out the provisions of this section relating to financial assistance to States.
(i) Appropriations.-(1) To carry out the provisions of this section for fiscal years after September 30, 1988, there shall be deposited into a special fund known as the cooperative endangered species conservation fund, to be administered by the Secretary, an amount equal to 5 percent of the combined amounts covered each fiscal year into the Federal aid to wildlife restoration fund under section 3 of the Act of September 2, 1937, and paid, transferred, or otherwise credited each fiscal year to the Sport Fishing Restoration Account established under 1016 of the Act of July 18, 1984.
(2) Amounts deposited into the special fund are authorized to be appropriated annually and allocated in accordance with subsection (d) of this section.

INTERAGENCY COOPERATION

Sec. 7. (a) Federal Agency Actions and Consultations.-(1) The Secretary shall review other programs administered by him and utilize such programs in furtherance of the purposes of this Act. All other Federal agencies shall, in consultation with and with the assistance of the Secretary, utilize their authorities in furtherance of the purposes of this Act by carrying out programs for the conservation of endangered species and threatened species listed pursuant to section 4 of this Act.
(2) Each Federal agency shall, in consultation with and with the assistance of the Secretary, insure that any action authorized, funded, or carried out by such agency (hereinafter in this section referred to as an "agency action") is not likely to jeopardize the continued existence of any endangered species or threatened species or result in the destruction or adverse modification of habitat of such species which is determined by the Secretary, after consultation as appropriate with affected States, to be critical, unless such agency has been granted an exemption for such action by the Committee pursuant to subsection (h) of this section. In fulfilling the requirements of this paragraph each agency shall use the best scientific and commercial data available.
(3) Subject to such guidelines as the Secretary may establish, a Federal agency shall consult with the Secretary on any prospective agency action at the request of, and in cooperation with, the prospective permit or license applicant if the applicant has reason to believe that an endangered species or a threatened species may be present in the area affected by his project and that implementation of such action will likely affect such species.
(4) Each Federal agency shall confer with the Secretary on any agency action which is likely to jeopardize the continued existence of any species proposed to be listed under section 4 or result in the destruction or adverse modification of critical habitat proposed to be designated for such species. This paragraph does not require a limitation on the commitment of resources as described in subsection (d).
(b) Opinion of Secretary.-(1)(A) Consultation under subsection (a)(2) with respect to any agency action shall be concluded within the 90 -day period beginning on the date on which initiated or, subject to subparagraph (B), within such other period of time as is mutually agreeable to the Secretary and the Federal agency.
(B) In the case of an agency action involving a permit or license applicant, the Secretary and the Federal agency may not mutually agree to conclude consultation within
a period exceeding 90 days unless the Secretary, before the close of the 90th day referred to in subparagraph (A)-
(i) if the consultation period proposed to be agreed to will end before the 150th day after the date on which consultation was initiated, submits to the applicant a written statement setting forth-
(I) the reasons why a longer period is required,
(II) the information that is required to complete the consultation, and
(III) the estimated date on which consultation will be completed; or
(ii) if the consultation period proposed to be agreed to will end 150 or more days after the date on which consultation was initiated, obtains the consent of the applicant to such period.
The Secretary and the Federal agency may mutually agree to extend a consultation period established under the preceding sentence if the Secretary, before the close of such period, obtains the consent of the applicant to the extension.
(2) Consultation under subsection (a)(3) shall be concluded within such period as is agreeable to the Secretary, the Federal agency, and the applicant concerned.
(3)(A) Promptly after conclusion of consultation under paragraph (2) or (3) of subsection (a), the Secretary shall provide to the Federal agency and the applicant, if any, a written statement setting forth the Secretary's opinion, and a summary of the information on which the opinion is based, detailing how the agency action affects the species or its critical habitat. If jeopardy or adverse modification is found, the Secretary shall suggest those reasonable and prudent alternatives which he believes would not violate subsection (a)(2) and can be taken by the Federal agency or applicant in implementing the agency action.
(B) Consultation under subsection (a)(3), and an opinion issued by the Secretary incident to such consultation, regarding an agency action shall be treated respectively as a consultation under subsection (a)(2), and as an opinion issued after consultation under such subsection, regarding that action if the Secretary reviews the action before it is commenced by the Federal agency and finds, and notifies such agency, that no significant changes have been made with respect to the action and that no significant change has occurred regarding the information used during the initial consultation.
(4) If after consultation under subsection (a)(2), the Secretary concludes that-
(A) the agency action will not violate such subsection, or offers reasonable and prudent alternatives which the Secretary believes would not violate such subsection;
(B) the taking of an endangered species or a threatened species incidental to the agency action will not violate such subsection; and
(C) if an endangered species or threatened species of a marine mammal is involved, the taking is authorized pursuant to section 101(a)(5) of the Marine Mammal Protection Act of 1972;
the Secretary shall provide the Federal agency and the applicant concerned, if any, with a written statement that-
(i) specifies the impact of such incidental taking on the species,
(ii) specifies those reasonable and prudent measures that the Secretary considers necessary or appropriate to minimize such impact,
(iii) in the case of marine mammals, specifies those measures that are necessary to comply with section 101(a)(5) of the Marine Mammal Protection Act of 1972 with regard to such taking, and
(iv) sets forth the terms and conditions (including, but not limited to, reporting requirements) that must be complied with by the Federal agency or applicant (if any), or both, to implement the measures specified under clauses (ii) and (iii).
(c) Biological Assessment.-(1) To facilitate compliance with the requirements of subsection (a)(2), each Federal agency shall, with respect to any agency action of such agency for which no contract for construction has been entered into and for which no construction has begun on the date of enactment of the Endangered Species Act Amendments of 1978, request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action. If the Secretary advises, based on the best scientific and commercial data available, that such species may be present, such agency shall conduct a biological assessment for the purpose of identifying any endangered species or threatened species which is likely to be affected by such action. Such assessment shall be completed within 180 days after the date on which initiated (or within such other period as is mutually agreed to by the Secretary and such agency, except that if a permit or license applicant is involved, the 180-day period may not be extended unless such agency provides the applicant, before the close of such period, with a written statement setting forth the estimated length of the proposed extension and the reasons therefor) and, before any contract for construction is entered into and before construction is begun with respect to such action. Such assessment may be undertaken as part of a Federal agency's compliance with the requirements of section 102 of the National Environmental Policy Act of 1969 (42 U.S.C. 4332).
(2) Any person who may wish to apply for an exemption under subsection (g) of this section for that action may conduct a biological assessment to identify any endangered species or threatened species which is likely to be affected by such action. Any such biological assessment must, however, be conducted in cooperation with the Secretary and under the supervision of the appropriate Federal agency.
(d) Limitation on Commitment of Resources.-After initiation of consultation required under subsection (a)(2), the Federal agency and the permit or license applicant shall not make any irreversible or irretrievable commitment of resources with respect to the agency action which has the effect of foreclosing the formulation or implementation of any reasonable and prudent alternative measures which would not violate subsection (a)(2).
(e)(1) Establishment of Committee.-There is established a committee to be known as the Endangered Species Committee (hereinafter in this section referred to as the "Committee").
(2) The Committee shall review any application submitted to it pursuant to this section and determine in accordance with subsection (h) of this section whether or not to grant an exemption from the requirements of subsection (a)(2) of this section for the action set forth in such application.
(3) The Committee shall be composed of seven members as follows:
(A) The Secretary of Agriculture.
(B) The Secretary of the Army.
(C) The Chairman of the Council of Economic Advisors.
(D) The Administrator of the Environmental Protection Agency.
(E) The Secretary of the Interior.
(F) The Administrator of the National Oceanic and Atmospheric Administration.
(G) The President, after consideration of any recommendations received pur-
suant to subsection $(\mathrm{g})(2)(\mathrm{B})$ shall appoint one individual from each affected State, as determined by the Secretary, to be a member of the Committee for the consideration of the application for exemption for an agency action with respect to which such recommendations are made, not later than 30 days after an application is submitted pursuant to this section.
(4)(A) Members of the Committee shall receive no additional pay on account of their service on the Committee.
(B) While away from their homes or regular places of business in the performance of services for the Committee, members of the Committee shall be allowed travel expenses, including per diem in lieu of subsistence, in the same manner as persons employed intermittently in the Government service are allowed expenses under section 5703 of title 5 of the United States Code.
(5)(A) Five members of the Committee or their representatives shall constitute a quorum for the transaction of any function of the Committee, except that, in no case shall any representative be considered in determining the existence of a quorum for the transaction of any function of the Committee if that function involves a vote by the Committee on any matter before the Committee.
(B) The Secretary of the Interior shall be the Chairman of the Committee.
(C) The Committee shall meet at the call of the Chairman or five of its members.
(D) All meetings and records of the Committee shall be open to the public.
(6) Upon request of the Committee, the head of any Federal agency is authorized to detail, on a nonreimbursable basis, any of the personnel of such agency to the Committee to assist it in carrying out its duties under this section.
(7)(A) The Committee may for the purpose of carrying out its duties under this section hold such hearings, sit and act at such times and places, take such testimony, and receive such evidence, as the Committee deems advisable.
(B) When so authorized by the Committee, any member or agent of the Committee may take any action which the Committee is authorized to take by this paragraph.
(C) Subject to the Privacy Act, the Committee may secure directly from any Federal agency information necessary to enable it to carry out its duties under this section. Upon request of the Chairman of the Committee, the head of such Federal agency shall furnish such information to the Committee.
(D) The Committee may use the United States mails in the same manner and upon the same conditions as a Federal agency.
(E) The Administrator of General Services shall provide to the Committee on a reimbursable basis such administrative support services as the Committee may request.
(8) In carrying out its duties under this section, the Committee may promulgate and amend such rules, regulations, and procedures, and issue and amend such orders as it deems necessary.
(9) For the purpose of obtaining information necessary for the consideration of an application for an exemption under this section the Committee may issue subpoenas for the attendance and testimony of witnesses and the production of relevant papers, books, and documents.
(10) In no case shall any representative, including a representative of a member designated pursuant to paragraph (3)(G) of this subsection, be eligible to cast a vote on behalf of any member.
(f) Regulations.-Not later than 90 days after the date of enactment of the En-
dangered Species Act Amendments of 1978, the Secretary shall promulgate regulations which set forth the form and manner in which applications for exemption shall be submitted to the Secretary and the information to be contained in such applications. Such regulations shall require that information submitted in an application by the head of any Federal agency with respect to any agency action include, but not be limited to -
(1) a description of the consultation process carried out pursuant to subsection (a)(2) of this section between the head of the Federal agency and the Secretary; and
(2) a statement describing why such action cannot be altered or modified to conform with the requirements of subsection (a)(2) of this section.
(g) Application for Exemption and Report to the Committee.-(1) A Federal agency, the Governor of the State in which an agency action will occur, if any, or a permit or license applicant may apply to the Secretary for an exemption for an agency action of such agency if, after consultation under subsection (a)(2), the Secretary's opinion under subsection (b) indicates that the agency action would violate subsection (a)(2). An application for an exemption shall be considered initially by the Secretary in the manner provided for in this subsection, and shall be considered by the Committee for a final determination under subsection (h) after a report is made pursuant to paragraph (5). The applicant for an exemption shall be referred to as the "exemption applicant" in this section.
(2)(A) An exemption applicant shall submit a written application to the Secretary, in a form prescribed under subsection (f), not later than 90 days after the completion of the consultation process; except that, in the case of any agency action involving a permit or license applicant, such application shall be submitted not later than 90 days after the date on which the Federal agency concerned takes final agency action with respect to the issuance of the permit or license. For purposes of the preceding sentence, the term "final agency action" means (i) a disposition by an agency with respect to the issuance of a permit or license that is subject to administrative review, whether or not such disposition is subject to judicial review; or (ii) if administrative review is sought with respect to such disposition, the decision resulting after such review. Such application shall set forth the reasons why the exemption applicant considers that the agency action meets the requirements for an exemption under this subsection.
(B) Upon receipt of an application for exemption for an agency action under paragraph (1), the Secretary shall promptly (i) notify the Governor of each affected State, if any, as determined by the Secretary, and request the Governors so notified to recommend individuals to be appointed to the Endangered Species Committee for consideration of such application; and (ii) publish notice of receipt of the application in the Federal Register, including a summary of the information contained in the application and a description of the agency action with respect to which the application for exemption has been filed.
(3) The Secretary shall within 20 days after the receipt of an application for exemption, or within such other period of time as is mutually agreeable to the exemption applicant and the Secretary-
(A) determine that the Federal agency concerned and the exemption applicant have-
(i) carried out the consultation responsibilities described in subsection (a) in good faith and made a reasonable and responsible effort to develop and
fairly consider modifications or reasonable and prudent alternatives to the proposed agency action which would not violate subsection (a)(2);
(ii) conducted any biological assessment required by subsection (c); and
(iii) to the extent determinable within the time provided herein, refrained from making any irreversible or irretrievable commitment of resources prohibited by subsection (d); or
(B) deny the application for exemption because the Federal agency concerned or the exemption applicant have not met the requirements set forth in subparagraph (A)(i), (ii), and (iii).
The denial of an application under subparagraph (B) shall be considered final agency action for purposes of chapter 7 of title 5, United States Code.
(4) If the Secretary determines that the Federal agency concerned and the exemption applicant have met the requirements set forth in paragraph (3)(A)(i), (ii), and (iii) he shall, in consultation with the Members of the Committee, hold a hearing on the application for exemption in accordance with sections 554,555 , and 556 (other than subsection (b)(1) and (2) thereof) of title 5, United States Code, and prepare the report to be submitted pursuant to paragraph (5).
(5) Within 140 days after making the determinations under paragraph (3) or within such other period of time as is mutually agreeable to the exemption applicant and the Secretary, the Secretary shall submit to the Committee a report discussing-
(A) the availability of reasonable and prudent alternatives to the agency action, and the nature and extent of the benefits of the agency action and of alternative courses of action consistent with conserving the species or the critical habitat;
(B) a summary of the evidence concerning whether or not the agency action is in the public interest and is of national or regional significance;
(C) appropriate reasonable mitigation and enhancement measures which should be considered by the Committee; and
(D) whether the Federal agency concerned and the exemption applicant refrained from making any irreversible or irretrievable commitment of resources prohibited by subsection (d).
(6) To the extent practicable within the time required for action under subsection (g) of this section, and except to the extent inconsistent with the requirements of this section, the consideration of any application for an exemption under this section and the conduct of any hearing under this subsection shall be in accordance with sections 554, 555, and 556 (other than subsection (b)(3) of section 556) of title 5, United States Code.
(7) Upon request of the Secretary, the head of any Federal agency is authorized to detail, on a nonreimbursable basis, any of the personnel of such agency to the Secretary to assist him in carrying out his duties under this section.
(8) All meetings and records resulting from activities pursuant to this subsection shall be open to the public.
(h) Exemption.-(1) The Committee shall make a final determination whether or not to grant an exemption within 30 days after receiving the report of the Secretary pursuant to subsection (g)(5). The Committee shall grant an exemption from the requirements of subsection (a)(2) for an agency action if, by a vote of not less than five of its members voting in person-
(A) it determines on the record, based on the report of the Secretary, the
record of the hearing held under subsection $(g)(4)$ and on such other testimony or evidence as it may receive, that-
(i) there are no reasonable and prudent alternatives to the agency action;
(ii) the benefits of such action clearly outweigh the benefits of alternative courses of action consistent with conserving the species or its critical habitat, and such action is in the public interest;
(iii) the action is of regional or national significance; and
(iv) neither the Federal agency concerned nor the exemption applicant made any irreversible or irretrievable commitment of resources prohibited by subsection (d); and
(B) it establishes such reasonable mitigation and enhancement measures, including, but not limited to, live propagation, transplantation, and habitat acquisition and improvement, as are necessary and appropriate to minimize the adverse effects of the agency action upon the endangered species, threatened species, or critical habitat concerned.
Any final determination by the Committee under this subsection shall be considered final agency action for purposes of chapter 7 of title 5 of the United States Code.
(2)(A) Except as provided in subparagraph (B), an exemption for an agency action granted under paragraph (1) shall constitute a permanent exemption with respect to all endangered or threatened species for the purposes of completing such agency action-
(i) regardless whether the species was identified in the biological assessment; and
(ii) only if a biological assessment has been conducted under subsection (c) with respect to such agency action.
(B) An exemption shall be permanent under subparagraph (A) unless-
(i) the Secretary finds, based on the best scientific and commercial data available, that such exemption would result in the extinction of a species that was not the subject of consultation under subsection (a)(2) or was not identified in any biological assessment conducted under subsection (c), and
(ii) the Committee determines within 60 days after the date of the Secretary's finding that the exemption should not be permanent.
If the Secretary makes a finding described in clause (i), the Committee shall meet with respect to the matter within 30 days after the date of the finding.
(i) Review by Secretary of State.-Notwithstanding any other provision of this Act, the Committee shall be prohibited from considering for exemption any application made to it, if the Secretary of State, after a review of the proposed agency action and its potential implications, and after hearing, certifies, in writing, to the Committee within 60 days of any application made under this section that the granting of any such exemption and the carrying out of such action would be in violation of an international treaty obligation or other international obligation of the United States. The Secretary of State shall, at the time of such certification, publish a copy thereof in the Federal Register.
(j) Notwithstanding any other provision of this Act, the Committee shall grant an exemption for any agency action if the Secretary of Defense finds that such exemption is necessary for reasons of national security.
(k) Special Provisions.-An exemption decision by the Committee under this section shall not be a major Federal action for purposes of the National Environ-
mental Policy Act of 1969 (42 U.S.C. 4321 et seq.): Provided, That an environmental impact statement which discusses the impacts upon endangered species or threatened species or their critical habitats shall have been previously prepared with respect to any agency action exempted by such order.
(l) Committee Orders.-(1) If the Committee determines under subsection (h) that an exemption should be granted with respect to any agency action, the Committee shall issue an order granting the exemption and specifying the mitigation and enhancement measures established pursuant to subsection (h) which shall be carried out and paid for by the exemption applicant in implementing the agency action. All necessary mitigation and enhancement measures shall be authorized prior to the implementing of the agency action and funded concurrently with all other project features.
(2) The applicant receiving such exemption shall include the costs of such mitigation and enhancement measures within the overall costs of continuing the proposed action. Notwithstanding the preceding sentence the costs of such measures shall not be treated as project costs for the purpose of computing benefit-cost or other ratios for the proposed action. Any applicant may request the Secretary to carry out such mitigation and enhancement measures. The costs incurred by the Secretary in carrying out any such measures shall be paid by the applicant receiving the exemption. No later than one year after the granting of an exemption, the exemption applicant shall submit to the Council on Environmental Quality a report describing its compliance with the mitigation and enhancement measures prescribed by this section. Such a report shall be submitted annually until all such mitigation and enhancement measures have been completed. Notice of the public availability of such reports shall be published in the Federal Register by the Council on Environmental Quality.
(m) Notice.-The 60-day notice requirement of section $11(\mathrm{~g})$ of this Act shall not apply with respect to review of any final determination of the Committee under subsection (h) of this section granting an exemption from the requirements of subsection (a)(2) of this section.
(n) Judicial Review. -Any person, as defined by section 3(13) of this Act, may obtain judicial review, under chapter 7 of title 5 of the United States Code, of any decision of the Endangered Species Committee under subsection (h) in the United States Court of Appeals for (1) any circuit wherein the agency action concerned will be, or is being, carried out, or (2) in any case in which the agency action will be, or is being, carried out outside of any circuit, the District of Columbia, by filing in such court within 90 days after the date of issuance of the decision, a written petition for review. A copy of such petition shall be transmitted by the clerk of the court to the Committee and the Committee shall file in the court the record in the proceeding, as provided in section 2112, of title 28, United States Code. Attorneys designated by the Endangered Species Committee may appear for, and represent the Committee in any action for review under this subsection.
(o) Notwithstanding sections 4(d) and 9(a)(1)(B) and (C), sections 101 and 102 of the Marine Mammal Protection Act of 1972, or any regulation promulgated to implement any such section-
(1) any action for which an exemption is granted under subsection (h) shall not be considered to be a taking of any endangered species or threatened species with respect to any activity which is necessary to carry out such action; and
(2) any taking that is in compliance with the terms and conditions specified in
a written statement provided under subsection (b)(4)(iv) shall not be considered to be a prohibited taking of the species concerned.
(p) Exemptions in Presidentially Declared Disaster Areas.-In any area which has been declared by the President to be a major disaster area under the Disaster Relief and Emergency Assistance Act, the President is authorized to make the determinations required by subsections (g) and (h) of this section for any project for the repair or replacement of a public facility substantially as it existed prior to the disaster under section 405 or 406 of the Disaster Relief and Emergency Assistance Act, and which the President determines (1) is necessary to prevent the recurrence of such a natural disaster and to reduce the potential loss of human life, and (2) to involve an emergency situation which does not allow the ordinary procedures of this section to be followed. Notwithstanding any other provision of this section, the Committee shall accept the determinations of the President under this subsection.

INTERNATIONAL COOPERATION

Sec. 8. (a) Financial Assistance.-As a demonstration of the commitment of the United States to the worldwide protection of endangered species and threatened species, the President may, subject to the provisions of section 1415 of the Supplemental Appropriation Act, 1953 (31 U.S.C. 724), use foreign currencies accruing to the United States Government under the Agricultural Trade Development and Assistance Act of 1954 or any other law to provide to any foreign country (with its consent) assistance in the development and management of programs in that country which the Secretary determines to be necessary or useful for the conservation of any endangered species or threatened species listed by the Secretary pursuant to section 4 of this Act. The President shall provide assistance (which includes, but is not limited to, the acquisition, by lease or otherwise, of lands, waters, or interests therein) to foreign countries under this section under such terms and conditions as he deems appropriate. Whenever foreign currencies are available for the provision of assistance under this section, such currencies shall be used in preference to funds appropriated under the authority of section 15 of this Act.
(b) Encouragement of Foreign Programs.-In order to carry out further the provisions of this Act, the Secretary, through the Secretary of State, shall encour-age-
(1) foreign countries to provide for the conservation of fish or wildlife and plants including endangered species and threatened species listed pursuant to section 4 of this Act;
(2) the entering into of bilateral or multilateral agreements with foreign countries to provide for such conservation; and
(3) foreign persons who directly or indirectly take fish or wildlife or plants in foreign countries or on the high seas for importation into the United States for commercial or other purposes to develop and carry out with such assistance as he may provide, conservation practices designed to enhance such fish or wildlife or plants and their habitat.
(c) Personnel-After consultation with the Secretary of State, the Secretary may-
(1) assign or otherwise make available any officer or employee of his department for the purpose of cooperating with foreign countries and international organizations in developing personnel resources and programs which promote the conservation of fish or wildlife or plants; and
(2) conduct or provide financial assistance for the educational training of foreign personnel, in this country or abroad, in fish, wildlife, or plant management, research and law enforcement and to render professional assistance abroad in such matters.
(d) Investigations.-After consultation with the Secretary of State and the Secretary of the Treasury, as appropriate, the Secretary may conduct or cause to be conducted such law enforcement investigations and research abroad as he deems necessary to carry out the purposes of this Act.

CONVENTION IMPLEMENTATION

Sec. 8A. (a) Management Authority and Scientific Authority.—The Secretary of the Interior (hereinafter in this section referred to as the "Secretary") is designated as the Management Authority and the Scientific Authority for purposes of the Convention and the respective functions of each such Authority shall be carried out through the United States Fish and Wildlife Service.
(b) Management Authority Functions.-The Secretary shall do all things necessary and appropriate to carry out the functions of the Management Authority under the Convention.
(c) Scientific Authority Functions.-(1) The Secretary shall do all things necessary and appropriate to carry out the functions of the Scientific Authority under the Convention.
(2) The Secretary shall base the determinations and advice given by him under Article IV of the Convention with respect to wildlife upon the best available biological information derived from professionally accepted wildlife management practices; but is not required to make, or require any State to make, estimates of population size in making such determinations or giving such advice.
(d) Reservations by the United States Under Convention.-If the United States votes against including any species in Appendix I or II of the Convention and does not enter a reservation pursuant to paragraph (3) of Article XV of the Convention with respect to that species, the Secretary of State, before the 90 th day after the last day on which such a reservation could be entered, shall submit to the Committee on Merchant Marine and Fisheries of the House of Representatives, and to the Committee on the Environment and Public Works of the Senate, a written report setting forth the reasons why such a reservation was not entered.
(e) Wildlife Preservation in Western Hemisphere.-(1) The Secretary of the Interior (hereinafter in this subsection referred to as the "Secretary"), in cooperation with the Secretary of State, shall act on behalf of, and represent, the United States in all regards as required by the Convention on Nature Protection and Wildlife Preservation in the Western Hemisphere (56 Stat. 1354, T.S. 982, hereinafter in this subsection referred to as the "Western Convention"). In the discharge of these responsibilities, the Secretary and the Secretary of State shall consult with the Secretary of Agriculture, the Secretary of Commerce, and the heads of other agencies with respect to matters relating to or affecting their areas of responsibility.
(2) The Secretary and the Secretary of State shall, in cooperation with the contracting parties to the Western Convention and, to the extent feasible and appropriate, with the participation of State agencies, take such steps as are necessary to implement the Western Convention. Such steps shall include, but not be limited to-
(A) cooperation with contracting parties and international organizations for
the purpose of developing personnel resources and programs that will facilitate implementation of the Western Convention.
(B) identification of those species of birds that migrate between the United States and other contracting parties, and the habitats upon which those species depend, and the implementation of cooperative measures to ensure that such species will not become endangered or threatened; and
(C) identification of measures that are necessary and appropriate to implement those provisions of the Western Convention which address the protection of wild plants.
(3) No later than September 30, 1985, the Secretary and the Secretary of State shall submit a report to Congress describing those steps taken in accordance with the requirements of this subsection and identifying the principal remaining actions yet necessary for comprehensive and effective implementation of the Western Convention.
(4) The provisions of this subsection shall not be construed as affecting the authority, jurisdiction, or responsibility of the several States to manage, control, or regulate resident fish or wildlife under State law or regulations.

PROHIBITED ACTS

Sec. 9. (a) General.-(1) Except as provided in sections 6(g)(2) and 10 of this Act, with respect to any endangered species of fish or wildlife listed pursuant to section 4 of this Act it is unlawful for any person subject to the jurisdiction of the United States to-
(A) import any such species into, or export any such species from the United States;
(B) take any such species within the United States or the territorial sea of the United States;
(C) take any such species upon the high seas;
(D) possess, sell, deliver, carry, transport, or ship, by any means whatsoever, any such species taken in violation of subparagraphs (B) and (C);
(E) deliver, receive, carry, transport, or ship in interstate or foreign commerce, by any means whatsoever and in the course of a commercial activity, any such species;
(F) sell or offer for sale in interstate or foreign commerce any such species; or
(G) violate any regulation pertaining to such species or to any threatened species of fish or wildlife listed pursuant to section 4 of this Act and promulgated by the Secretary pursuant to authority provided by this Act.
(2) Except as provided in sections $6(\mathrm{~g})(2)$ and 10 of this Act, with respect to any endangered species of plants listed pursuant to section 4 of this Act, it is unlawful for any person subject to the jurisdiction of the United States to-
(A) import any such species into, or export any such species from, the United States;
(B) remove and reduce to possession any such species from areas under Federal jurisdiction; maliciously damage or destroy any such species on any such area; or remove, cut, dig up, or damage or destroy any such species on any other area in knowing violation of any law or regulation of any State or in the course of any violation of a State criminal trespass law;
(C) deliver, receive, carry, transport, or ship in interstate or foreign commerce, by any means whatsoever and in the course of a commercial activity, any such species;
(D) sell or offer for sale in interstate or foreign commerce any such species; or
(E) violate any regulation pertaining to such species or to any threatened species of plants listed pursuant to section 4 of this Act and promulgated by the Secretary pursuant to authority provided by this Act.
(b)(1) Species Held in Captivity or Controlled Environment.-The provisions of subsections (a)(1)(A) and (a)(1)(G) of this section shall not apply to any fish or wildlife which was held in captivity or in a controlled environment on (A) December 28, 1973, or (B) the date of the publication in the Federal Register of a final regulation adding such fish or wildlife species to any list published pursuant to subsection (c) of section 4 of this Act: Provided, That such holding and any subsequent holding or use of the fish or wildlife was not in the course of a commercial activity. With respect to any act prohibited by subsections (a)(1)(A) and (a)(1)(G) of this section which occurs after a period of 180 days from (i) December 28, 1973, or (ii) the date of publication in the Federal Register of a final regulation adding such fish or wildlife species to any list published pursuant to subsection (c) of section 4 of this Act, there shall be a rebuttable presumption that the fish or wildlife involved in such act is not entitled to the exemption contained in this subsection.
(2)(A) The provisions of subsection (a)(1) shall not apply to-
(i) any raptor legally held in captivity or in a controlled environment on the effective date of the Endangered Species Act Amendments of 1978; or
(ii) any progeny of any raptor described in clause (i); until such time as any
such raptor or progeny is intentionally returned to a wild state.
(B) Any person holding any raptor or progeny described in subparagraph (A) must be able to demonstrate that the raptor or progeny does, in fact, qualify under the provisions of this paragraph, and shall maintain and submit to the Secretary, on request, such inventories, documentation, and records as the Secretary may by regulation require as being reasonably appropriate to carry out the purposes of this paragraph. Such requirements shall not unnecessarily duplicate the requirements of other rules and regulations promulgated by the Secretary.
(c) Violation of Convention.-(1) It is unlawful for any person subject to the jurisdiction of the United States to engage in any trade in any specimens contrary to the provisions of the Convention, or to possess any specimens traded contrary to the provisions of the Convention, including the definitions of terms in article I thereof.
(2) Any importation into the United States of fish or wildlife shall, if -
(A) such fish or wildlife is not an endangered species listed pursuant to section 4 of this Act but is listed in Appendix II to the Convention,
(B) the taking and exportation of such fish or wildlife is not contrary to the provisions of the Convention and all other applicable requirements of the Convention have been satisfied,
(C) the applicable requirements of subsections (d), (e), and (f) of this section have been satisfied, and
(D) such importation is not made in the course of a commercial activity, be presumed to be an importation not in violation of any provision of this Act or any regulation issued pursuant to this Act.
(d) Imports and Exports.-
(1) In general.-It is unlawful for any person, without first having obtained permission from the Secretary, to engage in business-
(A) as an importer or exporter of fish or wildlife (other than shellfish and fishery products which (i) are not listed pursuant to section 4 of this Act as endangered species or threatened species, and (ii) are imported for purposes of human or animal consumption or taken in waters under the jurisdiction of the United States or on the high seas for recreational purposes) or plants; or
(B) as an importer or exporter of any amount of raw or worked African elephant ivory.
(2) Requirements.-Any person required to obtain permission under paragraph (1) of this subsection shall-
(A) keep such records as will fully and correctly disclose each importation or exportation of fish, wildlife, plants, or African elephant ivory made by him and the subsequent disposition made by him with respect to such fish, wildlife, plants, or ivory;
(B) at all reasonable times upon notice by a duly authorized representative of the Secretary, afford such representative access to his place of business, an opportunity to examine his inventory of imported fish, wildlife, plants, or African elephant ivory and the records required to be kept under subparagraph (A) of this paragraph, and to copy such records; and
(C) file such reports as the Secretary may require.
(3) Regulations.-The Secretary shall prescribe such regulations as are necessary and appropriate to carry out the purposes of this subsection.
(4) Restriction on Consideration of Value or Amount of African Elephant Ivory Imported or Exported.-In granting permission under this subsection for importation or exportation of African elephant ivory, the Secretary shall not vary the requirements for obtaining such permission on the basis of the value or amount of ivory imported or exported under such permission.
(e) Reports.-It is unlawful for any person importing or exporting fish or wildlife (other than shellfish and fishery products which (1) are not listed pursuant to section 4 of this Act as endangered or threatened species, and (2) are imported for purposes of human or animal consumption or taken in waters under the jurisdiction of the United States or on the high seas for recreational purposes) or plants to fail to file any declaration or report as the Secretary deems necessary to facilitate enforcement of this Act or to meet the obligations of the Convention.
(f) Designation of Ports.- (1) It is unlawful for any person subject to the jurisdiction of the United States to import into or export from the United States any fish or wildlife (other than shellfish and fishery products which (A) are not listed pursuant to section 4 of this Act as endangered species or threatened species, and (B) are imported for purposes of human or animal consumption or taken in waters under the jurisdiction of the United States or on the high seas for recreational purposes) or plants, except at a port or ports designated by the Secretary of the Interior. For the purpose of facilitating enforcement of this Act and reducing the costs thereof, the Secretary of the Interior, with approval of the Secretary of the Treasury and after notice and opportunity for public hearing, may, by regulation, designate ports and change such designations. The Secretary of the Interior, under such terms and conditions as he may prescribe, may permit the importation or exportation at nondesignated ports in the interest of the health or safety of the fish or wildlife or plants, or for other
reasons if, in his discretion, he deems it appropriate and consistent with the purpose of this subsection.
(2) Any port designated by the Secretary of the Interior under the authority of section $4(\mathrm{~d})$ of the Act of December 5, 1969 (16 U.S.C. 666cc-4(d)), shall, if such designation is in effect on the day before the date of the enactment of this Act, be deemed to be a port designated by the Secretary under paragraph (1) of this subsection until such time as the Secretary otherwise provides.
(g) Violations.-It is unlawful for any person subject to the jurisdiction of the United States to attempt to commit, solicit another to commit, or cause to be committed, any offense defined in this section.

EXCEPTIONS

Sec. 10. (a) Permits.-(1) The Secretary may permit, under such terms and conditions as he shall prescribe-
(A) any act otherwise prohibited by section 9 for scientific purposes or to enhance the propagation or survival of the affected species, including, but not limited to, acts necessary for the establishment and maintenance of experimental populations pursuant to subsection (j); or
(B) any taking otherwise prohibited by section $9(\mathrm{a})(1)(\mathrm{B})$ if such taking is incidental to, and not the purpose of, the carrying out of an otherwise lawful activity.
(2)(A) No permit may be issued by the Secretary authorizing any taking referred to in paragraph (1)(B) unless the applicant therefor submits to the Secretary a conservation plan that specifies-
(i) the impact which will likely result from such taking;
(ii) what steps the applicant will take to minimize and mitigate such impacts, and the funding that will be available to implement such steps;
(iii) what alternative actions to such taking the applicant considered and the reasons why such alternatives are not being utilized; and
(iv) such other measures that the Secretary may require as being necessary or appropriate for purposes of the plan.
(B) If the Secretary finds, after opportunity for public comment, with respect to a permit application and the related conservation plan that-
(i) the taking will be incidental;
(ii) the applicant will, to the maximum extent practicable, minimize and mitigate the impacts of such taking;
(iii) the applicant will ensure that adequate funding for the plan will be provided;
(iv) the taking will not appreciably reduce the likelihood of the survival and recovery of the species in the wild; and
(v) the measures, if any, required under subparagraph (A)(iv) will be met; and he has received such other assurances as he may require that the plan will be implemented, the Secretary shall issue the permit. The permit shall contain such terms and conditions as the Secretary deems necessary or appropriate to carry out the purposes of this paragraph, including, but not limited to, such reporting requirements as the Secretary deems necessary for determining whether such terms and conditions are being complied with.
(C) The Secretary shall revoke a permit issued under this paragraph if he finds that the permittee is not complying with the terms and conditions of the permit.
(b) Hardship Exemptions.-(1) If any person enters into a contract with respect to a species of fish or wildlife or plant before the date of the publication in the Federal Register of notice of consideration of that species as an endangered species and the subsequent listing of that species as an endangered species pursuant to section 4 of this Act will cause undue economic hardship to such person under the contract, the Secretary, in order to minimize such hardship, may exempt such person from the application of section 9(a) of this Act to the extent the Secretary deems appropriate if such person applies to him for such exemption and includes with such application such information as the Secretary may require to prove such hardship; except that (A) no such exemption shall be for a duration of more than one year from the date of publication in the Federal Register of notice of consideration of the species concerned, or shall apply to a quantity of fish or wildlife or plants in excess of that specified by the Secretary; (B) the one-year period for those species of fish or wildlife listed by the Secretary as endangered prior to the effective date of this Act shall expire in accordance with the terms of section 3 of the Act of December 5, 1969 (83 Stat. 275); and (C) no such exemption may be granted for the importation or exportation of a specimen listed in Appendix I of the Convention which is to be used in a commercial activity.
(2) As used in this subsection, the term "undue economic hardship" shall include, but not be limited to:
(A) substantial economic loss resulting from inability caused by this Act to perform contracts with respect to species of fish and wildlife entered into prior to the date of publication in the Federal Register of a notice of consideration of such species as an endangered species;
(B) substantial economic loss to persons who, for the year prior to the notice of consideration of such species as an endangered species, derived a substantial portion of their income from the lawful taking of any listed species, which taking would be made unlawful under this Act; or
(C) curtailment of subsistence taking made unlawful under this Act by persons (i) not reasonably able to secure other sources of subsistence; and (ii) dependent to a substantial extent upon hunting and fishing for subsistence; and (iii) who must engage in such curtailed taking for subsistence purposes.
(3) The Secretary may make further requirements for a showing of undue economic hardship as he deems fit. Exceptions granted under this section may be limited by the Secretary in his discretion as to time, area, or other factor of applicability.
(c) Notice and Review.-The Secretary shall publish notice in the Federal Register of each application for an exemption or permit which is made under this section. Each notice shall invite the submission from interested parties, within thirty days after the date of the notice, of written data, views, or arguments with respect to the application; except that such thirty-day period may be waived by the Secretary in an emergency situation where the health or life of an endangered animal is threatened and no reasonable alternative is available to the applicant, but notice of any such waiver shall be published by the Secretary in the Federal Register within ten days following the issuance of the exemption or permit. Information received by the Secretary as a part of any application shall be available to the public as a matter of public record at every stage of the proceeding.
(d) Permit and Exemption Policy.-The Secretary may grant exceptions under subsections (a)(1)(A) and (b) of this section only if he finds and publishes his finding in the Federal Register that (1) such exceptions were applied for in good faith, (2) if granted and exercised will not operate to the disadvantage of such endangered species, and (3) will be consistent with the purposes and policy set forth in section 2 of this Act.
(e) Alaska Natives.-(1) Except as provided in paragraph (4) of this subsection the provisions of this Act shall not apply with respect to the taking of any endangered species or threatened species, or the importation of any such species taken pursuant to this section, by-
(A) any Indian, Aleut, or Eskimo who is an Alaskan Native who resides in Alaska; or
(B) any non-native permanent resident of an Alaskan native village;
if such taking is primarily for subsistence purposes. Non-edible byproducts of species taken pursuant to this section may be sold in interstate commerce when made into authentic native articles of handicrafts and clothing; except that the provisions of this subsection shall not apply to any non-native resident of an Alaskan native village found by the Secretary to be not primarily dependent upon the taking of fish and wildlife for consumption or for the creation and sale of authentic native articles of handicrafts and clothing.
(2) Any taking under this subsection may not be accomplished in a wasteful manner.
(3) As used in this subsection-
(i) The term "subsistence" includes selling any edible portion of fish or wildlife in native villages and towns in Alaska for native consumption within native villages or towns; and
(ii) The term "authentic native articles of handicrafts and clothing" means items composed wholly or in some significant respect of natural materials, and which are produced, decorated, or fashioned in the exercise of traditional native handicrafts without the use of pantographs, multiple carvers, or other mass copying devices. Traditional native handicrafts include, but are not limited to, weaving, carving, stitching, sewing, lacing, beading, drawing, and painting.
(4) Notwithstanding the provisions of paragraph (1) of this subsection, whenever the Secretary determines that any species of fish or wildlife which is subject to taking under the provisions of this subsection is an endangered species or threatened species, and that such taking materially and negatively affects the threatened or endangered species, he may prescribe regulations upon the taking of such species by any such Indian, Aleut, Eskimo, or non-Native Alaskan resident of an Alaskan native village. Such regulations may be established with reference to species, geographical description of the area included, the season for taking, or any other factors related to the reason for establishing such regulations and consistent with the policy of this Act. Such regulations shall be prescribed after a notice and hearings in the affected judicial districts of Alaska and as otherwise required by section 103 of the Marine Mammal Protection Act of 1972, and shall be removed as soon as the Secretary determines that the need for their impositions has disappeared.
(f)(1) As used in this subsection-
(A) The term "pre-Act endangered species part" means-
(i) any sperm whale oil, including derivatives thereof, which was lawfully
held within the United States on December 28, 1973, in the course of a commercial activity; or
(ii) any finished scrimshaw product, if such product or the raw material for such product was lawfully held within the United States on December 28, 1973, in the course of a commercial activity.
(B) The term "scrimshaw product" means any art form which involves the substantial etching or engraving of designs upon, or the substantial carving of figures, patterns, or designs from, any bone or tooth of any marine mammal of the order Cetacea. For purposes of this subsection, polishing or the adding of minor superficial markings does not constitute substantial etching, engraving, or carving.
(2) The Secretary, pursuant to the provisions of this subsection, may exempt, if such exemption is not in violation of the Convention, any pre-Act endangered species part from one or more of the following prohibitions:
(A) The prohibition on exportation from the United States set forth in section $9(\mathrm{a})(1)(\mathrm{A})$ of this Act.
(B) Any prohibition set forth in section 9(a)(1)(E) or (F) of this Act.
(3) Any person seeking an exemption described in paragraph (2) of this subsection shall make application therefor to the Secretary in such form and manner as he shall prescribe, but no such application may be considered by the Secretary unless the application-
(A) is received by the Secretary before the close of the one-year period beginning on the date on which regulations promulgated by the Secretary to carry out this subsection first take effect;
(B) contains a complete and detailed inventory of all pre-Act endangered species parts for which the applicant seeks exemption;
(C) is accompanied by such documentation as the Secretary may require to prove that any endangered species part or product claimed by the applicant to be a pre-Act endangered species part is in fact such a part; and
(D) contains such other information as the Secretary deems necessary and appropriate to carry out the purposes of this subsection.
(4) If the Secretary approves any application for exemption made under this subsection, he shall issue to the applicant a certificate of exemption which shall specify-
(A) any prohibition in section 9(a) of this Act which is exempted;
(B) the pre-Act endangered species parts to which the exemption applies;
(C) the period of time during which the exemption is in effect, but no exemption made under this subsection shall have force and effect after the close of the three-year period beginning on the date of issuance of the certificate unless such exemption is renewed under paragraph (8); and
(D) any term or condition prescribed pursuant to paragraph (5)(A) or (B), or both, which the Secretary deems necessary or appropriate.
(5) The Secretary shall prescribe such regulations as he deems necessary and appropriate to carry out the purposes of this subsection. Such regulations may set forth-
(A) terms and conditions which may be imposed on applicants for exemptions under this subsection (including, but not limited to, requirements that applicants register inventories, keep complete sales records, permit duly authorized agents of the Secretary to inspect such inventories and records, and periodically file appropriate reports with the Secretary); and
(B) terms and conditions which may be imposed on any subsequent purchaser of any pre-Act endangered species part covered by an exemption granted under this subsection;
to insure that any such part so exempted is adequately accounted for and not disposed of contrary to the provisions of this Act. No regulation prescribed by the Secretary to carry out the purposes of this subsection shall be subject to section 4(f)(2)(A)(i) of this Act.
(6)(A) Any contract for the sale of pre-Act endangered species parts which is entered into by the Administrator of General Services prior to the effective date of this subsection and pursuant to the notice published in the Federal Register on January 9,1973 , shall not be rendered invalid by virtue of the fact that fulfillment of such contract may be prohibited under section $9(a)(1)(\mathrm{F})$.
(B) In the event that this paragraph is held invalid, the validity of the remainder of the Act, including the remainder of this subsection, shall not be affected.
(7) Nothing in this subsection shall be construed to-
(A) exonerate any person from any act committed in violation of paragraphs (1)(A), (1)(E), or (1)(F) of section 9(a) prior to the date of enactment of this subsection; or
(B) immunize any person from prosecution for any such act.
(8)(A)(i) Any valid certificate of exemption which was renewed after October 13, 1982, and was in effect on March 31, 1988, shall be deemed to be renewed for a sixmonth period beginning on the date of enactment of the Endangered Species Act Amendments of 1988. Any person holding such a certificate may apply to the Secretary for one additional renewal of such certificate for a period not to exceed 5 years beginning on the date of such enactment.
(B) If the Secretary approves any application for renewal of an exemption under this paragraph, he shall issue to the applicant a certificate of renewal of such exemption which shall provide that all terms, conditions, prohibitions, and other regulations made applicable by the previous certificate shall remain in effect during the period of the renewal.
(C) No exemption or renewal of such exemption made under this subsection shall have force and effect after the expiration date of the certificate of renewal of such exemption issued under this paragraph.
(D) No person may, after January 31, 1984, sell or offer for sale in interstate or foreign commerce, any pre-Act finished scrimshaw product unless such person holds a valid certificate of exemption issued by the Secretary under this subsection, and unless such product or the raw material for such product was held by such person on October 13, 1982.
(g) In connection with any action alleging a violation of section 9 , any person claiming the benefit of any exemption or permit under this Act shall have the burden of proving that the exemption or permit is applicable, has been granted, and was valid and in force at the time of the alleged violation.
(h) Certain Antique Articles.-(1) Sections 4(d), 9(a), and 9(c) do not apply to any article which-
(A) is not less than 100 years of age;
(B) is composed in whole or in part of any endangered species or threatened species listed under section 4 ;
(C) has not been repaired or modified with any part of any such species on or after the date of the enactment of this Act; and
(D) is entered at a port designated under paragraph (3).
(2) Any person who wishes to import an article under the exception provided by this subsection shall submit to the customs officer concerned at the time of entry of the article such documentation as the Secretary of the Treasury, after consultation with the Secretary of the Interior, shall by regulation require as being necessary to establish that the article meets the requirements set forth in paragraph (1)(A), (B), and (C).
(3) The Secretary of the Treasury, after consultation with the Secretary of the Interior, shall designate one port within each customs region at which articles described in paragraph (1)(A), (B), and (C) must be entered into the customs territory of the United States.
(4) Any person who imported, after December 27, 1973, and on or before the date of the enactment of the Endangered Species Act Amendments of 1978, any article described in paragraph (1) which-
(A) was not repaired or modified after the date of importation with any part of any endangered species or threatened species listed under section 4;
(B) was forfeited to the United States before such date of the enactment, or is subject to forfeiture to the United States on such date of enactment, pursuant to the assessment of a civil penalty under section 11; and
(C) is in the custody of the United States on such date of enactment; may, before the close of the one-year period beginning on such date of enactment, make application to the Secretary for return of the article. Application shall be made in such form and manner, and contain such documentation, as the Secretary prescribes. If on the basis of any such application which is timely filed, the Secretary is satisfied that the requirements of this paragraph are met with respect to the article concerned, the Secretary shall return the article to the applicant and the importation of such article shall, on and after the date of return, be deemed to be a lawful importation under this Act.
(i) Noncommercial Transshipments.-Any importation into the United States of fish or wildlife shall, if-
(1) such fish or wildlife was lawfully taken and exported from the country of origin and country of reexport, if any;
(2) such fish or wildlife is in transit or transshipment through any place subject to the jurisdiction of the United States en route to a country where such fish or wildlife may be lawfully imported and received;
(3) the exporter or owner of such fish or wildlife gave explicit instructions not to ship such fish or wildlife through any place subject to the jurisdiction of the United States, or did all that could have reasonably been done to prevent transshipment, and the circumstances leading to the transshipment were beyond the exporter's or owner's control;
(4) the applicable requirements of the Convention have been satisfied; and
(5) such importation is not made in the course of a commercial activity, be an importation not in violation of any provision of this Act or any regulation issued pursuant to this Act while such fish or wildlife remains in the control of the United States Customs Service.
(j) Experimental Populations.-(1) For purposes of this subsection, the term "experimental population" means any population (including any offspring arising solely therefrom) authorized by the Secretary for release under paragraph (2), but only when,
and at such times as, the population is wholly separate geographically from nonexperimental populations of the same species.
(2)(A) The Secretary may authorize the release (and the related transportation) of any population (including eggs, propagules, or individuals) of an endangered species or a threatened species outside the current range of such species if the Secretary determines that such release will further the conservation of such species.
(B) Before authorizing the release of any population under subparagraph (A), the Secretary shall by regulation identify the population and determine, on the basis of the best available information, whether or not such population is essential to the continued existence of an endangered species or a threatened species.
(C) For the purposes of this Act, each member of an experimental population shall be treated as a threatened species; except that-
(i) solely for purposes of section 7 (other than subsection (a)(1) thereof), an experimental population determined under subparagraph (B) to be not essential to the continued existence of a species shall be treated, except when it occurs in an area within the National Wildlife Refuge System or the National Park System, as a species proposed to be listed under section 4; and
(ii) critical habitat shall not be designated under this Act for any experimental population determined under subparagraph (B) to be not essential to the continued existence of a species.
(3) The Secretary, with respect to populations of endangered species or threatened species that the Secretary authorized, before the date of the enactment of this subsection, for release in geographical areas separate from the other populations of such species, shall determine by regulation which of such populations are an experimental population for the purposes of this subsection and whether or not each is essential to the continued existence of an endangered species or a threatened species.

PENALTIES AND ENFORCEMENT

Sec. 11. (a) Civil Penalties.- (1) Any person who knowingly violates, and any person engaged in business as an importer or exporter of fish, wildlife, or plants who violates, any provision of this Act, or any provision of any permit or certificate issued hereunder, or of any regulation issued in order to implement subsection (a)(1)(A), (B), (C), (D), (E), or (F), (a)(2)(A), (B), (C), or (D), (c), (d) (other than regulation relating to recordkeeping or filing of reports), (f) or (g) of section 9 of this Act, may be assessed a civil penalty by the Secretary of not more than $\$ 25,000$ for each violation. Any person who knowingly violates, and any person engaged in business as an importer or exporter of fish, wildlife, or plants who violates, any provision of any other regulation issued under this Act may be assessed a civil penalty by the Secretary of not more than $\$ 12,000$ for each such violation. Any person who otherwise violates any provision of this Act, or any regulation, permit, or certificate issued hereunder, may be assessed a civil penalty by the Secretary of not more than $\$$ 500 for each such violation. No penalty may be assessed under this subsection unless such person is given notice and opportunity for a hearing with respect to such violation. Each violation shall be a separate offense. Any such civil penalty may be remitted or mitigated by the Secretary. Upon any failure to pay a penalty assessed under this subsection, the Secretary may request the Attorney General to institute a civil action in a district court of the United States for any district in which such person is
found, resides, or transacts business to collect the penalty and such court shall have jurisdiction to hear and decide any such action. The court shall hear such action on the record made before the Secretary and shall sustain his action if it is supported by substantial evidence on the record considered as a whole.
(2) Hearings held during proceedings for the assessment of civil penalties authorized by paragraph (1) of this subsection shall be conducted in accordance with section 554 of title 5, United States Code. The Secretary may issue subpoenas for the attendance and testimony of witnesses and the production of relevant papers, books, and documents, and administer oaths. Witnesses summoned shall be paid the same fees and mileage that are paid to witnesses in the courts of the United States. In case of contumacy or refusal to obey a subpoena served upon any person pursuant to this paragraph, the district court of the United States for any district in which such person is found or resides or transacts business, upon application by the United States and after notice to such person, shall have jurisdiction to issue an order requiring such person to appear and give testimony before the Secretary or to appear and produce documents before the Secretary, or both, and any failure to obey such order of the court may be punished by such court as a contempt thereof.
(3) Notwithstanding any other provision of this Act, no civil penalty shall be imposed if it can be shown by a preponderance of the evidence that the defendant committed an act based on a good faith belief that he was acting to protect himself or herself, a member of his or her family, or any other individual from bodily harm, from any endangered or threatened species.
(b) Criminal Violations.-(1) Any person who knowingly violates any provision of this Act, of any permit or certificate issued hereunder, or of any regulation issued in order to implement subsection (a)(1)(A), (B), (C), (D), (E), or (F); (a)(2)(A), (B), (C), or (D), (c), (d) (other than a regulation relating to recordkeeping, or filing of reports), (f), or (g) of section 9 of this Act shall, upon conviction, be fined not more than $\$ 50,000$ or imprisoned for not more than one year, or both. Any person who knowingly violates any provision of any other regulation issued under this Act shall, upon conviction, be fined not more than $\$ 25,000$ or imprisoned for not more than six months, or both.
(2) The head of any Federal agency which has issued a lease, license, permit, or other agreement authorizing a person to import or export fish, wildlife, or plants, or to operate a quarantine station for imported wildlife, or authorizing the use of Federal lands, including grazing of domestic livestock, to any person who is convicted of a criminal violation of this Act or any regulation, permit, or certificate issued hereunder may immediately modify, suspend, or revoke each lease, license, permit, or other agreement. The Secretary shall also suspend for a period of up to one year, or cancel, any Federal hunting or fishing permits or stamps issued to any person who is convicted of a criminal violation of any provision of this Act or any regulation, permit, or certificate issued hereunder. The United States shall not be liable for the payments of any compensation, reimbursement, or damages in connection with the modification, suspension, or revocation of any leases, licenses, permits, stamps, or other agreements pursuant to this section.
(3) Notwithstanding any other provision of this Act, it shall be a defense to prosecution under this subsection if the defendant committed the offense based on a good faith belief that he was acting to protect himself or herself, a member of his or her family, or any other individual, from bodily harm from any endangered or threatened species.
(c) District Court Jurisdiction.-The several district courts of the United States, including the courts enumerated in section 460 of title 28, United States Code, shall have jurisdiction over any actions arising under this Act. For the purpose of this Act, American Samoa shall be included within the judicial district of the District Court of the United States for the District of Hawaii.
(d) Rewards and Certain Incidental Expenses.-The Secretary or the Secretary of the Treasury shall pay, from sums received as penalties, fines, or forfeitures of property for any violation of this Act or any regulation issued hereunder (1) a reward to any person who furnishes information which leads to an arrest, a criminal conviction, civil penalty assessment, or forfeiture of property for any violation of this Act or any regulation issued hereunder, and (2) the reasonable and necessary costs incurred by any person in providing temporary care for any fish, wildlife, or plant pending the disposition of any civil or criminal proceeding alleging a violation of this Act with respect to that fish, wildlife, or plant. The amount of the reward, if any, is to be designated by the Secretary or the Secretary of the Treasury, as appropriate. Any officer or employee of the United States or any State or local government who furnishes information or renders service in the performance of his official duties is ineligible for payment under this subsection. Whenever the balance of sums received under this section and section 6(d) of the Act of November 16, 1981 (16 U.S.C. $3375(\mathrm{~d})$), as penalties or fines, or from forfeitures of property, exceed $\$ 500,000$, the Secretary of the Treasury shall deposit an amount equal to such excess balance in the cooperative endangered species conservation fund established under section 6(i) of this Act.
(e) Enforcement.-(1) The provisions of this Act and any regulations or permits issued pursuant thereto shall be enforced by the Secretary, the Secretary of the Treasury, or the Secretary of the Department in which the Coast Guard is operating, or all such Secretaries. Each such Secretary may utilize by agreement, with or without reimbursement, the personnel, services, and facilities of any other Federal agency or any State agency for purposes of enforcing this Act.
(2) The judges of the district courts of the United States and the United States magistrates may, within their respective jurisdictions, upon proper oath or affirmation showing probable cause, issue such warrants or other process as may be required for enforcement of this Act and any regulation issued thereunder.
(3) Any person authorized by the Secretary, the Secretary of the Treasury, or the Secretary of the Department in which the Coast Guard is operating, to enforce this Act may detain for inspection and inspect any package, crate, or other container, including its contents, and all accompanying documents, upon importation or exportation. Such person may make arrests without a warrant for any violation of this Act if he has reasonable grounds to believe that the person to be arrested is committing the violation in his presence or view, and may execute and serve any arrest warrant, search warrant, or other warrant or civil or criminal process issued by any officer or court of competent jurisdiction for enforcement of this Act. Such person so authorized may search and seize, with or without a warrant, as authorized by law. Any fish, wildlife, property, or item so seized shall be held by any person authorized by the Secretary, the Secretary of the Treasury, or the Secretary of the Department in which the Coast Guard is operating pending disposition of civil or criminal proceedings, or the institution of an action in rem for forfeiture of such fish, wildlife, property, or item pursuant to paragraph (4) of this subsection; except that the Secretary may, in lieu of holding such fish, wildlife, property, or item, permit the owner or con-
signee to post a bond or other surety satisfactory to the Secretary, but upon forfeiture of any such property to the United States, or the abandonment or waiver of any claim to any such property, it shall be disposed of (other than by sale to the general public) by the Secretary in such a manner, consistent with the purposes of this Act, as the Secretary shall by regulation prescribe.
(4)(A) All fish or wildlife or plants taken, possessed, sold, purchased, offered for sale or purchase, transported, delivered, received, carried, shipped, exported, or imported contrary to the provisions of this Act, any regulation made pursuant thereto, or any permit or certificate issued hereunder shall be subject to forfeiture to the United States.
(B) All guns, traps, nets, and other equipment, vessels, vehicles, aircraft, and other means of transportation used to aid the taking, possessing, selling, purchasing, offering for sale or purchase, transporting, delivering, receiving, carrying, shipping, exporting, or importing of any fish or wildlife or plants in violation of this Act, any regulation made pursuant thereto, or any permit or certificate issued thereunder shall be subject to forfeiture to the United States upon conviction of a criminal violation pursuant to section 11(b)(1) of this Act.
(5) All provisions of law relating to the seizure, forfeiture, and condemnation of a vessel for violation of the customs laws, the disposition of such vessel or the proceeds from the sale thereof, and the remission or mitigation of such forfeiture, shall apply to the seizures and forfeitures incurred, or alleged to have been incurred, under the provisions of this Act, insofar as such provisions of law are applicable and not inconsistent with the provisions of this Act; except that all powers, rights, and duties conferred or imposed by the customs laws upon any officer or employee of the Treasury Department shall, for the purposes of this Act, be exercised or performed by the Secretary or by such persons as he may designate.
(6) The Attorney General of the United States may seek to enjoin any person who is alleged to be in violation of any provision of this Act or regulation issued under authority thereof.
(f) Regulations.-The Secretary, the Secretary of the Treasury, and the Secretary of the Department in which the Coast Guard is operating, are authorized to promulgate such regulations as may be appropriate to enforce this Act, and charge reasonable fees for expenses to the Government connected with permits or certificates authorized by this Act including processing applications and reasonable inspections, and with the transfer, board, handling, or storage of fish or wildlife or plants and evidentiary items seized and forfeited under this Act. All such fees collected pursuant to this subsection shall be deposited in the Treasury to the credit of the appropriation which is current and chargeable for the cost of furnishing the services. Appropriated funds may be expended pending reimbursement from parties in interest.
(g) Citizen Suits.-(1) Except as provided in paragraph (2) of this subsection any person may commence a civil suit on his own behalf-
(A) to enjoin any person, including the United States and any other governmental instrumentality or agency (to the extent permitted by the eleventh amendment to the Constitution), who is alleged to be in violation of any provision of this Act or regulation issued under the authority thereof; or
(B) to compel the Secretary to apply, pursuant to section 6(g)(2)(B)(ii) of this Act, the prohibitions set forth in or authorized pursuant to section 4(d) or section
$9(\mathrm{a})(1)(\mathrm{B})$ of this Act with respect to the taking of any resident endangered species or threatened species within any State; or
(C) against the Secretary where there is alleged a failure of the Secretary to perform any act or duty under section 4 which is not discretionary with the Secretary.
The district courts shall have jurisdiction, without regard to the amount in controversy or the citizenship of the parties, to enforce any such provision or regulation, or to order the Secretary to perform such act or duty, as the case may be. In any civil suit commenced under subparagraph (B) the district court shall compel the Secretary to apply the prohibition sought if the court finds that the allegation that an emergency exists is supported by substantial evidence.
(2)(A) No action may be commenced under subparagraph (1)(A) of this section-
(i) prior to sixty days after written notice of the violation has been given to the Secretary, and to any alleged violator of any such provision or regulation;
(ii) if the Secretary has commenced action to impose a penalty pursuant to subsection (a) of this section; or
(iii) if the United States has commenced and is diligently prosecuting a criminal action in a court of the United States or a State to redress a violation of any such provision or regulation.
(B) No action may be commenced under subparagraph (1)(B) of this section-
(i) prior to sixty days after written notice has been given to the Secretary setting forth the reasons why an emergency is thought to exist with respect to an endangered species or a threatened species in the State concerned; or
(ii) if the Secretary has commenced and is diligently prosecuting action under section $6(\mathrm{~g})(2)(\mathrm{B})$ (ii) of this Act to determine whether any such emergency exists.
(C) No action may be commenced under subparagraph (1)(C) of this section prior to sixty days after written notice has been given to the Secretary; except that such action may be brought immediately after such notification in the case of an action under this section respecting an emergency posing a significant risk to the wellbeing of any species of fish or wildlife or plants.
(3)(A) Any suit under this subsection may be brought in the judicial district in which the violation occurs.
(B) In any such suit under this subsection in which the United States is not a party, the Attorney General, at the request of the Secretary, may intervene on behalf of the United States as a matter of right.
(4) The court, in issuing any final order in any suit brought pursuant to paragraph (1) of this subsection, may award costs of litigation (including reasonable attorney and expert witness fees) to any party, whenever the court determines such award is appropriate.
(5) The injunctive relief provided by this subsection shall not restrict any right which any person (or class of persons) may have under any statute or common law to seek enforcement of any standard or limitation or to seek any other relief (including relief against the Secretary or a State agency).
(h) Coordination With Other Laws.-The Secretary of Agriculture and the Secretary shall provide for appropriate coordination of the administration of this Act with the administration of the animal quarantine laws (as defined in section 2509(f) of the Food, Agriculture, Conservation, and Trade Act of 1990 (21 U.S.C. 136a(f)) and
section 306 of the Tariff Act of 1930 (19 U.S.C. 1306). Nothing in this Act or any amendment made by this Act shall be construed as superseding or limiting in any manner the functions of the Secretary of Agriculture under any other law relating to prohibited or restricted importations or possession of animals and other articles and no proceeding or determination under this Act shall preclude any proceeding or be considered determinative of any issue of fact or law in any proceeding under any Act administered by the Secretary of Agriculture. Nothing in this Act shall be construed as superseding or limiting in any manner the functions and responsibilities of the Secretary of the Treasury under the Tariff Act of 1930, including, without limitation, section 527 of that Act (19 U.S.C. 1527), relating to the importation of wildlife taken, killed, possessed, or exported to the United States in violation of the laws or regulations of a foreign country.

ENDANGERED PLANTS

SEc. 12. The Secretary of the Smithsonian Institution, in conjunction with other affected agencies, is authorized and directed to review (1) species of plants which are now or may become endangered or threatened and (2) methods of adequately conserving such species, and to report to Congress, within one year after the date of the enactment of this Act, the results of such review including recommendations for new legislation or the amendment of existing legislation.

CONFORMING AMENDMENTS

SEC. 13. (a) Subsection 4(c) of the Act of October 15, 1966 (80 Stat. 928, 16 U.S.C. $668 \mathrm{dd}(\mathrm{c})$), is further amended by revising the second sentence thereof to read as follows: "With the exception of endangered species and threatened species listed by the Secretary pursuant to section 4 of the Endangered Species Act of 1973 in States wherein a cooperative agreement does not exist pursuant to section 6(c) of that Act, nothing in this Act shall be construed to authorize the Secretary to control or regulate hunting or fishing of resident fish and wildlife on lands not within the system."
(b) Subsection 10(a) of the Migratory Bird Conservation Act (45 Stat. 1224, 16 U.S.C. 715i(a)), and subsection 401(a) of the Act of June 15, 1935 (49 Stat. 383, 16 U.S.C. $715 \mathrm{~s}(\mathrm{a})$), are each amended by striking out "threatened with extinction," and inserting in lieu thereof the following: "listed pursuant to section 4 of the Endangered Species Act of 1973 as endangered species or threatened species".
(c) Section 7(a)(1) of the Land and Water Conservation Fund Act of 1965 (16 U.S.C. 4601-9(a)(1)) is amended by striking out:
"Threatened Species.-For any national area which may be authorized for the preservation of species of fish or wildlife that are threatened with extinction." and inserting in lieu thereof the following:
"Endangered Species and Threatened Species.-For lands, waters, or interests therein, the acquisition of which is authorized under section 5(a) of the Endangered Species Act of 1973, needed for the purpose of conserving endangered or threatened species of fish or wildlife or plants."
(d) The first sentence of section 2 of the Act of September 28, 1962, as amended (76 Stat. 653,16 U.S.C. $460 \mathrm{k}-1$), is amended to read as follows:
"The Secretary is authorized to acquire areas of land, or interests therein, which are suitable for-
"(1) incidental fish and wildlife-oriented recreational development,
"(2) the protection of natural resources,
"(3) the conservation of endangered species or threatened species listed by the Secretary pursuant to section 4 of the Endangered Species Act of 1973, or
"(4) carrying out two or more of the purposes set forth in paragraphs (1) through (3) of this section, and are adjacent to, or within, the said conservation areas, except that the acquisition of any land or interest therein pursuant to this section shall be accomplished only with such funds as may be appropriated therefor by the Congress or donated for such purposes, but such property shall not be acquired with funds obtained from the sale of Federal migratory bird hunting stamps."
(e) The Marine Mammal Protection Act of 1972 (16 U.S.C. 1361-1407) is amended-
(1) by striking out "Endangered Species Conservation Act of 1969" in section 3(1)(B) thereof and inserting in lieu thereof the following: "Endangered Species Act of 1973";
(2) by striking out "pursuant to the Endangered Species Conservation Act of 1969" in section 101(a)(3)(B) thereof and inserting in lieu thereof the following: "or threatened species pursuant to the Endangered Species Act of 1973";
(3) by striking out "endangered under the Endangered Species Conservation Act of 1969 " in section 102(b)(3) thereof and inserting in lieu thereof the following: "an endangered species or threatened species pursuant to the Endangered Species Act of 1973"; and
(4) by striking out "of the Interior such revisions of the Endangered Species List, authorized by the Endangered Species Conservation Act of 1969," in section 202(a)(6) thereof and inserting in lieu thereof the following: "such revisions of the endangered species list and threatened species list published pursuant to section 4(c)(1) of the Endangered Species Act of 1973".
(f) Section 2(1) of the Federal Environmental Pesticide Control Act of 1972 (Public Law 92-516) is amended by striking out the words "by the Secretary of the Interior under Public Law 91-135" and inserting in lieu thereof the words "or threatened by the Secretary pursuant to the Endangered Species Act of 1973".

REPEALER

SEc. 14. The Endangered Species Conservation Act of 1969 (sections 1 through 3 of the Act of October 15, 1966, and sections 1 through 6 of the Act of December 5, 1969; 16 U.S.C. 668aa-668cc-6), is repealed.

AUTHORIZATION OF APPROPRIATIONS

SEC. 15. (a) In General.-Except as provided in subsections (b), (c), and (d), there are authorized to be appropriated-
(1) not to exceed $\$ 35,000,000$ for fiscal year $1988, \$ 36,500,000$ for fiscal year 1989, $\$ 38,000,000$ for fiscal year 1990, $\$ 39,500,000$ for fiscal year 1991, and $\$ 41,500,000$ for fiscal year 1992 to enable the Department of the Interior to carry out such functions and responsibilities as it may have been given under this Act;
(2) not to exceed $\$ 5,750,000$ for fiscal year 1988, $\$ 6,250,000$ for each of fiscal years 1989 and 1990, and \$6,750,000 for each of fiscal years 1991 and 1992 to en-
able the Department of Commerce to carry out such functions and responsibilities as it may have been given under this Act; and
(3) not to exceed \$ 2,200,000 for fiscal year 1988, \$ 2,400,000 for each of fiscal years 1989 and 1990, and $\$ 2,600,000$ for each of fiscal years 1991 and 1992, to enable the Department of Agriculture to carry out its functions and responsibilities with respect to the enforcement of this Act and the Convention which pertain to the importation or exportation of plants.
(b) Exemptions From Аст.-There are authorized to be appropriated to the Secretary to assist him and the Endangered Species Committee in carrying out their functions under sections 7(e), (g), and (h) not to exceed $\$ 600,000$ for each of fiscal years 1988, 1989, 1990, 1991, and 1992.
(c) Convention Implementation.-There are authorized to be appropriated to the Department of the Interior for purposes of carrying out section 8A(e) not to exceed $\$ 400,000$ for each of fiscal years 1988,1989 , and 1990 , and $\$ 500,000$ for each of fiscal years 1991 and 1992, and such sums shall remain available until expended.

EFFECTIVE DATE

SEc. 16. This Act shall take effect on the date of its enactment.

MARINE MAMMAL PROTECTION ACT OF 1972

SEc. 17. Except as otherwise provided in this Act, no provision of this Act shall take precedence over any more restrictive conflicting provision of the Marine Mammal Protection Act of 1972.

ANNUAL COST ANALYSIS BY THE FISH AND WILDLIFE SERVICE

SEC. 18. Notwithstanding section 3003 of Public Law 104-66 (31 U.S.C. 1113 note; 109 Stat. 734), on or before January 15, 1990, and each January 15 thereafter, the Secretary of the Interior, acting through the Fish and Wildlife Service, shall submit to the Congress an annual report covering the preceding fiscal year which shall contain-
(1) an accounting on a species by species basis of all reasonably identifiable Federal expenditures made primarily for the conservation of endangered or threatened species pursuant to this Act; and
(2) an accounting on a species by species basis of all reasonably identifiable expenditures made primarily for the conservation of endangered or threatened species pursuant to this Act by States receiving grants under section 6.
(ii) Provider or supplier not subject to additional requirements. For a provider or supplier that is not subject to additional requirements, the effective date is the date of the provider's or supplier's initial request for participation if on that date the provider or supplier met all Federal requirements.
(2) Special rule: Retroactive effective date. If a provider or supplier meets the requirements of paragraphs (d)(1) and (d)(1)(i) or (d)(1)(ii) of this section, the effective date may be retroactive for up to one year to encompass dates on which the provider or supplier furnished, to a Medicare beneficiary, covered services for which it has not been paid.
4. Section 489.53 is amended to revise the heading of paragraph (b) and paragraphs (c)(1) and (c)(2) to read as follows:

§489.53 Termination by HCFA.

(b) Term ination of agreem ents with certain hospitals. * * *
(c) Notice of term ination-(1) Timing: Basic rule. Except as provided in paragraph (c)(2) of this section, HCFA gives the provider notice of termination at least 15 days before the effective date of termination of the provider agreement.
(2) Tim ing exceptions: Im mediate jeopardy situations-(i) Hospital with emergency departm ent. If HCFA finds that a hospital with an emergency department is in violation of $\S 489.24$, paragraphs (a) through (e), and HCFA determines that the violation poses immediate jeopardy to the health or safety of individuals who present themselves to the hospital for emergency services, HCFA-
(A) Gives the hospital a preliminary notice indicating that its provider agreement will be terminated in 23 days if it does not correct the identified deficiencies or refute the finding; and
(B) Gives a final notice of termination, and concurrent notice to the public, at least 2 , but not more than 4 , days before the effective date of termination of the provider agreement.
(ii) Skilled nursing facilities (SNFs). For an SNF with deficiencies that pose immediate jeopardy to the health or safety of residents, HCFA gives notice at least 2 days before the effective date of termination of the provider agreement.

PART 498-APPEALS PROCEDURES FOR DETERMINATIONS THAT AFFECT PARTICIPATION IN THE MEDICARE PROGRAM AND FOR
 DETERMINATIONS THAT AFFECT THE PARTICIPATION OF CERTAIN ICFs/MR AND CERTAIN NFs IN THE MEDICAID PROGRAM

E. Part 498 is amended as set forth below.

1. The authority citation for part 498 continues to read as follows:

Authority: Secs. 1102, and 1871 of the Social Security Act (42 U.S.C. 1302 and 1395hh).
2. Section 498.3 is amended to revise paragraph (a), republish the in troductory text of paragraph (b) and add a paragraph (b)(14), revise the introductory text of paragraph (d) and add new paragraphs (d)(14) and (d)(15), to read as follows:

§498.3 Scope and applicability.

(a) Scope. Th is part sets forth procedures for reviewing initial determinations that HCFA makes with respect to the matters specified in paragraph (b) of this section, and that the OIG makes with respect to the matters specified in paragraph (c) of this section. It also specifies, in paragraph (d)) of this section, administrative actions that are not subject to appeal under this part.
(b) Initial determ inations by HCFA .

HCFA makes initial determinations with respect to the following matters:

* * * * *

(14) The effective date of a Medicare provider agreement or supplier approval.

* * * *

(d) Adm inistrative actions that are not initial determ inations. Administrative actions that are not initial determination (and therefore not subject to appeal under this part) include but are not limited to the following:

* * * * *

(14) The choice of alternative sanction or remedy to be imposed on a provider or supplier.
(15) A decision by the State survey agency as to when to conduct an initial survey of a prospective provider or supplier.

* * * *

F. Technical correction.

§ 489.1 [Amended]

In §489.11(c), the following changes are made:
a. At the end of paragraph (c)(1), the word "and" is added.
b. At the end of paragraph (c)(2), "; and" is removed and a period is inserted in its place.
(Catalog of Federal Domestic Assistance Program No. 93.773, Medicare-Hospital Insurance; Program No. 93.774, MedicareSupplementary Medical Insurance; and Program No. 93.778, Medical Assistance.)

Dated: September 20, 1996.
Bruce C. Vladeck,
Administrator, Health Care Financing Administration.

Dated: December 27, 1996.

Donna E. Shalala,

Secretary.
[FR Doc. 97-21731 Filed 8-15-97; 8:45 am] BILLING CODE 4120-01-P

DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

50 CFR Parts 222 and 227

[Docket No. 960730210-7193-02; I.D.
050294D]

RIN 0648-XX65

Endangered and Threatened Species: Listing of Several Evolutionary Significant Units (ESUs) of West Coast Steelhead

Agencr: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Admin istration (NOAA), Commerce.
ACtion: Final rule.
summary: On August 9, 1996, NMFS completed a comprehensive status review of west coast steelhead (Oncorhynchus mykiss, or O. mykiss) populations in Washington, Oregon, Idaho, and California, and identified 15 Evolutionarily Significant Units (ESUs) with in this range. NMFS is now issuing a final rule to list two ESUs as endangered and three ESUs as threatened under the Endangered Species Act (ESA). The end angered steelhead ESUs are located in California (Southern California) and Washington (Upper Columbia River). The threatened steelhead ESUs are located in California (Central California Coast and SouthCentral California Coast) and Idaho, Washington, and Oregon (Snake River Basin). For the endangered ESUs, section 9(a) prohibitions will be effective 60 days from the publication of this final rule. For the threatened ESUs, NMFS will issue shortly protective regulations under section 4(d) of the ESA, which will apply section 9(a) prohibitions with certain exceptions.

NMFS has examined the relationship between hatchery and natural populations of steelhead in these ESUs, and has assessed whether any hatchery
populations are essential for their recovery. Only the Wells Hatchery stock in the Upper Columbia River ESU is essential for recovery and included in this listing. Aside from the Wells Hatchery stock, only naturally spawned populations of steelhead (and their progeny) residing below long-term, naturally and man-made impassable barriers (i.e., dams) are listed in all five ESUs identified as threatened or end angered.

At this time, NMFS is listing only anadromous life forms of O. mykiss.
DATES: Effective October 17, 1997.
addresses: Protected Resources Division, NMFS, Northwest Region, 525 NE Oregon Street, Suite 500, Portland, OR 97232-2737.
FOR FURTHER INFORMATION CONTACT: Garth Griffin, 503-231-2005, Craig Wingert, 562-980-4021, or Joe Blum, 301-713-1401.

SUPPLEMENTARY INFORMATION:

Species Background

Oncorhynchus mykiss exhibit one of the most complex suites of life history traits of any salmonid species. Oncorhynchus mykiss may exhibit anadromy (meaning they migrate as juveniles from fresh water to the ocean, and then return to spawn in fresh water) or freshwater residency (meaning they reside their entire life in fresh water). Resident forms are usually referred to as "rainbow" or "redband" trout, while anadromous life forms are termed "steelhead." Few detailed studies have been conducted regarding the relationship between resident and anadromous O. mykiss and as a result, the relationship between these two life forms is poorly understood. Recently the scientific name for the biological species that includes both steelhead and rainbow trout was changed from Salmo gairdneri to O. mykiss. This change reflects the premise that all trouts from western North America share a common lineage with Pacific salmon.

Steelhead typically migrate to marine waters after spending 2 years in fresh water. They then reside in marine waters for typically 2 or 3 years prior to returning to their natal stream to spawn as 4 -or 5 -year-olds. Unlike Pacific salmon, steelhead are iteroparous, meaning they are capable of spawning more than once before they die. However, it is rare for steelhead to spawn more than twice before dying; most that do so are females. Steelhead adults typically spawn between December and June (Bell, 1990; Busby et al., 1996). Depending on water temperature, steelhead eggs may incubate in "redds" (nesting gravels) for
1.5 to 4 months before hatching as "alevins" (a larval life stage dependent on food stored in a yolk sac). Following yolk sac absorption, young juveniles or "fry" emerge from the gravel and begin actively feeding. Juveniles rear in fresh water from 1 to 4 years, then migrate to the ocean as "smolts."

Biologically, steelhead can be divided into two reproductive ecotypes, based on their state of sexual maturity at the time of river entry and the duration of their spawning migration. These two ecotypes are termed "stream maturing" and "ocean maturing." Stream maturing steelhead enter fresh water in a sexually immature condition and require several months to mature and spawn. Ocean maturing steelhead enter fresh water with well-developed gonads and spawn shortly after river entry. These two reproductive ecotypes are more commonly referred to by their season of freshwater entry (e.g., summer and winter steelhead).

Two major genetic groups or "subspecies" of steelhead occur on the west coast of the United States: a coastal group and an inland group, separated in the Fraser and Columbia River Basins approximately by the Cascade crest (Huzyk \& Tsuyuki, 1974; Allen dorf, 1975; Utter \& Allend orf, 1977; Okazaki, 1984; Parkinson, 1984; Schreck et al., 1986; Reisenbichler et al., 1992). Behnke (1992) proposed to classify the coastal subspecies as $O . m$. irideus and the inland subspecies as O. m. gairdneri. These genetic groupings apply to both anadromous and non-anadromous forms of O. mykiss. Both coastal and inland steelhead occur in Washington and Oregon. California is thought to have only coastal steelhead while Idaho has only inland steelhead.

Historically, steelhead were distributed throughout the North Pacific Ocean from the Kamchatka Peninsula in Asia to the northern Baja Peninsula. Presently, the species distribution extends from the Kamchatka Peninsula, east and south along the Pacific coast of North America, to at least Malibu Creek in southern California. There are in frequent anecdotal reports of steelhead occurring as far south as the Santa Margarita River in San Diego County (McEwan \& Jackson, 1996). Historically, steelhead likely inhabited most coastal streams in Washington, Oregon, and California as well as many inland streams in these states and Idaho. However, during this century, over 23 indigenous, naturally-reproducing stocks of steelhead are believed to have been extirpated, and many more are thought to be in decline in numerous coastal and inland streams in Washington, Oregon, Idaho, and

California. Forty-three stocks have been identified by Nehlsen et al. (1991) as being at moderate or high risk of extinction.

Previous Federal ESA Actions Related to West Coast Steelhead

The history of petitions received regarding west coast steelhead is summarized in the proposed rule published on August 9, 1996 (61 FR 56138). The most comprehensive petition was submitted by Oregon Natural Resources Council and 15 copetitioners on February 16, 1994. In response to this petition, NMFS assessed the best available scientific and commercial data, including technical information from Pacific Salmon Biological Technical Committees (PSBTCs) and interested parties in Washington, Oregon, Idaho, and California. The PSBTCs consisted primarily of scientists (from Federal, state, and local resource agencies, Indian tribes, industries, universities, professional societies, and public interest groups) possessing technical expertise relevant to steelhead and their habitats. A total of seven PSBTC meetings were held in the states of Washington, Oregon, Idaho, and California during the course of the west coast steelhead status review. NMFS also established a Biological Review Team (BRT), composed of staff from NMFS' Northwest and Southwest Fisheries Science Centers and Southwest Regional Office, as well as a representative of the National Biological Service, which conducted a coastwide status review for west coast steelhead (Busby et al., 1996).

Based on the results of the BRT report, and after considering other information and existing conservation measures, NMFS published a proposed listing determination (61 FR 56138, August 9, 1996) that identified 15 ESUs of steelhead in the states of Washington, Oregon, Idaho, and California. Ten of these ESUs were proposed for listing as threatened or endangered species, four were found not warranted for listing, and one was identified as a candidate for listing.

NMFS has now analyzed new information and public comments received in response to the August 9, 1996, proposed rule. NMFS' BRT has likew ise analyzed this new information and has updated its conclusions accordingly (NMFS, 1997a). Copies of the BRT's updated conclusions, entitled "Status Review Update for West Coast Steelhead from Washington, Idaho, Oregon, and California," are available upon request (see addressees). This final rule identifies five ESUs of west
coast steelhead in the four states that currently warrant listing as threatened or endangered species under the ESA.

Summary of Comments Received in Response to the Proposed Rule

NMFS held 16 public hearings in California, Oregon, Idaho, and Washington to solicit comments on the proposed rule. One hundred and eightyeight individuals presented testimony at the public hearings. During the 90-day public comment period, NMFS received 939 written comments on the proposed rule from Federal, state, and local government agencies, Indian tribes, nongovernmental organizations, the scientific community, and other individuals. A number of comments addressed specific technical issues pertaining to a particular geographic region or O. mykiss population. These technical comments were considered by NMFS' BRT in its re-evaluation of ESU boundaries and status and are discussed in the updated Status Review document (NMFS, 1997a).

On July 1, 1994, NMFS, jointly with U.S. Fish and Wildlife Service (FWS), published a series of policies regarding listings under the ESA, including a policy for peer review of scientific data (59 FR 34270). In accordance with this policy, NMFS solicited 22 individuals to take part in a peer review of its west coast steelhead proposed rule. All individuals solicited are recognized experts in the field of steelhead biology and represent a broad range of interests, including Federal, state, and tribal resource managers, private industry consultants, and academia. Eight individuals took part in the peer review of this action; comments from peer reviewers were considered by NMFS' BRT and are summarized in the updated Status Review document (NMFS, 1997a).

A summary of comments received in response to the proposed rule is presented below.

Issue 1: Sufficiency and Accuracy of Scientific Inform ation and Analysis

Comment: Numerous commenters disputed the sufficiency and accuracy of data which NMFS employed in its proposed rule to list ten steelhead ESUs as either threatened or endangered under the ESA. Several commenters urged NMFS to delay any ESA listing decisions for steelhead until additional scientific information is available concerning this species.

Response: Section 4(b)(1)(A) of the ESA requires that NMFS make its listing determinations solely on the basis of the best available scientific and commercial data after reviewing the status of the
species. NMFS believes that in formation contained in the agency's status review (Busby et al., 1996), together with more recent information obtained in response to the proposed rule (NMFS, 1997a), represent the best scientific information presently available for the steelhead ESUs addressed in this final rule. NMFS has conducted an exhaustive review of all available in formation relevant to the status of this species. NMFS has also solicited information and opinion from all interested parties, including peer reviewers as described above. If in the future new data become available to change these conclusions, NMFS will act accord ingly.

Section 4(b)(6) of the ESA requires NMFS to publish a final determination whether a species warrants listing as threatened or endangered within 1 year from publishing a proposed determination. If such a final listing is not warranted, NMFS must withdraw the proposed regulation. In certain cases where NMFS concludes that substantial disagreement exists regarding the sufficiency or accuracy of available data relevant to its determinations, NMFS may extend this 1 -year period by not more than 6 months for the purposes of soliciting addition al data. (ESA
$\S 4(\mathrm{~b})(6)(\mathrm{B})(\mathrm{i}))$.
With respect to those steelhead ESUs addressed in this final rule, NMFS concludes no basis exists to delay final ESA listings. State resource agencies, peer reviewers, and other
knowledgeable parties are in general agreement that steelhead stocks in these areas are at risk. As described in a sep arate Federal Register notice, however, NMFS has determined a 6month extension is warranted for five remaining ESUs of west coast steelhead. These ESUs include the following: Lower Columbia River, Oregon Coast, Klamath Mountains Province, Northern California, and the Central Valley of California. For these particular ESUs, NMFS concludes that substantial disagreement exists regarding the sufficiency and accuracy of the data. Several efforts are underway that may resolve scientific disagreement regarding the sufficiency and accuracy of data relevant to these ESUs. NMFS has undertaken an intensive effort to analyze the data received during and after the comment period on the proposed ESUs from the States of Washington, Oregon, and California, as well as from peer reviewers. This work will include evaluating the Oregon Department of Fish and Wildlife (ODFW) models, analyzing population abundance trends where new data are available, and examining new genetic data relative to the relationship between
winter and summer steelhead and between hatchery and wild fish. In light of these disagreements and the fact that more data are forth coming, NMFS extends the final determination deadline for these ESUs for 6 months, until February 9, 1998.
Issue 2: Description and Status of Steelhead ESUs

Comment: A few commenters disputed NMFS' conclusions regarding the geographic boundaries for some of the ESUs and questioned NMFS' basis for determining these boundaries. Most of these comments pertained to the ESUs south of San Francisco Bay, suggesting particular river systems be excluded from listing due to historical or occasional absence of steelhead or rainbow trout.

Response: NMFS has published a policy describing how it will apply the ESA definition of "species" to anadromous salmonid species (56 FR 58612, November 20, 1991). More recently, NMFS and FWS published a joint policy, consistent with NMFS' policy, regarding the definition of "distinct population segments" (61 FR 4722, February 7, 1996). The earlier policy is more detailed and applies specifically to Pacific salmonids and, therefore, was used for this determination. This policy indicates that one or more naturally reproducing salmonid populations will be considered to be distinct and, hence, species under the ESA, if they represent an ESU of the biological species. To be considered an ESU, a population must satisfy two criteria: (1) It must be reproductively isolated from other population units of the same species; and (2) it must represent an important component in the evolutionary legacy of the biological species. The first criterion, reproductive isolation, need not be absolute but must have been strong enough to permit evolutionarily important differences to occur in different population units. The second criterion is met if the population contributes substantially to the ecological or genetic diversity of the species as a whole. Guidance on applying this policy is contained in a scientific paper entitled: "Pacific Salmon (Oncorhynchus spp.) and the Definition of 'Species' under the Endangered Species Act." It is also found in a NOAA Technical Memorandum: 'Definition of 'Species' Under the Endangered Species Act: Application to Pacific Salmon" (Waples, 1991). A more detailed discussion of individual ESU bound aries is provided below under "Summary of Conclusions Regarding Listed ESUs."

Comment: Several commenters questioned NMFS' methodology for determining whether a given steelhead ESU warranted listing. In most cases, such commenters also expressed opinions regarding whether listing was warranted for a particular steelhead ESU. A few commenters provided substantive new information relevant to making risk assessments.

Response: Section 3 of the ESA defines the term "endangered species" as "any species which is in danger of extinction throughout all or a significant portion of its range." The term "threatened species" is defined as "any species which is likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range." NMFS has identified a number of factors that should be considered in evaluating the level of risk faced by an ESU, including: (1) Absolute numbers of fish and their spatial and temporal distribution; (2) current abundance in relation to historical abundance and current carrying capacity of the habitat; (3) trends in abundance; (4) natural and human-influenced factors that cause variability in survival and abundance; (5) possible threats to genetic integrity (e.g., from strays or outplants from hatchery programs); and (6) recent events (e.g., a drought or changes in harvest management) that have predictable short-term consequences for abundance of the ESU. A more detailed discussion of status of individual ESUs is provided below under "Summary of Conclusions Regarding Listed ESUs."

Issue 3: Factors Contributing to the Decline of West Coast Steelhead

Comment: Many commenters identified factors they believe have contributed to the decline of west coast steelhead. Factors identified include overharvest by recreational fisheries, predation by pinnipeds and piscivorous fish species, effects of artificial propagation, and the deterioration or loss of freshwater and marine habitats.

Response: NMFS agrees that many factors, past and present, have contributed to the decline of west coast steelhead. NMFS also recognizes that natural environmental fluctuations have likely played a role in the species' recent declines. However, NMFS believes other human-induced impacts (e.g., incidental catch in certain fisheries, hatchery practices, and habitat modification) have played an equally significant role in this species' decline. Moreover, these human-induced impacts have likely reduced the species' resiliency to natural factors for decline
such as drought, poor ocean conditions, and predation (NMFS, 1996a).

Since the time of this proposed listing, NMFS has published a report describing the impacts of California Sea Lions and Pacific Harbor Seals upon salmonids and on the coastal ecosystems of Washington, Oregon, and California (NMFS, 1997b). This report concludes that in certain cases where pinniped populations co-exist with depressed salmonid populations, salmon populations may experience severe impacts due to predation. An example of such a situation is Ballard Locks, WA, where sea lions are known to consume significant numbers of adult winter steelhead. This study further concludes that data regarding pinniped predation is quite limited and that substantial additional research is needed to fully address this issue. For additional information on this issue see the "Summary of Factors Affecting Steelhead" below.

Comment: One peer reviewer and several commenters stated that NMFS' assessment underestimated the significant in fluence of natural en vironmental fluctuations on salmonid populations. Several commenters stated that ocean conditions are one of the primary factors for decline. These commenters suggested that any listing activity should be postponed until the complete oceanographic cycle can be observed.

Response: Environmental changes in both marine and freshwater habitats can have important impacts on steelhead abundance. For example, a pattern of relatively high abundance in the mid1980s followed by (often sharp) declines over the next decade occurred in steelhead populations from most geographic regions of the Pacific Northwest. This result is most plausibly explained by broad-scale changes in ocean productivity. Similarly, 6 to 8 years of drought in the late 1980s and early 1990s adversely affected many freshwater habitats for steelhead throughout the region. These natural phenomena put increasing pressure on natural populations already stressed by an thropogenic factors such as habitat degradation, blockage of migratory routes, and harvest (NMFS, 1996a).

Improvement of cyclic or episodic environmental conditions (for example, increases in ocean productivity or shifts from drought to wetter conditions) can help alleviate extinction risk to steelhead populations. However, NMFS cannot reliably predict future en vironmental conditions, making it unreasonable to assume improvements in abundance as a result of improvements in such conditions.

Furthermore, steelhead and other species of Pacific salmon have evolved over the centuries with such cyclical environmental stresses. This species has persisted through time in the face of these conditions largely due to the presence of freshwater and estuarine refugia. As these refugia are altered and degraded, Pacific salmon species are more vulnerable to episodic events such as shifts in ocean productivity and drought cycles (NMFS, 1996a).

Issue 4: Consideration of Existing Conservation Measures

Comment: Several commenters argued that NMFS had not considered existing conservation programs designed to enhance steelhead stocks within a particular ESU. Some commenters provided specific in formation on some of these programs to NMFS concerning the efficacy of existing conservation plans.

Response: NMFS has reviewed existing conservation plans and measures relevant to the five ESUs addressed in this final rule and concludes that existing conservation efforts in these areas are not sufficient to preclude listing of individual ESUs at th is time. Several of the plans addressed in comments show promise of ameliorating the risks facing steelhead. However, in most cases, measures described in comments have not been implemented or are in their early stages of implementation and have not yet demonstrated success. Some of these measures are also geograph ically limited to individual river basins or political subdivisions, thereby improving conditions for only a small portion of the entire ESU.

While existing conservation efforts and plans are not sufficient to preclude the need for listings at this time, they are nevertheless valuable for improving watershed health and restoring fishery resources. In those cases where well developed, reliable conservation plans exist, NMFS may choose to incorporate them into the recovery planning process. In the case of threatened species, NMFS also has flexibility under section 4(d) to tailor section 9 take regulations based on the contents of available conservation measures. NMFS fully intends to recognize local conservation efforts to the fullest extent possible. Endangered Species Act listing should not be viewed as the failure of such plans; rather, it should be viewed as a challenge to better coordinate existing conservation efforts to address the underlying problems of watershed degradation and species health.

Issue 5: Steelhead Biology and Ecology
Comment: Several commenters and a peer reviewer asserted that resident rainbow trout should be included in listed steelhead ESUs. Several commenters also stated that NMFS and FWS should address how the presence of rainbow trout populations may ameliorate risks facing anadromous populations within listed ESUs.

Response: In its August 9, 1996, proposed rule, NMFS stated that based on available genetic information, it was the consensus of NMFS scientists, as well as regional fishery biologists, that resident fish should generally be considered part of the steelhead ESUs. However, NMFS concluded that available data were in conclusive regarding the relationship of resident rainbow trout and steelhead. NMFS requested additional data in the proposed rule to clarify this relationship and determine if resident rainbow trout should be included in listed steelhead ESUs.

In response to this request for additional information, many groups and individuals expressed opinions regarding this issue. In most cases these opinions were not supported by new information that resolves existing uncertainty. Two state fishery management agencies (California Department of Fish and Game and Washington Department of Fish and Wildlife) and one peer reviewer provided comments and information supporting the inclusion of resident rainbow trout in listed steelhead ESUs. In general, these parties also felt that rainbow trout may serve as an important reservoir of genetic material for at risk steelhead stocks.

While conclusive evidence does not yet exist regarding the relationship of resident and anadromous O. mykiss, NMFS believes available evidence suggests that resident rainbow trout should be included in listed steelhead ESUs in certain cases. Such cases include: (1) Where resident O. mykiss have the opportunity to interbreed with anadromous fish below natural or manmade barriers; or (2) where resident fish of native lineage once had the ability to interbreed with anadromous fish but no longer do because they are currently above human-made barriers, and they are considered essential for recovery of the ESU. Whether resident fish that exist above any particular man-made barrier meet these criteria, must be reviewed on a case-by-case basis by NMFS. NMFS recognizes that there may be many such cases in California alone. Resident fish above long-standing natural barriers, and those that are derived from the introduction of non-
native rain bow trout, would not be considered part of any ESU.

Several lines of evidence exist to support this conclusion. Under certain conditions, anadromous and resident O. mykiss are apparently capable not only of interbreeding, but also of having offspring that express the alternate life history form, that is, anadromous fish can produce nonanadromous offspring, and vice versa (Shapovalov and Taft, 1954; Burgner et al., 1992). Mullan et al. (1992) found evidence that in very cold streams, juvenile steelhead had difficulty attaining "mean threshold size for smoltification" and concluded that
" $[\mathrm{m}]$ ost fish here [Methow River, WA] that do not emigrate downstream early in life are thermally-fated to a resident life history regard less of whether they were the progeny of anadromous or resident parents." Additionally, Shapovalov and Taft (1954) reported evidence of O. mykiss maturing in fresh water and spawning prior to their first ocean migration; this life history variation has also been found in cutthroat trout (O.clarki) and Atlantic salmon (Salmo salar).

NMFS believes resident fish can help buffer extinction risks to an anadromous population by mitigating depensatory effects in spawning populations (e.g., inability of spawning adults to find mates due to low population sizes), by providing offspring that migrate to the ocean and enter the breeding population of steelhead, and by providing a "reserve" gene pool in freshwater that may persist through times of unfavorable conditions for anadromous fish. In spite of these potential benefits, presence of resident populations is not a substitute for conservation of anadromous populations. A particular concern is isolation of resident populations by human-caused barriers to migration. This interrupts normal population dynamics and population genetic processes and can lead to loss of a genetically based trait (anadromy). As discussed in NMFS' "species identification" paper (Waples 1991), the potential loss of anadromy in distinct population segments may in and of itself warrant listing the species as a whole.

On February 7, 1996, FWS and NMFS adopted a joint policy to clarify their interpretation of the phrase "distinct population segment (DPS) of any species of vertebrate fish or wildlife" for the purposes of listing, delisting, and reclassifying species under the ESA (61 FR 4722). DPSs are "species" pursuant to section 3(15) of the ESA. Previously, NMFS had developed a policy for stocks of Pacific salmon where an ESU of a biological species is considered "distinct" (and hence a species) if it is
substantially reproductively isolated from other conspecific population units, and it represents an important component in the evolutionary legacy of the species (November 20, 1991, 56 FR 58612). NMFS believes available data suggest that resident rainbow trout are in many cases part of steelhead ESUs. However, the FWS, which has ESA authority for resident fish, maintains that behavioral forms can be regarded as separate DPSs (e.g., western snowy plover) and that absent evidence suggesting resident rainbow trout need ESA protection, the FWS concludes that only the anadromous forms of each ESU should be listed under the ESA (DOI, 1997; FWS, 1997).
In its review of west coast steelhead, the NMFS BRT stated that rainbow trout and steelhead in the same area may share a common gene pool, at least over evolutionary time periods (NMFS, 1997a). The importance of any recovery action is measured in terms of its ability to recover the listed species in the foreseeable future. The FWS believes that steelhead recovery will not rely on the intermittent exchange of genetic material between resident and anadromous forms (FWS, 1997). As a result, without a clear demonstration of any risks to resident rainbow trout or the need to protect rainbow trout to recover steelhead in the foreseeable future, the FWS concludes that only the anadromous forms of O. mykiss should be included in the listed steelhead ESUs at this time (FWS 1997). Moreover, including resident forms of O. mykiss in any future listing action under the ESA would necessitate that the two forms combined meet the definition of an endangered or threatened species (FWS, 1997).

Summary of Factors Affecting the Species

Section 4(a)(1) of the ESA and the listing regulations (50 CFR part 424) set forth procedures for listing species. The Secretary of Commerce (Secretary) must determine, through the regulatory process, if a species is endangered or threatened based upon any one or a combination of the following factors: (1) The present or threatened destruction, modification, or curtailment of its habitat or range; (2) overutilization for commercial, recreational, scientific, or educational purposes; (3) disease or predation; (4) in adequacy of existing regulatory mechanisms; or (5) other natural or human-made factors affecting its continued existence.

As noted earlier, NMFS received numerous comments regarding the relative importance of various factors contributing to the decline of west coast
steelhead. Several recent documents describe in more detail the impacts of various factors contributing to the decline of steelhead and other salmonids (e.g., NMFS, 1997c). Relative to west coast steelhead, NMFS has prepared a supporting document that addresses the factors leading to the decline of this species entitled "Factors for Decline: A supplement to the notice of determination for west coast steelhead" (NMFS, 1996a). This report, available upon request (see ADDRESSES), concludes that all of the factors identified in section 4(a)(1) of the ESA have played a role in the decline of the species. The report identifies destruction and modification of habitat, overutilization for recreational purposes, and natural and human-made factors as being the primary reasons for the decline of west coast steelhead. The following discussion briefly summarizes findings regarding factors for decline across the range of west coast steelhead. While these factors have been treated here in general terms, it is important to underscore that impacts from certain factors are more acute for specific ESUs. For example, impacts from hydropower development are more pervasive for ESUs in the Upper Columbia River and Snake River ESUs than for some coastal ESUs.

A. The Present or Threatened Destruction, Modification, or Curtailm ent of its Habitat or Range

Steelhead on the west coast of the United States have experienced declines in abundance in the past several decades as a result of natural and human factors. Forestry, agriculture, mining, and urbanization have degraded, simplified, and fragmented habitat. Water diversions for agriculture, flood control, domestic, and
hydropower purposes (especially in the Columbia River and Sacramento-San Joaquin Basins) have greatly reduced or eliminated historically accessible habitat. Studies estimate that during the last 200 years, the lower 48 states have lost approximately 53 percent of all wetlands and the majority of the rest are severely degraded (Dah1, 1990; Tiner, 1991). Washington and Oregon's wetlands are estimated to have diminished by one-third, while California has experienced a 91-percent loss of its wetland habitat (Dah1, 1990; Jensen et al., 1990; Barbour et al., 1991; Reynolds et al., 1993). Loss of habitat complexity has also contributed to the decline of steelhead. For example, in national forests in Washington, there has been a 58 -percent reduction in large, deep pools due to sedimentation and loss of pool-forming structures such as
boulders and large wood (FEMAT, 1993). Similarly, in Oregon, the abundance of large, deep pools on private coastal lands has decreased by as much as 80 percent (FEMAT, 1993). Sedimentation from land use activities is recognized as a primary cause of habitat degradation in the range of west coast steelhead.
B. Overutilization for Com m ercial, Recreational, Scientific, or Educational Purposes

Steelhead support an important recreational fishery throughout their range. During periods of decreased habitat availability (e.g., drought conditions or summer low flow when fish are concen trated), the impacts of recreational fishing on native anadromous stocks may be heightened. NMFS has reviewed and evaluated the impacts of recreational fishing on west coast steelhead populations (NMFS, 1996a). Steelhead are not generally targeted in commercial fisheries. High seas driftnet fisheries in the past may have contributed slightly to a decline of this species in local areas, but could not be solely responsible for the large declines in abundance observed along most of the Pacific coast over the past several decades.

A particular problem occurs in the main stem of the Columbia River where listed steelhead from the Upper Columbia and Snake River Basin ESUs migrate at the same time and are subject to the same fisheries as unlisted, hatchery-produced steelhead, chinook and coho salmon. Incidental harvest mortality in mixed-stock sport and commercial fisheries may exceed 30 percent of listed populations.

C. Disease or Predation

In fectious disease is one of many factors that can influence adult and juvenile steelhead survival. Steelhead are exposed to numerous bacterial, protozoan, viral, and parasitic organisms in spawning and rearing areas, hatcheries, migratory routes, and the marine environments. Specific diseases such as bacterial kidney disease (BKD), ceratomyxosis, columnaris, Furunculosis, in fectious hematopoietic necrosis (IHNV), redmouth and black spot disease, Erythrocytic Inclusion Body Syndrome (EIBS), and whirling disease among others are present and are known to affect steelhead and salmon (Rucker et al., 1953; Wood, 1979; Leek, 1987; Foott et al., 1994; Gould and Wedemeyer, undated). Very little current or historical information exists to quantify changes in infection levels and mortality rates attributable to these
diseases for steelhead. However, studies have shown that native fish tend to be less susceptible to pathogens than hatchery-reared fish (Buchanon et al., 1983; Sanders et al., 1992).
Introductions of non-native species and habitat modifications have resulted in increased predator populations in numerous river systems, thereby increasing the level of predation experienced by salmonids. Predation by pinnipeds is also of concern in areas experiencing dwindling steelhead run sizes. However, salmon and marine mammals have coexisted for thousands of years and most investigators consider predation an insignificant contributing factor to the large declines observed in west coast steelhead populations.

D. Inadequacy of Existing Regulatory Mechanisms

1. Federal and State Forest Practices

The Northwest Forest Plan (NFP) is a Federal management policy with important benefits for steelhead. While the NFP covers a very large area, the overall effectiveness of the NFP in conserving steelhead is limited by the extent of Federal lands and the fact that Federal land ownership is not uniformly distributed in watersheds with in the affected ESUs. The extent and distribution of Federal lands limits the NFP's ability to achieve its aquatic habitat restoration objectives at watershed and river basin scales and highlights the importance of complementary salmon habitat conservation measures on non-Federal lands with in the subject ESUs. For example, there are no Federal lands managed under the NFP with in the Central California, South-Central California, or Southern California ESUs.
On February 25, 1995, the U.S. Forest Service and Bureau of Land Management adopted Implementation of Interim Strategies for Managing Anadromous Fish-producing Watersheds in eastern Oregon and Washington, Idaho, and portions of California (known as PACFISH). The strategy was developed in response to significant declines in naturallyreproducing salmonid stocks, including steelhead, and widespread degradation of anadromous fish habitat throughout public lands in Idaho, Washington, Oregon, and California outside the range of the northern spotted owl. Like the NFP, PACFISH is an attempt to provide a consistent approach for maintaining and restoring aquatic and riparian habitat conditions which, in turn, are expected to promote the sustained natural production of anadromous fish. However, as with the NFP, PACFISH is
limited by the extent of Federal lands and the fact that Federal land ownership is not uniformly distributed in watersheds with in the affected ESUs. In the South-Central California and Southern California ESU, for example, Federal lands managed by the U.S. Forest Service represent less than 15-25 percent of each ESU. Moreover, much of these Federal lands are located in upper elevation areas above currently impassible barriers. Furthermore, PACFISH was designed to be a shortterm land management/anadromous fish conservation strategy to halt habitat degradation and begin the restoration process until a long-term strategy could be adopted. Interagency PACFISH implementation reports from 1995 and 1996 indicate PACFISH has not been consistently implemented and has not achieved the level of conservation anticipated for the short-term.
Additionally, because PACFISH was expected to be replaced with in 18 months, it required only minimal levels of watershed analysis and restoration.
The interim PACFISH strategy could be effective until summer 1998, when the Interior Columbia River basin Environmental Impact Statements replace it. In total, PACFISH would be in place for a period of approximately 42 months and its long-term limitations have already resulted in lost conservation opportunities for threatened and proposed anadromous fishes.

The California Department of Forestry and Fire Protection (CDF) en forces the State of California's forest practice rules (CFPRs) that are promulgated through the Board of Forestry (BOF). The CFPRs contain provisions that can be protective of steelhead if fully implemented. However, NMFS believes the CFPRs do not secure properly functioning riparian habitat. Specifically, the CFPRs do not adequately address large woody debris recruitment, streamside tree retention to maintain bank stability, and canopy retention standards that assure stream temperatures are properly functioning for all life stages of steelhead. The current process for approving Timber Harvest Plans (THPs) under the CFPRs does not include monitoring of timber harvest operations to determine whether a particular operation damaged habitat and, if so, how it might be mitigated in future THPs. The CFPR rule that permits salvage logging is also an area where better environmental review and monitoring could ensure better protection for steelhead. For these reasons, NMFS is working to improve the condition of riparian buffers in
ongoing habitat conservation plan negotiations with private landowners.

The Washington Department of Natural Resources implements and en forces the State of Washington's forest practice rules (WFPRs) which are promulgated through the Forest Practices Board. These WFPRs contain provisions that can be protective of steelhead if fully implemented. This is possible given that the WFPR's are based on adaptive management of forest lands through watershed analysis, development of site-specific land management prescriptions, and monitoring. Watershed Analysis prescriptions can exceed WFPR minima for stream and riparian protection. However, NMFS believes the WFPRs, including watershed analysis, do not provide properly functioning riparian and in stream habitats. Specifically, the base WFPRs do not adequately address large woody debris recruitment, tree retention to maintain stream bank integrity and channel networks within floodplains, and chronic and episodic inputs of coarse and fine sediment that maintain habitats that are properly functioning for all life stages of steelhead.

The majority of land area within the Snake River ESU (about 70 percent) is under Federal management; therefore, in most watersheds the State of Idaho's forest practice rules play a lesser role in forest management relative to Federal measures (i.e., PACFISH). Even so, NMFS believes that certain aspects of the State's forest practice rules do not avoid adverse effects to anadromous fish populations or their habitat.
Specifically, current riparian buffer width requirements are inadequate, as well as rules which do not prohibit logging on unstable hillsides and landslide prone areas.
2. Dredge, Fill, and Inwater Construction Programs

The Army Corps of Engineers (COE) regu lates removal/ fill activities under section 404 of the Clean Water Act (CWA), which requires that the COE not permit a discharge that would "cause or contribute to significant degradation of the waters of the United States." One of the factors that must be considered in this determination is cumulative effects. However, the COE guidelines do not specify a methodology for assessing cumulative impacts or how much weight to assign them in decisionmaking. Furthermore, the COE does not have in place any process to address the additive effects of the continued development of waterfront, riverine, coastal, and wetland properties.

3. Water Quality Programs

The Federal CWA is intended to protect beneficial uses, including fishery resources. To date, implementation has not been effective in adequately protecting fishery resources, particularly with respect to non-point sources of pollution.

Section 303(d)(1) (C) and (D) of the CWA requires states to prepare Total Maximum Daily Loads (TMDLs) for all water bodies that do not meet State water quality standards. TMDLs are a method for quantitative assessment of environmental problems in a watershed and identifying pollution reductions needed to protect drinking water, aquatic life, recreation, and other use of rivers, lakes, and streams. TMDLs may address all pollution sources including point sources such as sewage or industrial plant discharges, and nonpoint discharges such as runoff from roads, farm fields, and forests.

The CWA gives state governments the primary responsibility for establishing TMDLs. However, EPA is required to do so if a state does not meet this resp onsibility. In California, as a result of recent litigation, the EPA has made a legal commitment guaranteeing that either EPA or the State of California will establish TMDLs, that identify pollution reduction targets, for 18 impaired river basins in northern California by the year 2007. The State of California has made a commitment to establish TMDLs for approximately half the 18 river basins by 2007. The EPA will develop TMDLs for the remaining basins and has also agreed to complete all TMDLs if the State fails to meet its commitment within the agreed upon time frame.

State agencies in Oregon are committed to completing TMDLs for coastal drainages within 4 years, and all impaired waters within 10 years. Similarly ambitious schedules are in place, or being developed for Washington and Idaho.

The ability of these TMDLs to protect steelhead should be significant in the long term; however, it will be difficult to develop them quickly in the short term and their efficacy in protecting steelhead habitat will be unknown for years to come.

4. Hatchery and Harvest Management

In the past, non-native steelhead stocks have been introduced as broodstock in hatcheries and widely transplanted in many coastal rivers and streams in California (Bryant, 1994; Busby et al., 1996; NMFS, 1997a). Because of problems associated with this practice, California Department of Fish and Game (CDFG) developed its

Salmon and Steelhead Stock Management Policy. This policy recognizes that such stock mixing is detrimental and seeks to maintain the genetic integrity of all identifiable stocks of salmon and steelhead in California, as well as minimize interactions between hatchery and natural populations. To protect the genetic integrity of salmon and steelhead stocks, this policy directs CDFG to evaluate each salmon and steelhead stream and classify it according to its probable genetic source and degree of integrity. This has not yet been accomplished by the State.

California's Steelhead Management Plan [or plan] was adopted and published in February 1996. The plan recognizes that restoration of California's steelhead populations requires a broad approach that emphasizes ecosystem restoration. The plan focuses on restoration of native and naturally produced steelhead stocks because of their importance in maintaining genetic and biological diversity and for their aesthetic values. The Steelhead Plan presents a historical account of the decline of California's steelhead populations, and identifies needed restoration measures both on a broad, programmatic scale and on a stream-specific scale. The Steelhead Plan identifies recent changes in the State's steelhead fishery management and regulations (e.g., steelhead trout catch report-restoration card [AB 2187], seasonal closures and zero bag limits for nearly all coastal streams from Santa Barbara County southward) and also identifies recommendations for further management changes to protect and conserve steelhead populations. These recommended changes include marking of all hatchery-produced steelhead in the State, implementation of an 8 -inch minimum size limit for all anadromous waters in the State, and a reduction in the State-wide bag limit to one steelhead per day. CDFG has just recently begun implementation of some of the measures identified in this plan.

Hatchery programs and harvest management have strongly influenced steelhead populations in the Upper Columbia and Snake River Basin ESUs. Hatchery programs intended to compensate for habitat losses have masked declines in natural stocks and have created unrealistic expectations for fisheries. Collection of natural steelhead for broodstock and transfers of stocks within and between ESUs has detrimentally impacted some populations.
The three state agencies (Oregon Department of Fish and Wildlife, Washington Department of Fish and

Game, and Idaho Department of Fish and Game) have adopted and are implementing natural salmonid policies designed to limit hatchery in fluences on natural, indigenous steelhead. Sport fisheries are based on marked, hatcheryproduced steelhead, and sport fishing regulations are designed to protect wild fish. While some limits have been placed on hatchery production of anadromous salmonids, more careful management of current programs and scrutiny of proposed programs is necessary in order to minimize impacts on listed species.

E. Other Natural or Hum an-Made Factors Affecting Its Continued Existence

Natural climatic conditions have exacerbated the problems associated with degraded and altered riverine and estuarine habitats. Persistent drought conditions have reduced already limited spawning, rearing and migration habitat. Climatic conditions appear to have resulted in decreased ocean productivity which, during more productive periods, may help offset degraded freshwater habitat conditions (NMFS, 1996a).

In an attempt to mitigate the loss of habitat, extensive hatchery programs have been implemented throughout the range of steelhead on the West Coast. While some of these programs have succeeded in providing fishing opportunities, the impacts of these programs on native, naturallyreproducing stocks are not well understood. Competition, genetic introgression, and disease transmission resulting from hatchery introductions may significantly reduce the production and survival of native, naturallyreproducing steelhead. Collection of native steelhead for hatchery broodstock purposes often harms small or dwindling natural populations. Artificial propagation can play an important role in steelhead recovery through carefully controlled supplementation programs.

Summary of ESU Determinations

Below follows a summary of NMFS, ESU determinations for these species. A more detailed discussion of ESU determinations is presented in the "Status Review Update for West Coast Steelhead from Washington, Idaho, Oregon, and California" (NMFS, 1997a). Copies of this document are available upon request (see ADDRESSES).

(1) Central California Coast ESU

This coastal steelhead ESU occupies river basins from the Russian River, Sonoma County, CA, (inclusive) to

Aptos Creek, Santa Cruz County, CA, (inclusive), and the drainages of San Francisco and San Pablo Bays eastward to the Napa River (inclusive), Napa County, CA. The Sacramento-San Joaquin River Basin of the Central Valley of California is excluded. Environmental features show a transition in this region from the northern redwood forest ecosystem to the more xeric southern chaparral and coastal scrub ecosystems. This area is characterized by very erosive soils in the coast range mountains; redwood forest is the dominant coastal vegetation for these drainages. Precipitation is lower here than in areas to the north, and elevated stream temperatures (greater than $20^{\circ} \mathrm{C}$) are common in the summer. Coastal upwelling in this region is strong and consistent, resulting in a relatively productive nearshore marine environment.

NMFS has determined that no changes in the proposed boundaries of the Central California Coast ESU are warranted; however, the original written description of this ESU inadvertently left a gap between Soquel Creek and the Pajaro River. This ESU includes steelhead occupying the Russian River and all basins south to Aptos Creek but not including the Pajaro River Basin.

One peer reviewer questioned the basis for the location of the boundary between this ESU and the South-Central California Coast, effectively splitting the basins that flow into Monterey Bay. The ESU break between Aptos Creek and the Pajaro River is largely based on ecological differences of the river basins. The Pajaro River and river basins south of there drain an arid interior and end in broad coastal plains, whereas north of the Pajaro River, the river basins largely drain coastal mountains at the southern end of the natural range of the redwood forest. This boundary is also consistent with the southern limit of coho salmon, further suggesting a natural ecological break.

NMFS finds no biological basis to exclude steelhead from the basins of either San Francisco or San Pablo Bays from this ESU, as some commenters have suggested. The characteristics of hydrology, geology, and upper basin vegetation in the basins draining into San Francisco Bay and San Pablo Bay are more similar to those attributes of the coastal portion of this ESU than to the Central Valley ESU, although resource management activities and urbanization have altered much of the habitat. Life history characteristics of steelhead, such as period of emigration and spawning, are also consistent within this ESU.

Hatchery Populations Pertaining to This ESU
Hatchery populations considered part of this ESU include Big Creek Hatchery stock and San Lorenzo River Hatchery stock which is reared at the Big Creek hatchery. The basis for this conclusion is the minimal influence of releases of fish from outside of the ESU and the genetic similarity between these and other regional stocks. Furthermore, adult collection and spawning procedures practiced by the hatcheries (which include using naturally produced fish) have helped reduce selection for domestication and small population effects during the course of hatchery operations.
Hatchery populations not included in the listed ESU at this time include the Dry Creek stock at the Warm Springs hatchery. In formation concerning this stock is sparse and therefore this stock's relationship to the entire ESU is uncertain. NMFS will continue to evaluate any new information concerning this stock in the future to determine if its inclusion is warranted.

(2) South-Central California Coast ESU

This coastal steelhead ESU occupies rivers from the Pajaro River, located in Santa Cruz County, CA, (in clusive) to (but not including) the Santa Maria River, San Luis Obispo County, CA. Most rivers in this ESU drain the Santa Lucia Mountain Range, the southernmost unit of the California Coast Ranges. The climate is drier and warmer than in the north, which is reflected in the vegetational change from coniferous forest to chaparral and coastal scrub. An other biological transition at the north of this area is the southern limit of the distribution of coho salmon (O. kisutch). The mouths of many of the rivers and streams in this area are seasonally closed by sand berms that form during periods of low flow in the summer. The southern boundary of this ESU is near Point Conception, a well-known transition area for the distribution and abundance of marine flora and fauna.

NMFS has determined that no changes in the proposed boundaries of the South-Central California Coast ESU are warranted. See discussion of the Central California Coast ESU, above, regarding the break between Aptos Creek and the Pajaro River.
Hatchery Populations Pertaining to This ESU
Hatchery populations considered part of this ESU include Whale Rock
Reservoir stock. Although this stock was established from a steelhead population
that was trapped behind the Whale Rock Dam in the 1950s, it apparently retains an anadromous component. Juvenile steelhead are able to emigrate from Whale Rock Reservoir during high spill years, and anecdotal information indicates that some of these juveniles return as adults to the base of the dam 2 years later.

(3) Southern California ESU

This coastal steelhead ESU occupies rivers from the Santa Maria River, San Luis Obispo County, CA (inclusive) to the southern extent of the species' range. Available data indicate that Malibu Creek, Los Angeles County is the southernmost stream generally recognized as supporting a persistent, naturally spawning population of anadromous O. mykiss (Behnke, 1992; Burgner et al., 1992).

Migration and life history patterns of southern California steelhead depend more strongly on rainfall and stream flow than is the case for steelhead populations farther north (Moore, 1980; Titus et al., in press). River entry ranges from early November through June, with peaks in January and February. Spawning primarily begins in January and continues through early June, with peak spawning in February and March. Average rainfall is substantially lower and more variable in this ESU than regions to the north, resulting in increased duration of sand berms across the mouths of streams and rivers and, in some cases, complete dewatering of the marginal habitats. Environmental conditions in marginal habitats may be extreme (e.g., elevated water temperatures, droughts, floods, and fires) and presumably impose selective pressures on steelhead populations. Steelhead use of southern California streams and rivers with elevated temperatures suggests that populations within this ESU are able to withstand higher temperatures than those to the north. The relatively warm and productive waters of the Ventura River resulted in more rapid growth of juvenile steelhead than occurred in northerly populations (Moore, 1980; McEwan \& Jackson, 1996). However, relatively little life history in formation exists for steelhead from this ESU.

In the proposed rule NMFS stated that this ESU presently extends to the southern extent of the species range which is currently thought to be Malibu Creek, Los Angeles County. Many comments were received regarding this issue; most supported placing the southern boundary of this ESU further south. NMFS has reviewed numerous references to steelhead occurring historically and recently in streams as
far south as the U.S.-Mexico border. While available data indicate that steelhead may occasionally occur as far south as the Santa Margarita River, the relationship of these individuals to those populations occurring further north is poorly understood.

Based on available data, NMFS concludes that insufficient information exists to justify revision of the proposed southern boundary of this ESU.

Hatchery Populations Pertaining to This ESU

No hatchery production of steelhead currently occurs in this ESU.

(4) Upper Colum bia River Basin ESU

This inland steelhead ESU occupies the Columbia River Basin upstream from the Yakima River, Washington, to the United States-Canada border. The geographic area occupied by this ESU forms part of the larger Columbia Basin Ecoregion (Omernik, 1987). The Wenatchee and Entiat Rivers are in the Northern Cascades Physiographic Province, and the Okanogan and Methow Rivers are in the Okanogan High lands Physiographic Province. The geology of these provinces is somewhat similar and very complex, developed from marine in vasions, volcanic deposits, and glaciation (Franklin \& Dyrness, 1973). The river valleys in this region are deeply dissected and maintain low gradients except in extreme headwaters. The climate in this area includes extremes in temperatures and precipitation, with most precipitation falling in the mountains as snow. Streamflow in this area is provided by melting snowpack, groundwater, and runoff from alpine glaciers. Mullan et al. (1992) described this area as a harsh en vironment for fish and stated that "it should not be confused with more studied, benign, coastal streams of the Pacific Northwest."
Life history characteristics for Upper Columbia River Basin steelhead are similar to those of other inland steelhead ESUs; however, some of the oldest smolt ages for steelhead, up to 7 years, are reported from this ESU. This may be associated with the cold stream temperatures (Mullan et al., 1992). Based on limited data available from adult fish, smolt age in this ESU is dominated by 2 -year-olds. Steelhead from the Wenatchee and Entiat Rivers return to fresh water after 1 year in salt water, whereas Methow River steelhead are primarily two-ocean resident (Howell et al., 1985).
In 1939, the construction of Grand Coulee Dam on the Columbia River blocked over 1,800 kilometers of river
from access by anadromous fish (Mullan et al., 1992). In an effort to preserve fish runs affected by Grand Coulee Dam, all an adromous fish migrating upstream were trapped at Rock Island Dam from 1939 through 1943 and either released to spawn in tributaries between Rock Island and Grand Coulee Dams or spawned in hatcheries and the offspring released in that area (Peven, 1990; Mullan et al., 1992; Chapman et al., 1994). Through th is process, stocks of all anadromous salmonids, including steelhead, which were historically native to several separate subbasins above Rock Island Dam, were redistributed among tributaries in the Rock Island-Grand Coulee reach without regard to their origin. Exactly how this has affected stock composition of steelhead is unknown.
NMFS has determined that no changes in the boundaries of the Upper Columbia River ESU are warranted. No new information was received from peer reviewers or other commenters regarding the boundaries of this ESU.

Hatchery Populations Pertaining to This ESU

Hatchery populations considered part of this ESU include the Wells Hatchery stock of steelhead (Summer run). Although this stock represents a mixture of native populations, it probably retains the genetic resources of steelhead populations above Grand Coulee Dam that are now extinct from those native habitats. Operations at the Wells Hatchery have utilized large numbers of spawning adults (>500) and have incorporated some naturally spawning adults (10 percent of the total) into the broodstock each year, procedures which should help minimize the negative genetic effects of artificial propagation. Because of the incorporation of naturally-spawning adults in to the hatchery broodstock and the large number of hatchery-propagated fish that spawn naturally, there is a close genetic resemblance between naturally spawning populations in the ESU and the Wells Hatchery stock that could be used for recovery purposes.
Hatchery populations not considered part of this ESU include the Skamania Hatchery stock (Summer run) because of its non-native heritage.

(5) Snake River Basin ESU

This inland steelhead ESU occupies the Snake River Basin of southeast Washington, northeast Oregon and Idaho. The Snake River flows through terrain that is warmer and drier on an annual basis than the upper Columbia Basin or other drainages to the north. Geologically, the land forms are older
and much more eroded than most other steelhead habitat. The eastern portion of the basin flows out of the granitic geological unit known as the Idaho Batholith. The western Snake River Basin drains sedimentary and volcanic soils of the Blue Mountains complex. Collectively, the environmental factors of the Snake River Basin result in a river that is warmer and more turbid, with higher pH and alkalinity, than is found elsewhere in the range of inland steelhead.

Snake River Basin steelhead are summer steelhead, as are most inland steelhead, and have been classified into two groups, A-run and B-run, based on migration timing, ocean-age, and adult size. Snake River Basin steelhead enter fresh water from June to October and spawn in the following spring from March to May. A-run steelhead are thought to be predominately one-ocean, while B-run steelhead are thought to be two-ocean (IDFG, 1994). Snake River Basin steelhead usually smolt at age-2 or -3 years (Whitt, 1954; BPA, 1992; Hassemer, 1992).

NMFS concludes that no changes in the proposed boundaries of the Snake River Basin ESU are warranted. While several commenters stated that A- and B-run steelhead are distinctive and therefore warrant consideration as separate ESUs, no new scientific evidence was provided to support this. As one peer reviewer noted, the distinction between A- and B-run fish currently is made using either timingbased or length-based divisions of steelhead passing Bonneville Dam, on the mainstem Columbia River. Above Bonneville dam, run-timing separation is not observed, and the groups are separated based on ocean age and body size (IDFG, 1994). It is unclear if the life history and body size differences observed upstream are correlated with groups forming the bimodal migration observed at Bonneville dam.
Furthermore, the relationship between patterns observed at the dams and the distribution of adults in spawning areas through the Snake River basin is not well understood. Based on the inability to clearly distinguish between A- and Brun steelhead once above Bonneville, NMFS concludes their division into separate ESUs is not warranted.

Hatchery Populations Pertaining to This ESU

Hatchery populations considered part of this ESU include Dworshak National Fish Hatchery (NFH) stock (Summer run); Imnaha River stock (Summer run); and Oxbow Hatchery stock (Summer run). Although the historical spawning and rearing habitat for the Dworshack

Hatchery stock is not available to anadromous migrants (due to the construction of Dworshak Dam), this stock represents the on ly source of a genetically distinct component of the ESU. Furthermore, due to the absence of any introgression from other populations, the purity of this stock likely has been maintained. While some concern exists for potential domestication or genetic founder effects, hatchery records indicate that a minimum of a thousand adults have been used annually to perpetuate the stock, which would reduce the possibility of genetic drift leading to reduced genetic variation within the stock.
NMFS concludes that the Imnaha River Hatchery stock is part of the Snake River ESU. This stock was recently founded from an undiluted stock (with no previous history of non-native hatchery releases) for the purpose of preserving the native genetic resources of this area. Therefore, this stock represents an important component of the evolutionary legacy of this ESU.
Finally, NMFS concludes that the Oxbow Hatchery stock is part of the Snake River ESU. Although this stock has been under artificial propagation for several generations and has been propagated almost entirely from hatchery-derived adults, NMFS believes this stock represents the only source of a unique genetic resource and as such is important to preserve as part of the ESU.
Hatchery populations not considered part of the Snake River ESU include the Lyons Ferry stock (Summer run), Pahsimeroi Hatchery stock (Summer run), East Fork Salmon River Trap (Summer run), and Wallowa Hatchery stock (Summer run). The Lyons Ferry Hatchery stock is excluded primarily based on the use of steelhead from stocks that originated outside of this ESU. The Pahsimeroi Hatchery stock consists of a mixture of populations, all of which originate within the ESU; however, NMFS believes that because these populations came from ecologically-distinct regions throughout the Snake River Basin, the assemblage of these populations does not closely resemble any naturally spawning counterpart. In recent years, hatchery practices have focused on propagating this stock solely from hatchery derived adults. The East Fork Salmon River Trap consists of a mixture of Pahsimeroi and Dworshak Hatchery stocks which are not included in the ESU.

NMFS concludes that the Wallowa Hatchery stock is not included in this ESU. This stock was founded by collections of adults from lower Snake

River mainstem dams, and there was no clear consensus on which populations within the Snake River Basin were represented in the mixture. Also, populations not native to the Snake River (e.g., Skamania stock) have been incorporated into Wallowa Hatchery broodstock. Many of the reasons for not in cluding th is stock are similar to th ose given for the Pahsimeroi Hatchery stock.

Existing Conservation Efforts

Under section 4(b)(1)(A) of the ESA, the Secretary of Commerce is required to make listing determinations solely on the basis of the best scientific and commercial data available and after taking into account efforts being made to protect a species. During the status review for west coast steelhead, NMFS reviewed an array of protective efforts for steelhead and other salmonids, ranging in scope from regional strategies to local watershed initiatives. NMFS has summarized some of the major efforts in a document entitled "Steelhead Conservation Efforts: A Supplement to the Notice of Determination for West Coast Steelhead under the Endangered Species Act" (NMFS, 1996b). In addition, NMFS has compiled inventories of locally based, watershed conservation planning and restoration efforts for steelhead in the Central California, South-Central, and Southern California ESUs (NMFS, 1997d). These documents are available upon request (see ADDRESSES).

Despite numerous efforts to halt and reverse declining trends in west coast steelhead, it is clear that the status of many native, naturally-reproducing populations has continued to deteriorate. NMFS therefore believes it highly likely that past efforts and programs to add ress the conservation needs of these stocks are in ad equate, including efforts to reduce mortalities and improve the survival of these stocks through all stages of their life cycle. Important factors include the loss of habitat, continued decline in the productivity of freshwater habitat for a wide variety of reasons, significant potential negative impacts from interactions with hatchery stocks, overfishing, and natural environmental variability.

NMFS recognizes that many of the ongoing Federal, state, and local protective efforts are likely to promote the conservation of steelhead and other salmonids. However, NMFS has also determined that, collectively, these efforts are not sufficient to achieve longterm conservation and recovery of steelhead at the scale of individual ESUs. There have been significant improvements in migration conditions
in the Columbia River Basin as a result of NMFS' 1995 Biological Opinion on the operation of the Federal hydropower system. However, mainstem passage conditions are only one of many threats facing the species. NMFS believes most existing efforts lack some of the critical elements needed to provide a high degree of certainty that the efforts will be successful.

The best available scientific information on the biological status of the species supports a final listing of five steelhead ESUs under the ESA at this time. NMFS concludes that existing protective efforts are in adequate to alter the proposed determination of threatened or endangered for these five steelhead ESUs.

Status of Steelhead ESUs

Section 3 of the ESA defines the term "endangered species" as "any species which is in danger of extinction throughout all or a significant portion of its range." The term "threatened species" is defined as "any species which is likely to become an endangered species with in the foreseeable future throughout all or a significant portion of its range." Thompson (1991) suggested that conventional rules of thumb, an alytical approaches, and simulations may all be useful in making this determination. In previous status reviews (e.g., Weitkamp et al., 1995), NMFS has identified a number of factors that should be considered in evaluating the level of risk faced by an ESU, including: (1) Absolute numbers of fish and their spatial and temporal distribution; (2) current abundance in relation to historical abundance and current carrying capacity of the habitat; (3) trends in abundance; (4) natural and human-influenced factors that cause variability in survival and abundance; (5) possible threats to genetic integrity (e.g., from strays or outplants from hatchery programs); and (6) recent events (e.g., a drought or changes in harvest management) that have predictable short-term consequences for abundance of the ESU.

During the coastwide status review for steelhead, NMFS evaluated both quantitative and qualitative in formation to determine whether any proposed ESU is threatened or endangered according to the ESA. The types of information used in these assessments are described below, followed by a summary of results for each ESU.

Quantitative Assessments

A significant component of NMFS, status determination was analyses of abundance trend data. Principal data
sources for these analyses were historical and recent run size estimates derived from dam and weir counts, stream surveys, and angler catch estimates. Of the 160 steelhead stocks on the west coast of the United States for which sufficient data existed, 118 (74 percent) exhibited declining trends in abundance, while the remaining 42 (26 percent) exhibited increasing trends in abundance. Sixty-five of the stock abundance trends analyzed were statistically significant. Of these, 57 (88 percent) indicated declining trends in abundance and the remaining 8 (12 percent) indicated increasing trends in abundance. NMFS' analysis assumes that catch trends reflect trends in overall population abundance. NMFS recognizes there are many problems with this assumption and, therefore, the index may not represent trends in the total population in a river basin. However, angler catch is the only information available for many steelhead populations, and changes in catch still provide a useful indication of trends in total population abundance. Furthermore, where alternate abundance data existed, NMFS used them in its risk analyses.

Analyses of steelhead abundance indicate that across the species' range, the majority of naturally reproducing steelhead stocks have exhibited longterm declines in abundance. The severity of declines in abundance tends to vary by geographic region. Based on historical and recent abundance estimates, stocks in the southern extent of the coastal steelhead range (i.e., California's Central Valley, SouthCentral and Southern California ESUs) appear to have declined significantly, with widespread stock extirpations. In several areas, a lack of accurate run size and trend data make estimating abundance difficult.

Qualitative Assessments

Although numerous studies have attempted to classify the status of steelhead populations on the west coast of the United States, problems exist in applying results of these studies to NMFS' ESA evaluations. A significant problem is that the definition of "stock" or "population" varies considerably in scale among studies, and sometimes among regions with in a study. In several studies, identified units range in size from large river basins, to minor coastal streams and tributaries. Only two studies (Neh1sen et al., 1991; Higgins et al., 1992) used categories that relate to the ESA "threatened" or "endangered" status. Even these studies applied their own interpretations of these terms to individual stocks, not to broader
geographic units such as those discussed here. Another significant problem in applying previously published studies to this evaluation is the manner in which stocks or populations were selected to be included in the review. Several studies did not evaluate stocks that were not perceived to be at risk, making it difficult to determine the proportion of stocks they considered to be at risk in any given area.

Nehlsen et al. (1991) considered salmon and steelhead stocks throughout Washington, Idaho, Oregon, and California and enumerated all stocks they found to be extinct or at risk of extinction. They considered 23 steelhead stocks to be extinct, one possibly extinct, 27 at high risk of extinction, 18 at moderate risk of extinction, and 30 of special concern. Steelhead stocks that do not appear in their summary were either not at risk of extinction or there was insufficient in formation to classify them.
Washington Department of Fisheries et al. (1993) categorized all salmon and steelhead stocks in Washington on the basis of stock origin ("native," "nonnative," "mixed," or "unknown"), production type ("wild," "composite," or "unknown") and status ("healthy," "depressed," "critical," or "unknown'’). Of the 141 steelhead stocks identified in Washington, 36 were classified as healthy, 44 as critical, 10 as depressed, and 60 as unknown.

The following summaries draw on these quantitative and qualitative assessments to describe NMFS' conclusions regarding the status of each steelhead ESU. Furthermore, in these summaries, NMFS identifies those hatchery populations that are essential for the recovery of the ESU. An "essential" hatchery population is one that is currently vital to the success of recovery efforts for the ESU within which it occurs. In evaluating the importance of hatchery stocks for recovery, NMFS considers the relationship between the natural and hatchery populations and the degree of risk faced by the natural populations. A more detailed discussion of the status of these steelhead ESUs is presented in the 'Status Review Update for West Coast Steelhead from Washington, Idaho, Oregon, and California" (NMFS, 1997a). Copies of this document are available upon request (see ADDRESSES).

(1) Central California Coast ESU

Only two estimates of historical (pre1960s) abundance specific to this ESU are available: an average of about 500 adults in Waddell Creek in the 1930s and early 1940s (Shapovalov \& Taft,
1954), and an estimate of 20,000 steelhead in the San Lorenzo River before 1965 (Johnson, 1964). In the mid1960s, CDFG (1965) estimated 94,000 steelhead spawning in many rivers of this ESU, including 50,000 and 19,000 fish in the Russian and San Lorenzo Rivers, respectively. NMFS has comparable recent estimates for only the Russian (approximately 7,000 fish) and San Lorenzo (approximately 500 fish) Rivers. These estimates indicate that recent total abundance of steelhead in these two rivers is less than 15 percent of their abundance 30 years ago. Additional recent estimates for several other streams (Lagunitas Creek, Waddell Creek, Scott Creek, San Vincente Creek, Soquel Creek, and Aptos Creek) indicate individual run sizes are 500 fish or less. No recent estimates of total run size exist for this ESU. McEwan and Jackson (1996) noted that steelhead in most tributary streams in San Francisco and San Pablo Bays have been extirpated.

Additional in formation received in response to the proposed rule suggests that steelhead in this ESU may be exhibiting slight increases in abundance in recent years (NMFS, 1997a). Updated abundance data for the Russian and San Lorenzo Rivers indicate increasing run sizes over the past $2-3$ years, but it is not possible to distinguish the relative proportions of hatchery and natural steelhead in those estimates. Additional data from a few smaller streams in the region also show general increases in juvenile abundance in recent years.

Presence/absence data available since the proposed rule show that in a subset of streams sampled in the central California coast region, most contain steelhead. This is in contrast to the pattern exhibited by coho, which are absent from many of those same streams. Those streams in which steelhead were not present are concentrated in the highly urbanized San Francisco Bay region. While there are several concerns with these data (e.g., uncertainty regarding origin of juveniles), NMFS believes it is generally a positive indicator that there is a relatively broad distribution of steelhead in smaller streams throughout the region.

In evaluating trends in productivity throughout the ESU, NMFS considered difficulties arising from the inability to separate out the effects of hatchery productivity from overall run size increases in recent years. The Russian and San Lorenzo Rivers have the highest steelhead productivity in the ESU, but it is likely that many of the fish are of hatchery origin (estimates in both streams range from 40-60 percent over the last 5 years).

After considering available information, NMFS concludes that steelhead in the Central California Coast ESU warrant listing as a threatened species-a change from its proposed status as endangered. Factors contributing to the present conclusion include new evidence for greater absolute numbers of steelhead in the larger rivers of the central California coast region and the possible in creases in juvenile abundance over the last few years. In addition, the broad geographic distribution of steelhead throughout the region, as indicated by the presence/ absence data, also convinced NMFS this ESU does not warrant an endangered listing at this time.

Hatchery Populations Essential for the Recovery of the ESU

NMFS concludes that the Big Creek and San Lorenzo River Hatchery stocks are not essential for recovery of this ESU. Current information indicates sufficient naturally spawning populations exist for recovery efforts. The significant degree of hatchery contribution to steelhead runs in the San Lorenzo River may require the use of this stock in recovery efforts in the future.

(2) South-Central California Coast ESU

Historical estimates of steelhead abundance are available for a few rivers in this region. In the mid-1960s, CDFG (1965) estimated a total of 27,750 steelhead spawning in this ESU. Recent estimates for those rivers where comparative abundance information is available show a substantial decline during the past 30 years. In contrast to the CDFG (1965) estimates, McEwan and Jackson (1996) reported runs ranging from 1,000 to 2,000 in the Pajaro River in the early 1960s, and Snider (1983) estimated escapement of about 3,200 steelhead for the Carmel River for the 1964-1975 period. No recent estimates for total run size exist for this ESU; however, recent run-size estimates are available for five rivers (Pajaro River, Salinas River, Carmel River, Little Sur River, and Big Sur River). The total of these estimates is less than 500 fish, compared with a total of 4,750 for the same rivers in 1965, which suggests a substantial decline for the entire ESU from 1965 levels.

Updated data on abundance and trends for steelhead in this ESU indicate slight increases in recent years. New data from the Carmel River show increases in adult and juvenile steelhead abundance over the past 2 to 5 years.

After weighing this new in formation, NMFS concludes that steelhead in the

South-Central California Coast ESU warrant listing as a threatened speciesa change from its proposed status as endangered. Reasons for this slightly more optimistic assessment include new abundance data indicating recent increases in adult and juvenile abundance in the Carmel River and several small coastal tributaries in the southern part of the region. In addition, risks to gen etic in tegrity to steelhead in this ESU are relatively low because of low levels of hatchery stocking. (There are a few scattered reports of rainbow trout introductions from rivers outside the central California coast region.)
Hatchery Populations Essential for the Recovery of the ESU
NMFS concludes that the Whale Rock Reservoir Hatchery stock is not essential for recovery of this ESU. Current information indicates sufficient naturally spawning populations exist for recovery efforts. If in the future the status of steelhead in this ESU worsens, this stock may become essential for recovery efforts.

(3) Southern California ESU

Historically, steelhead occurred naturally south into Baja California. Estimates of historical (pre-1960s) abundance for several rivers in this ESU are available: Santa Ynez River, before 1950, 20,000 to 30,000 (Shapovalov \& Taft, 1954; CDFG, 1982; Reavis, 1991; Titus et al., in press); Ventura River, pre-1960, 4,000 to 6,000 (Clanton \& Jarvis, 1946; CDFG, 1982; AFS, 1991; Hunt et al., 1992; Henke, 1994; Titus et al., in press); Santa Clara River, pre1960, 7,000 to 9,000 (Moore, 1980; Comstock, 1992; Henke, 1994); Malibu Creek, pre-1960, 1,000 (Nehlsen et al., 1991; Reavis, 1991). In the mid-1960s, CDFG (1965) estimated steelhead spawning populations for smaller tributaries in San Luis Obispo County as 20,000 fish; however, no estimates for streams further south were provided.

The present estimated total run size for 6 streams (Santa Ynez River, Gaviota Creek, Ventura River, Matilija Creek, Santa Clara River, Malibu Creek) in this ESU are summarized in Titus et al., and each is less than 200 adults. Titus et al. concluded that populations have been extirpated from all streams south of Ventura County, with the exception of Malibu Creek in Los Angeles County. While there are no comprehen sive stream surveys conducted for steelhead trout occurring in streams south of Malibu Creek, there continue to be anecdotal observations of steelhead in rivers as far south as the Santa Margarita River, San Diego County, in years of substantial rainfall (Barnhart, 1986,

Higgins, 1991, McEwan \& Jackson, 1996). Titus et al. (in press) cited extensive loss of steelhead habitat due to water development, including impassable dams and dewatering.

No time series of data are available within this ESU to estimate population trends. Titus et al. summarized information for steelhead populations based on historical and recent survey information. Of the populations south of San Francisco Bay (including part of the Central California Coast ESU) for which past and recent information was available, 20 percent had no discernable change, 45 percent had declined, and 35 percent were extinct. Percentages for the counties comprising this ESU show a very high percentage of declining and extinct populations.

The sustainability of steelhead populations in the Southern California ESU continues to be a major concern, evidenced by consistently low abundance estimates in all river basins. There are fairly good qualitative accounts of historical abundances of steelhead in this ESU, and recent adult counts are severely depressed relative to the past. The few new data that have become available since the proposed rule do not suggest an y consistent pattern of change in steelhead abundance in this region.

NMFS concludes that the Southern California ESU is, as proposed, endangered. The primary reasons for concern about steelhead in this ESU are the widespread, dramatic declines in abundance relative to historical levels. Low abundance leads to increased risks due to demographic and genetic variability in small populations. In addition, NMFS believes the restricted spatial distribution of remaining populations places the ESU as a whole at risk because of reduced opportunities for recolonization of streams suffering local population extinctions. The main sources of the extensive population declines in steelhead in this ESU are similar to those described in the SouthCentral California Coast ESU. In addition, because of fire suppression practiced throughout the area, NMFS believes the effects of increased fire intensity and duration is likely to be a significant risk to the steelhead in this ESU.
Hatchery Populations Essential for the Recovery of the ESU

No hatchery production of steelhead currently occurs in this ESU.
(4) Upper Colum bia River Basin ESU

Estimates of historical (pre-1960s) abundance specific to this ESU are available from fish counts at dams.

Counts at Rock Island Dam from 1933 to 1959 averaged 2,600 to 3,700 , suggesting a pre-fishery run size in excess of 5,000 adults for tributaries above Rock Island Dam (Chapman et al., 1994). Runs may already have been depressed by lower Columbia River fisheries at this time. Recent five-year (1989-93) average natural escapements are available for two stock units: Wenatchee River, 800 steelhead, and Methow and Okanogan Rivers, 450 steelhead. Recent average total escapements for these stocks were 2,500 and 2,400 , respectively. Average total run size at Priest Rapids Dam for the same period was approximately 9,600 adult steelhead.

Trends in total (natural and hatchery) adult escapement are available for the Wenatchee River (2.6 percent annual increase, 1962-1993) and the Methow and Okanogan Rivers combined (12 percent annual decline, 1982-93). These two stocks represent most of the escapement to natural spawning habitat within the range of the ESU; the Entiat River also has a small spawning run (WDF et al., 1993).

Steelhead in the Upper Columbia River ESU continue to exhibit low abundances, both in absolute numbers and in relation to numbers of hatchery fish throughout the region. Data from this ESU include separate total and natural run sizes, allowing the separation of hatchery and natural fish abundance estimates for at least some areas in some years. Review of the most recent data indicates that natural steelhead abundance has declined or remained low and relatively constant in the major river basins in this ESU (Wenatchee, Methow, Okanogan) since the early 1990s. Estimates of natural production of steelhead in the ESU are well below replacement (approximately 0.3:1 adult replacement ratios estimated in the Wenatchee and Entiat Rivers.) These data indicate that natural steelhead populations in the Upper Columbia River Basin are not selfsustaining at the present time. The BRT also discussed anecdotal evidence that resident rainbow trout, which are in numerous streams throughout the region, contribute to anadromous run abundance. This phenomenon would reduce estimates of the natural steelhead replacement ratio.

The proportion of hatchery fish is high in these rivers ($65-80$ percent). In addition, substantial genetic mixing of populations with in this ESU has occurred, both historically (as a result of the Grand Coulee Fish Maintenance Project) and more recently as a result of the Wells Hatchery program. Extensive mixing of hatchery stocks throughout this ESU, along with the reduced
opportunity for mainten ance of locally adapted genetic lineages among different drainages, represents a considerable threat to steelhead in this region.

Based on the considerations above, NMFS concludes the Upper Columbia ESU is endangered, as proposed. In their comments on the proposed rule, Washington Department of Fish and Wildlife states its general concurrence with this conclusion (WDFW, 1997). The primary cause for concern for steelhead in this ESU are the extremely low estimates of adult replacement ratios. The dramatic declines in natural run sizes and the inability of naturally spawning steelhead adults to replace themselves suggest that if present trends continue, this ESU will not be viable. Habitat degradation, juvenile and adult mortality in the hydrosystem, and un favorable en vironmental conditions in both marine and freshwater habitats have contributed to the declines and represent risk factors for the future. Harvest in lower river fisheries and genetic homogenization from composite broodstock collections are other factors that may contribute significantly to risk to the Upper Columbia ESU.
Hatchery Populations Essential for the Recovery of the ESU

NMFS concludes the Wells Hatchery stock including progeny is essential for recovery efforts in this ESU, and therefore should be listed. This conclusion is primarily based on very low estimates of the recruits per spawner ratio, which indicate that productivity of naturally spawning steelhead in this ESU is far below the replacement rate.

(5) Snake River Basin ESU

Prior to Ice Harbor Dam completion in 1962, there were no counts of Snake River Basin naturally spawned steelhead. However, Lewiston Dam counts during the period from 1949 to 1971 averaged about 40,000 steelhead per year in the Clearwater River, while the Ice Harbor Dam count in 1962 was 108,000 , and averaged approximately 70,000 until 1970 .

All steelhead in the Snake River Basin are summer steelhead, which for management purposes are divided into "A-run" and "B-run" steelhead. Each has several life history differences including spawning size, run timing, and habitat type. Although there is little information for most stocks with in this ESU, there are recent run-size and/or escapement estimates for several stocks. Total recent-year average (1990-1994) escapement above Lower Granite Dam was approximately 71,000 , with a
natural component of $9,400(7,000 \mathrm{~A}-$ run and 2,400 B-run). Run size estimates are available for only a few tributaries within the ESU, all with small populations.

Snake River Basin steelhead recently have suffered severe declines in abundance relative to historical levels. Low run sizes over the last ten years are most pronounced for naturally produced steelhead. In addition, average parr densities recently have dropped for both A-and B-run steelhead, resulting in many river basins in this region being characterized as critically underseeded relative to the carrying capacity of streams. Declines in abundance have been particularly serious for B-run steelhead, increasing the risk that some of the life history diversity may be lost from steelhead in this ESU. Recently obtained information indicates a record low smolt survival and ocean production for Snake River steelhead in 1992-94.

The proportion of hatchery steelhead in the Snake River Basin is very high for the ESU as a whole (over 80 percent hatchery fish passing Lower Granite Dam), yet hatchery fish are rare to nonexistent in several drainages in the region. In places where hatchery release sites are interspersed with naturallyspawning reaches, the potential for straying and introgression is high, resulting in a risk to the genetic integrity of some steelhead populations in this ESU. Hatchery/natural interactions that do occur for Snake River steelhead are of particular concern because many of the hatcheries use composite stocks that have been domesticated over a long period of time.

Based on this information, NMFS concludes that the Snake River ESU is threatened, as proposed. The primary indicator of risk to the ESU is declining abundance throughout the region. Demographic and genetic risks from small population sizes are likely to be important, because few natural steelhead are spread over a wide geographic area. In their comments on the proposed rule, the State of Id aho concurred with NMFS' assessment that steelhead stocks in this ESU are imperiled (State of Idaho, 1997). Steelhead in this ESU face risks similar to those in the Upper Columbia River ESU: Widespread habitat blockage from hydrosystem management and potentially deleterious genetic effects from straying and introgression from hatchery fish. The reduction in habitat capacity resulting from large dams such as the Hells Canyon dam complex and Dworshak Dam is somewhat mitigated by several river basins with fairly good production of natural steelhead runs.

Hatchery Populations Essential for the Recovery of the ESU

NMFS concludes that the hatchery stocks considered part of this ESU (Dworshak NFH stock, Imn aha Hatchery stock, and Oxbow Hatchery stock) are not currently essential for the recovery of the ESU. The Dworshak NFH stock and Oxbow Hatchery stock both represent the remnants of population(s) of steelhead that have been excluded from their historical spawning and rearing habitat by impassable dams. These stocks represent the only legacy for the reintroduction of native populations in to these areas. If such reintroduction programs are undertaken, these stocks will likely be essential to the recovery of steelhead in these areas. Currently, naturally spawning steelhead populations in the Imnaha River are relatively healthy; however, if naturally spawning populations decline considerably in the future, this stock may become essential for recovery.

Listing Determination

Section 3 of the ESA defines an endangered species as any species in danger of extinction throughout all or a significant portion of its range, and a threatened species as any species likely to become an endangered species within the foreseeable future throughout all or a significant portion of its range. Section 4(b)(1) of the ESA requires that the listing determination be based solely on the best scientific and commercial data available, after conducting a review of the status of the species and after taking into account those efforts, if any, being made to protect such species.

Based on results from its coastwide assessment, NMFS has determined that on the west coast of the United States, there are fifteen ESUs of steelhead that constitute "species" under the ESA.
NMFS has determined that two ESUs of steelhead are currently endangered (Southern California and Upper Columbia River ESUs) and three ESUs are currently threatened (Central California Coast, South-Central California Coast, and Snake River Basin ESUs). The geographic boundaries (i.e., the watersheds within which the members of the ESU spend their freshwater residence) for these ESUs are described under "Summary of ESUs Determinations."

NMFS has examined the relationship between hatchery and natural populations of steelhead in these ESUs and has assessed whether any hatchery populations are essential for their recovery. While NMFS has concluded that several hatchery stocks are part of the ESU in which they occur, only the

Wells Hatchery stock in the Upper Columbia River ESU is deemed essential for recovery at this time and therefore, included in this listing. Aside from the Wells Hatchery stock, only naturally spawned populations of steelhead (and their progeny) which are part of the biological ESU residing below longterm, naturally and man-made impassable barriers (i.e., dams) are listed in all five ESUs identified as threatened or endangered.

In some cases unlisted hatchery fish that are part of the ESU may not return to the hatchery but instead spawn naturally. In that event, the progeny of that naturally spawning hatchery fish is considered listed. This final rule includes in the listing determination those naturally spawned fish that have at least one parent that was derived from current ESU hatchery broodstock. In some cases these fish may be hybrids; that is, they may have one parent that is part of the biological ESU and one that is not. By listing these fish and extending to them the protections of the ESA, NMFS does not mean to imply that these hybrids are suitable for use in conservation. That decision would need to be made on a case-by-case basis.

NMFS' 'Interim Policy on Artificial Propagation of Pacific Salmon Under the Endangered Species Act" (April 5, 1993, 58 FR 17573) provides guidance on the treatment of hatchery stocks in the event of a listing. Under this policy, "progeny of fish from the listed species that are propagated artificially are considered part of the listed species and are protected under the ESA." In accordance with this interim NMFS policy, all progeny of listed steelhead are themselves considered part of the listed species. Such progeny include those resulting from the mating of listed steelhead with non-listed hatchery stocks.

At this time, NMFS is listing only anadromous life forms of O. mykiss.
NMFS concludes the Wells Hatchery stock including progeny is essential for recovery efforts in this ESU, and therefore should be listed. This conclusion is primarily based on very low estimates of the recruits per spawner ratio, which indicate that productivity of naturally spawning steelhead in this ESU is far below the replacement rate. It is possible that in some years returns to this hatchery may exceed the number of returns necessary to produce the number of offspring NMFS considers advisable for release into this ESU. This surplus may therefore be, by definition, not essential for recovery efforts. In that case, hatchery operators may be faced with a choice between destroying the excess
returns or using them for some other purpose. In making its decision today to include the Wells Hatchery stock as part of the listed population, NMFS does not intend to foreclose the possibility of using such excess returns to provide limited harvest opportunities consistent with the conservation of this ESU.

Prohibitions and Protective Measures

Section 9 of the ESA prohibits certain activities that directly or indirectly affect endangered species. These prohibitions apply to all individuals, organizations, and agencies subject to U.S. jurisdiction. Section 9 prohibitions apply automatically to end angered species; as described below, this is not the case for threatened species.

Section 4(d) of the ESA directs the Secretary to implement regulations "to provide for the conservation of [threatened] species," which may include extending any or all of the prohibitions of section 9 to threatened species. Section 9(a)(1)(g) also prohibits violations of protective regulations for threatened species implemented under section 4(d). NMFS will issue shortly protective regulations pursuant to section 4(d) for the Central California Coast, South-Central California Coast, and Snake River ESUs.

Section 7(a)(4) of the ESA requires that Federal agencies consult with NMFS on any actions likely to jeopardize the continued existence of a species proposed for listing and on actions likely to result in the destruction or adverse modification of proposed critical habitat. For listed species, section 7(a)(2) requires Federal agencies to ensure that activities they authorize, fund, or conduct are not likely to jeopardize the continued existence of a listed species or to destroy or adversely modify its critical habitat. If a Federal action may affect a listed species or its critical habitat, the responsible Federal agency must enter into consultation with NMFS.

Examples of Federal actions likely to affect steelhead in the listed ESUs include authorized land management activities of the U.S. Forest Service and U.S. Bureau of Land Management, as well as operation of hydroelectric and storage projects of the Bureau of Reclamation and U.S. Army Corps of Engineers (COE). Such activities include timber sales and harvest, hydroelectric power generation, and flood control. Federal actions, including the COE section 404 permitting activities under the CWA, COE permitting activities under the River and Harbors Act, National Pollution Discharge Elimination System permits issued by the Environmental Protection Agency,
highway projects authorized by the Federal Highway Administration, Federal Energy Regulatory Commission licenses for non-Federal development and operation of hydropower, and Federal salmon hatcheries, may also require consultation. These actions will likely be subject to ESA section 7 consultation requirements that may result in conditions designed to achieve the intended purpose of the project and avoid or reduce impacts to steelhead and its habitat within the range of the listed ESU. It is important to note that the current listing applies only to the anadromous form of O. mykiss; therefore, section 7 consultations will not address resident forms of O. mykiss at this time.

There are likely to be Federal actions ongoing in the range of the listed ESUs at the time these listings become effective. Therefore, NMFS will review all on going actions that may affect the listed species with Federal agencies and will complete formal or informal consultations, where requested or necessary, for such actions pursuant to ESA section 7(a)(2).

Sections $10(a)(1)(A)$ and $10(a)(1)(B)$ of the ESA provide NMFS with authority to grant exceptions to the ESA's "taking" prohibitions (see regulations at 50 CFR 222.22 through 222.24). Section 10(a)(1)(A) scientific research and enhancement permits may be issued to entities (Federal and non-Federal) conducting research that involves a directed take of listed species.

NMFS has issued section 10(a)(1)(A) research or enhancement of survival permits for other listed species (e.g., Snake River chinook salmon and Sacramento River winter-run chinook salmon) for a number of activities, including trapping and tagging, electroshocking to determine population presence and abundance, removal of fish from irrigation ditches, and collection of adult fish for artificial propagation programs. NMFS is aware of several sampling efforts for steelhead in the listed ESUs, including efforts by Federal and state fishery management agencies. These and other research efforts could provide critical information regarding steelhead distribution and population abundance.

Section $10(\mathrm{a})(1)(\mathrm{B})$ incidental take permits may be issued to non-Federal entities performing activities that may incidentally take listed species. The types of activities potentially requiring a section $10(\mathrm{a})(1)(\mathrm{B})$ incidental take permit include the operation and release of artificially propagated fish by state or privately operated and funded hatcheries, state or university research on species other than steelhead, not
receiving Federal authorization or funding, the implementation of state fishing regulations, and timber harvest activities on non-Federal lands.

Take Guidance

NMFS and the FWS published in the Federal Register on July 1, 1994 (59 FR 34272), a policy that NMFS shall identify, to the maximum extent practicable at the time a species is listed, those activities that would or would not constitute a violation of section 9 of the ESA. The intent of this policy is to increase public awareness of the effect of a listing on proposed and on -going activities within the species' range. NMFS believes that, based on the best available in formation, the following actions will not result in a violation of section 9: (1) Possession of steelhead from the listed ESUs acquired law fully by permit issued by NMFS pursuant to section 10 of the ESA, or by the terms of an incidental take statement pursuant to section 7 of the ESA; and (2) Federally funded or approved projects that in volve activities such as silviculture, grazing, mining, road construction, dam construction and operation, discharge of fill material, stream channelization or diversion for which a section 7 consultation has been completed, and when such an activity is conducted in accordance with any terms and conditions provided by NMFS in an incidental take statement accompanied by a biological opinion pursuant to section 7 of the ESA.

Activities that NMFS believes could potentially harm, injure or kill steelhead in the endangered listed ESUs and result in a violation of section 9 include, but are not limited to: (1) Land-use activities that adversely affect steelhead habitat in this ESU (e.g., logging, grazing, farming, road construction in riparian areas, and areas susceptible to mass wasting and surface erosion); (2) Destruction or alteration of steelhead habitat in the listed ESUs, such as removal of large woody debris and "sinker logs'" or riparian shade canopy, dred ging, discharge of fill material, draining, ditching, diverting, blocking, or altering stream channels or surface or ground water flow; (3) discharges or dumping of toxic chemicals or other pollutants (e.g., sewage, oil, gasoline) into waters or riparian areas supporting listed steelhead; (4) violation of discharge permits; (5) pesticide applications; (6) interstate and foreign commerce of steelhead from the listed ESUs and import/export of steelhead from listed ESUs without an ESA permit, unless the fish were harvested pursuant to legal exception; (7) collecting or handling of steelhead from
listed ESUs. Permits to conduct these activities are available for purposes of scientific research or to enhance the propagation or survival of the species; and (8) introduction of non-native species likely to prey on steelhead in these ESUs or displace them from their habitat. These lists are not exhaustive. They are intended to provide some examples of the types of activities that might or might not be considered by NMFS as constituting a take of west coast steelhead under the ESA and its regulations. Questions regarding whether specific activities will constitute a violation of this rule, and general inquiries regarding prohibitions and permits, should be directed to NMFS (see ADDRESSES).

Effective Date of Final Listing

Given the cultural, scientific, and recreational importance of th is species, and the broad geographic range of these listings, NMFS recognizes that numerous parties may be affected by this listing. Therefore, to permit an orderly implementation of the consultation requirements and take prohibitions associated with this action, this final listing will take effect October 17, 1997.

Conservation Measures

Conservation measures provided to species listed as endangered or threatened under the ESA include recognition, recovery actions, Federal agency consultation requirements, and prohibitions on taking. Recognition through listing promotes public awareness and conservation actions by Federal, state, and local agencies, private organizations, and individuals.

Several conservation efforts are underway that may help reverse the decline of west coast steelh ead and other salmonids. These include the Northwest Forest Plan (on Federal lands with in the range of the northern spotted owl), PACFISH (on all additional Federal lands with anadromous salmonid populations), Oregon's Coastal Salmon Restoration Initiative, Washington's Wild Stock Restoration Initiative, overlapping protections from California's listing of coho salmon stocks in California under both the Federal and State ESAs, implementation of California's Steelhead Management Plan, and NMFS' Proposed Recovery Plan for Snake River Salmon. NMFS is very encouraged by a number of these efforts and believes they have or may constitute significant strides in the efforts in the region to develop a scientifically well grounded conservation plan for these stocks. Other efforts, such as the Middle

Columbia River Habitat Conservation Plan, are at various stages of development, but show promise of ameliorating risks facing listed steelhead ESUs. NMFS intends to support and work closely with these efforts-staff and resources permittingin the belief that they can play an important role in the recovery planning process.

Based on information presented in this final rule, general conservation measures that could be implemented to help conserve the species are listed below. This list does not constitute NMFS' interpretation of a recovery plan under section 4(f) of the ESA.

1. Measures could be taken to promote land management practices that protect and restore steelhead habitat. Land management practices affecting steelhead habitat include timber harvest, road building, agriculture, livestock grazing, and urban development.
2. Evaluation of existing harvest regulation s could identify any changes necessary to protect steelhead populations.
3. Artificial propagation programs could be required to incorporate practices that minimize impacts upon natural populations of steelhead.
4. Efforts could be made to ensure that existing and proposed dam facilities are designed and operated in a manner that will less adversely affect steelhead populations.
5. Water diversion s could have adequate headgate and staff gauge structures installed to control and monitor water usage accurately. Water rights could be enforced to prevent irrigators from exceeding the amount of water to which they are legally entitled.
6. Irrigation diversions affecting downstream migrating steelhead trout could be screened. A thorough review of the impact of irrigation diversions on steelhead could be conducted.

NMFS recognizes that, to be successful, protective regulations and recovery programs for steelhead will need to be developed in the context of conserving aquatic ecosystem health. NMFS intends that Federal lands and Federal activities play a primary role in preserving listed populations and the ecosystems upon which they depend. However, through out the range of all five ESUs listed, steelhead habitat occurs and can be affected by activities on state, tribal, or private land. Agricultural, timber, and urban management activities on nonFederal land could and should be conducted in a manner that minimizes adverse effects to steelhead habitat.

NMFS encourages non federal landowners to assess the impacts of their actions on potentially threatened or endangered salmonids. In particular, NMFS encourages the establishment of watershed partnerships to promote conservation in accordance with ecosystem principles. These partnerships will be successful only if state, tribal, and local governments, landowner representatives, and Federal and nonFederal biologists all participate and share the goal of restoring steelhead to the watersheds.

Critical Habitat

Section 4(b)(6)(C) of the ESA requires that, to the extent prudent, critical habitat be designated concurrently with the listing of a species unless such critical habitat is not determinable at that time. While NMFS has completed its initial analysis of the biological status of steelhead populations from Washington, Oregon, Idaho, and California, it has not completed the analyses necessary for designating critical habitat. Therefore, critical habitat is not now determinable for these five listed steelhead ESUs. NMFS intends to develop and publish a critical habitat determination for west coast steelhead within one year from the publication of this notice.

Classification

The 1982 amendments to the ESA, in section 4(b)(1)(A), restrict the information that may be considered when assessing species for listing. Based on this limitation of criteria for a listing decision and the opinion in Pacific Legal Foundation v. Andrus, 675 F. 2d 825 (6th Cir. 1981), NMFS has categorically excluded all ESA listing actions from environmental assessment requirements of the National Environmental Policy Act (NEPA) under NOAA Administrative Order 216-6.

As noted in Conference Report on the 1982 amendments to the ESA, economic considerations have no relevance to determinations regarding the status of species. Therefore, the analytical requirements of the Regulatory Flexibility Act (RFA), 5 U.S.C. 601 et seq., are not required. Similarly, th is final rule is exempt from review under E.O. 12866.

At this time NMFS is not promulgating protective regulations pursuant to ESA section 4(d). In the future, prior to finalizing its 4(d) regulations for the threatened ESUs, NMFS will comply with all relevant NEPA and RFA requirements.

References

A complete list of all references cited herein is available upon request (see ADDRESSES).

List of Subjects

50 CFR Part 222
Administrative practice and procedure, Endangered and threatened species, Exports, Imports, Reporting and recordkeeping requirements, Transportation.

50 CFR Part 227

Endangered and threatened species, Exports, Imports, Marine mammals, Transportation.

$$
\text { Dated: August 11, } 1997 .
$$

Rolland A. Schmitten,

A ssistant Adm in istrator for Fisheries, National Marine Fisheries Service.

For the reasons set forth in the preamble, 50 CFR parts 222 and 227 are amended as follows:

PART 222—ENDANGERED FISH OR WILDLIFE

1. The authority citation of part 222 continues to read as follows:

Authority: 16 U.S.C. 1531-1543; subpart D, § 222.32 also issued under 16 U.S.C. 1361 et seq.
2. In § 222.23, paragraph (a) is amended by revising the second sentence to read as follows:
§ 222.23 Permits for scientific purposes or to enhance the propagation or survival of the affected endangered species.
(a) * * * The species listed as endangered under either the Endangered Species Conservation Act of 1969 or the Endangered Species Act of 1973 and currently under the jurisdiction of the Secretary of Commerce are: Shortnose sturgeon (A cipenser brevirostrum); Totoaba (Cynoscian macdonaldi), Snake River sockeye salmon (Oncorhynchusnerka), Umpqua River cutthroat trout (Oncorhynchus clarki clarki); Southern California steelhead (Oncorhynchus $m y k i s s$), which includes all naturally spawned populations of steelhead (and their progeny) in streams from the Santa Maria River, San Luis Obispo County, California (inclusive) to Malibu Creek, Los Angeles County, California (inclusive); Upper Columbia River steelhead (Oncorhynchus mykiss), which includes the Wells Hatchery stock and all naturally spawned populations of steelhead (and their progeny) in streams in the Columbia River Basin upstream from the Yakima River, Washington, to the United StatesCanada Border; Sacramento River
winter-run chinook salmon
(Oncorhynchus tshawytscha); Western North Pacific (Korean) gray whale (Eschrichtius robustus), Blue whale (Balaenoptera musculus), Humpback whale (Megaptera novaeangliae), Bowhead whale (Balaenamysticetus), Right whales (Eubalaena spp.), Fin or finback whale (Balaenoptera physalus), Sei whale (Balaenoptera borealis), Sperm whale (Physeter catodon); Cochito (Phocoena Sinus), Chinese river dolphin (Lipotes vexillifer); Indus River dolphin (Platanista minor); Caribean monk seal (Monachus tropicalis) Hawaiian monk seal (Monachus schauinslandi); Mediterranean monk seal (Monachus monachus); Saimaa seal (Phoca hispida saim ensis); Steller sea lion (Eumetopias jubatus), western population, which consists of Steller sea lions from breeding colonies located west of $144^{\circ} \mathrm{W}$. long.; Leath erback sea turtle (Derm ochelys coriacea), Pacific hawksbill sea turtle (Eretm ochelys im bricata bissa), Atlantic hawksbill sea turtle (Eretmochelys im bricata im bricata), Atlantic ridley sea turtle (Lepidochelys kempii). ***

PART 227—THREATENED FISH AND WILDLIFE

1. The authority citation for part 227 continues to read as follows:
Authority: 16 U.S.C. 1531-1543; subpart B, § 227.12 also issued under 16 U.S.C. 1361 et seq.
2. In § 227.4, paragraph s (j), (k), and (l) are added to read as follows:

§ 227.4 Enumeration of threatened species.
 * * * * *

(j) Central California Coast steelhead (Oncorhynchus mykiss). Includes all naturally spawned populations of steelhead (and their progeny) in streams from the Russian River to Aptos Creek, Santa Cruz County, California (inclusive), and the drainages of San Francisco and San Pablo Bays eastward to the Napa River (inclusive), Napa County, California. Excludes the Sacramento-San Joaquin River Basin of the Central Valley of California;
(k) South-Central California Coast steelhead (Oncorhynchus mykiss). Includes all naturally spawned populations of steelhead (and their progeny) in streams from the Pajaro River (inclusive), located in Santa Cruz County, California, to (but not including) the Santa Maria River;
(1) Snake River Basin steelhead (Oncorhynchus mykiss). Includes all naturally spawned populations of steelhead (and their progeny) in streams
in the Snake River Basin of southeast Washington, northeast Oregon, and Idaho.
[FR Doc. 97-21661 Filed 8-13-97; 9:14 am] BILLING CODE 3510-22-P

DEPARTMENT OF COMMERCE

National Oceanic and Atmospheric Administration

50 CFR Part 679

[Docket No. 970613138-7138-01; I.D. 081397A]

Fisheries of the Exclusive Economic Zone Off Alaska; Scallop Fishery; Closure in Registration Area Q

agency: National Marine Fisheries Service (NMFS), National Oceanic and Atmospheric Administration (NOAA), Commerce.
ACtion: Closure.

SUMMARY: NMFS is closing the scallop fishery in Registration Area Q (Bering Sea). This action is necessary to prevent exceeding the Chionoecetes opilio (C. opilio) Tanner crab bycatch limit (CBL) in this area.

DATES: Effective 1200 hrs , Alaska local time (A.l.t.), August 13, 1997, until 2400 hrs, A.l.t., June 30, 1998.

FOR FURTHER INFORMATION CONTACT: Andrew Smoker, 907-586-7228.

SUPPLEMENTARY INFORMATION: The

 scallop fishery in the exclusive economic zone off Alaska is managed by NMFS according to the Fishery Management Plan for the Scallop Fishery off Alaska (FMP) prepared by the North Pacific Fishery Management Council under authority of the Magnuson-Stevens FisheryConservation and Management Act. Fishing for scallops is governed by regulations appearing at subpart F of 50 CFR part 600 and 50 CFR part 679 . In accordance with $\S 679.62(\mathrm{~b})$ the $1997 C$. opilio CBL for Registration Area Q was established by the Final 1997-98 Harvest Specifications of Scallops (62 FR 34182 , June 25,1997) as $172,000 C$. opilio crab.

The Administrator, Alaska Region, NMFS, has determined, in accordance with $\S 679.62(\mathrm{c})$, that the C. opilio CBL for Registration Area Q has been reached. Therefore, NMFS is prohibiting the taking and retention of scallops in Registration Area Q.

Classification

This action responds to the best available in formation recently obtained from the fishery. It must be implemented immediately to prevent overharvesting the 1997 CBL for Registration Area Q. Providing prior notice and an opportunity for public comment on this action is impracticable and contrary to public interest. The fleet has already taken the CBL for Registration Area Q. Further delay would only result in overharvest and disrupt the FMP's objective of allowing incidental catch to be retained throughout the year. NMFS finds for good cause that the implementation of this action cannot be delayed for 30 days. Accordingly, under 5 U.S.C. 553(d), a delay in the effective date is hereby waived.

This action is required by $\S 679.62$ and is exempt from review under E.O. 12866.

Authority: 16 U.S.C. 1801 et seq
Dated: August 13, 1997.

Gary C. Matlock,

Director, Office of Sustainable Fisheries, National Marine Fisheries Service.
[FR Doc. 97-21826 Filed 8-13-97; 2:40 pm]
BILLING CODE 3510-22-F

Endangered Species Act

Section 7 Consultation

BIOLOGICAL OPINION

U.S. Bureau of Reclamation operation and maintenance of the Cachuma Project on the Santa Ynez River in Santa Barbara County, California

Action Agency:
U.S. Bureau of Reclamation

Consultation Conducted By: National Marine Fisheries Service, Southwest Region

Date Issued: $9 / 11 / 00$

Mr. William H. Luce, Jr.
Bureau of Reclamation
South-Central California Area Office
2666 North Grove Industrial Drive, Suite 106
Fresno, California 93727-1551
Dear Mr. Luce:
Enclosed is the National Marine Fisheries Service's (NMFS) biological opinion for the U.S. Bureau of Reclamation's (BOR) operation and maintenance of Bradbury Dam (the Cachuma Project) on the Santa Ynez River in Santa Barbara County, California. The biological opinion addresses the effects of the proposed project on Southern California steelhead (Oncorhynchus mykiss) and its designated critical habitat in accordance with section 7 of the Endangered Species Act of 1973, as amended (16 U.S.C. 1531 et seq.).

The biological opinion concludes the BOR's proposed operation and maintenance of Bradbury Dam is not likely to jeopardize the continued existence of the endangered Southern California Evolutionarily Significant Unit (ESU) of steelhead known to be present in the Santa Ynez River, nor is it likely to adversely modify critical habitat. The NMFS believes the action is likely to result in take of steelhead, and therefore, an incidental take statement is attached to this biological opinion. Additionally, the following documents, referred to in the biological opinion, are also enclosed: 1) NMFS's June 23, 1998, letter authorizing emergency fish rescue, and 2) NMFS's July 19, 1999, letter regarding the use of the temporary road crossing. Mr. Darren Brumback is the lead Fishery Biologist for this project. He can be contacted at 562-980-4026 if you would like additional information.

Sincerely,
Rebecca Lent, Ph.D.
Regional Administrator

Enclosures (3)

cc: Jim Lecky, Darren Brumback, NMFS
David Young, BOR

Mr. William H. Luce, Jr.
Bureau of Reclamation
South-Central California Area Office
2666 North Grove Industrial Drive, Suite 106
Fresno, California 93727-1551
Dear Mr. Luce:
Enclosed is the National Marine Fisheries Service's (NMFS) biological opinion for the U.S. Bureau of Reclamation's (BOR) operation and maintenance of Bradbury Dam (the Cachuma Project) on the Santa Ynez River in Santa Barbara County, California. The biological opinion addresses the effects of the proposed project on Southern California steelhead (Oncorhynchus mykiss) and its designated critical habitat in accordance with section 7 of the Endangered Species Act of 1973, as amended (16 U.S.C. 1531 et seq.).

The biological opinion concludes the BOR's proposed operation and maintenance of Bradbury Dam is not likely to jeopardize the continued existence of the endangered Southern California Evolutionarily Significant Unit (ESU) of steelhead known to be present in the Santa Ynez River, nor is it likely to adversely modify critical habitat. The NMFS believes the action is likely to result in take of steelhead, and therefore, an incidental take statement is attached to this biological opinion. Additionally, the following documents, referred to in the biological opinion, are also enclosed: 1) NMFS's June 23, 1998, letter authorizing emergency fish rescue, and 2) NMFS's July 19, 1999, letter regarding the use of the temporary road crossing. Mr. Darren Brumback is the lead Fishery Biologist for this project. He can be contacted at 562-980-4026 if you would like additional information.

Sincerely,

Rebecca Lent, Ph.D.
Regional Administrator
Enclosures (3)
cc: Jim Lecky, Darren Brumback, NMFS
David Young, BOR
BACKGROUND 1
DESCRIPTION OF THE PROPOSED ACTION 2
Cachuma Project Facility Overview 2
Proposed Operations, Maintenance, and Conservation 4
Impoundment of Water at Bradbury Dam, Project Yield and Associated Diversions 4
Spill Operations 5
Downstream Water Rights Releases 5
Ramping 5
Reservoir Surcharge 6
Flow-Related Fish Support Measures 6
Rearing Support 6
Migration Support 7
Flow Accounting 8
Adaptive Management 8
Critical Drought Years 9
Water Release Locations 9
Hilton Creek Water Supply Line 9
Ramping of Hilton Creek Flows 10
State Water Deliveries 10
Emergency Winter Operations 11
Maintenance Activities 11
Low Flow Crossing 12
Hilton Creek Habitat Modification 12
Fish Rescue 13
Conservation Easements 13
Tributary and Mainstem Enhancement 13
Watershed Monitoring Program 14
Public Education and Outreach 15
STATUS OF THE SPECIES/CRITICAL HABITAT 15
Species/Critical Habitat Description 15
Life History and Habitat Requirements 15
Population Dynamics-Status and Distribution 17
Critical Habitat Status 18
Analysis of the Species/Critical Habitat Likely to Be Affected 19
ENVIRONMENTAL BASELINE 19
Status of the Listed Species in the Action Area 20
Quantity and Quality of Critical Habitat in the Action Area 26
Watershed Overview 26
Habitat Quality - Mainstem 28
Habitat Quality - Tributaries 28
Factors Affecting Species Environment Within the Action Area 29
Cachuma Project 29
Other Section 7 Actions 30
EFFECTS OF THE ACTION 33
Methodology for Effects Analysis 33
Effects to Migrating Steelhead 35
Water Impoundment 35
Mainstem Santa Ynez 35
Tributaries - Hilton Creek 42
Tributaries 42
Emergency Winter Operations 43
Effects to Spawning Steelhead 43
Santa Ynez River 43
Emergency Winter Operations 45
Spawning Steelhead in Hilton Creek 46
Effects to Rearing Steelhead 46
Water Rights Releases 47
Habitat area and Stranding 47
Water Quality - Temperature 49
Water Quality - Dissolved Oxygen 50
Water Quality - Sediments and Turbidity 51
Riparian and Aquatic Vegetation 51
Aquatic Macro Invertebrates 52
Steelhead Rearing Support Flows 53
Santa Ynez River 53
Habitat area and stranding. 53
Water quality - temperature. 56
Water quality - dissolved oxygen. 56
Water quality - sediments and turbidity. 57
Riparian vegetation. 57
Aquatic macro invertebrates. 57
Hilton Creek 58
Habitat area 58
Flow ramping. 59
Water quality - temperature. 59
Water quality - dissolved oxygen 59
Water quality - turbidity and sedimentation. 60
Riparian vegetation. 60
Aquatic macro invertebrates. 60
Tributaries - Passage Improvements 60
El Jaro Creek Demonstration Projects 61
CCWA Water Releases 61
Temporary Road Crossing 62
Fish Rescue 62
Hilton Creek Habitat Modification 62
Tributary and Mainstem Enhancement 63
Monitoring Program 63
Public Education and Outreach 63
SUMMARY AND SYNTHESIS OF EFFECTS 64
Impacts of the Proposed Action that Affect the Survival of Steelhead Freshwater Life History Stages 64
Impacts on ESU Survival and Potential for Recovery 66
CUMULATIVE EFFECTS 67
CONCLUSION 68
INCIDENTAL TAKE STATEMENT 68
REASONABLE AND PRUDENT MEASURES 71
TERMS AND CONDITIONS 72
CONSERVATION RECOMMENDATIONS 82
REINITIATION NOTICE 83
LITERATURE CITED 84

LIST OF TABLES AND FIGURES

Table 1. Reclamation proposed water rights release schedule 5-6
Table 2. Numbers of steelhead observed in the mainstem from 1995-1999 in HWY 154, Refugio, and Alisal Reaches downstream of Bradbury Dam. 22
Table 3. Steelhead migrant trapping, red surveys, and snorkel/bank observations in the Santa Ynez River Watershed below Bradbury Dam 1994-1999. 23-25
Table 4. NMFS section 7 activities in the action area from March 10, 1997 to present 30
Table 5. Authorized take of Southern California ESU steelhead for scientific research permits 31
Table 6. Reported take of Southern California ESU steelhead from scientific research permits. 32
Table 7. Proposed take of Southern California ESU steelhead from scientific research permits 32
Table 8. Summary of passage days generated by Reclamation passage proposal 38
Table 9. Summary of passage releases and account for long term passage proposal 41
Table 10. Flow and available spawning habitat under different scenarios for January 1 through April 30th. 45
Table 11. Percent exceedance of different minimum flows for the proposed project, baseline conditions, and historical conditions. 54
Figure 1. Approximate location of the action area for the Cachuma Project. 3

BACKGROUND

The United States Bureau of Reclamation (Reclamation) currently operates and maintains Bradbury Dam and associated water transport and delivery structures on and near the Santa Ynez River for several local water agencies. The Santa Ynez River is about 900 square miles in watershed area, with approximately 417 square miles above the dam. Authorized by the Secretary of Interior in 1948, construction of the dam began in 1950 and was completed in 1953. Associated water transport and delivery structures were completed in 1956. The dam is located approximately 48 miles from the Pacific Ocean and completely blocks steelhead (Oncorhynchus mykiss) from migrating to historical spawning and rearing areas upstream. These areas comprised most of the spawning and rearing habitat utilized by steelhead before the dam's construction (U.S. Bureau of Reclamation 1945; U.S. Bureau of Reclamation 1999).

The dam and its associated water transport and delivery structures, collectively known as the Cachuma Project, include the Tecolote Tunnel, which diverts water to the South Coast (Santa Barbara County), and outlet works at the dam which release water to the mainstem of the Santa Ynez River for groundwater recharge and receive water from the Central Coast Water Authority (CCWA) Santa Ynez Extension Pipeline. A permanent water supply line from the reservoir to Hilton Creek, a tributary directly downstream of the dam, has also recently been built, and is considered part of the Cachuma Project for this opinion.

A multi year effort has been underway to determine how best to allocate the water resources controlled by the Cachuma project between public trust resources and consumptive uses. This effort was generated by State Water Right Order 94-5 which required vegetation, fish, and hydrology studies to be conducted in preparation for a hearing before the State Water Resources Control Board (SWRCB) in the year 2000. At this hearing the SWRCB intends to review Reclamation's state water rights permits on the Santa Ynez river to determine if any modifications in permit terms or conditions are necessary to protect public trust values and downstream water rights below Bradbury Dam.

On March 10, 1997, NMFS and Reclamation completed conferencing on a seismic retrofit project currently occurring at Bradbury Dam. As mitigation for 0.05 acre of aquatic habitat lost to this project NMFS and Reclamation agreed to permanently supply water to Hilton Creek via a water line from the reservoir. In addition to supplying water to Hilton Creek, Reclamation has chosen to include the use of this water line as part of the Cachuma Project to supply water to the Santa Ynez River. On April 7, 1999, Reclamation requested formal consultation on the on-going operations and maintenance of the Cachuma Project, including the operation and maintenance of the Hilton Creek Water Supply Line. The request did not provide NMFS enough information to begin consultation. This information was received from Reclamation in mid June, 1999, and formal consultation began on June 14, 1999. During consultation, several issues were identified
as needing further data analysis to determine steelhead protection measures. Reclamation and NMFS mutually agreed to extend consultation, and NMFS received a revised project proposal from Reclamation on June 16, 2000.

DESCRIPTION OF THE PROPOSED ACTION

The federal action involves the proposed operation and maintenance of the Cachuma project to further address fish needs in the mainstem Santa Ynez and several of its tributaries. The action area (Figure 1) includes the mainstem of the Santa Ynez River from Bradbury Dam to the Pacific Ocean, Hilton Creek, Salsipuedes Creek, El Jaro Creek, Quiota Creek, Nojoqui Creek, Alisal Creek and associated riparian areas. The proposed action involves surcharging the reservoir in some years to provide additional water for fish downstream, water rights releases, water releases for anadromous migration support, water releases for summer rearing, the upgrade of road crossings currently blocking or hindering anadromous fish passage in the watershed below the dam, and facility maintenance and monitoring activities, among others. Surcharge will be implemented in a series of interim steps. As noted, some of these water releases will occur through the water supply line at Hilton Creek. The scope of this consultation is 50 years based on the availability and accuracy of data provided and used to predict project effects.

The Cachuma Project is proposed to operate as described briefly below, although some of the proposed modifications to operations will be phased in over several years. Each operation's expected implementation schedule is also described. A more comprehensive description can be found in the Biological Assessment for Cachuma Project Operations and the Lower Santa Ynez River and the Revised Project Description (U.S. Bureau of Reclamation 1999, 2000).

Cachuma Project Facility Overview

Lake Cachuma is a reservoir impounded behind Bradbury Dam, an earth-fill structure 205 feet high (structural height of 275 feet), with a crest length of 2,975 feet set at 766 feet above mean sea level (MSL). The spillway is a broad-crested weir in the south abutment of the dam consisting of four bays, each with a 50 -foot wide by 30 foot high radial gate and a one foot high splashboard. The gates open from the bottom and are seated in the weir at 720 feet MSL (U.S. Bureau of Reclamation, 1999). Storage capacity is 190,409 acre feet.

Diversions to the South Coast are conveyed through the 6.4 mile long Tecolote Tunnel, which is connected to the reservoir by an intake tower located near the reservoir's south bank. The intake and tunnel are situated such that when reservoir levels fall near or below 660 feet, pumping from a floating conduit is used to supply water to the tunnel. Outlet works at the dam consist of an inlet structure at 600 feet of elevation in the reservoir; a 1,500 foot long, 7 foot diameter tunnel; a 38 inch diameter pipe running from the tunnel to the outlet works on the downstream toe of the dam on the north side of the stilling basin; two 30 -inch hollow-jet valves; and a 10 -inch butterfly

valve set at 563 feet of elevation. These valves direct water to the stilling basin, which empties into the uppermost point of the mainstem Santa Ynez River below the dam. The Central California Coast Water Authority (CCWA) water line terminates in the outlet works at Bradbury Dam. The configuration of this connection causes CCWA water (from the Sacramento-San Joaquin River system) to mix with water being released to the Santa Ynez River from the reservoir when the CCWA pipeline is delivering water. When the outlet works are not releasing water to the Santa Ynez River, all the CCWA water goes through the outlet works into the reservoir (U.S. Bureau of Reclamation, 1999).

In addition, the Hilton Creek Water Supply Line has recently been constructed at Bradbury Dam. The line consists of a pipeline with an intake in the reservoir and three release points, one on the south side of the stilling basin and two in Hilton Creek. The release point at the stilling basin is separate from the outlet works. The release points in Hilton Creek are located at 1,380 feet and 2,980 feet upstream of the Santa Ynez. Each outlet point was planned for an approximate release capacity of 5 cfs . Recent information indicates that capacity is considerably less than expected. Reclamation expects most of the planned capacity can be achieved and this will begin occurring within two years (Young 2000a). The water supply line is addressed here to evaluate its proposed operation to deliver water to Hilton Creek and the mainstem Santa Ynez (U.S. Bureau of Reclamation 1999). Specifics regarding its construction are on file at NMFS's Southwest Region Headquarters in Long Beach, California.

Proposed Operations, Maintenance, and Conservation

The following is a summary of the proposed action taken from the biological assessment provided by Reclamation (U. S. Bureau of Reclamation 1999) and subsequent modifications proposed by Reclamation during consultation (U. S. Bureau of Reclamation 2000). Readers interested in more specific details should refer to those documents.

Impoundment of Water at Bradbury Dam, Project Yield and Associated Diversions

Reclamation proposes to continue to impound water at the reservoir for use by localities of the Santa Ynez Valley and the South Coast, including the City of Santa Barbara. Water is impounded during the wet season in Southern California (generally November through the end of March). No water is released from the dam unless its capacity is exceeded, flood control or water delivery operations (from the Tecolote Tunnel) are needed, water rights releases are made, or releases to support fish occur. As noted above, the reservoir has a capacity of approximately 190,409 acre feet. Currently (since 1992), about 25,714 acre feet of water is removed from the reservoir each year for municipal, domestic, irrigation supply, incidental recreation and salinity control purposes.

Spill Operations

Reclamation proposes to conduct spill operations by returning water from the reservoir to the Santa Ynez River below Bradbury Dam in years when the dam's capacity is exceeded (spill years). Spill operations, which can include controlled discharge through open gates or over the spillway, or releases from the outlet works, are conducted to keep the reservoir at, but not over, its maximum operating level. Spills have occurred 17 times in wet years since the completion of Bradbury Dam, or in approximately 36% of years. Implementation of spill operations will occur periodically during some wet years.

Downstream Water Rights Releases

Reclamation proposes to release water from the outlet works at the dam during some summer months to replenish groundwater downstream, both between the dam and the Narrows (Lompoc Narrows) and downstream of the Narrows (the Lompoc basin). Releases are proposed to occur during about 65% of years. These releases are governed by State Water Rights Order 89-18 (1989) which amends WR 73-37 (1973), which amended a previous agreement. Under WR 8918 , downstream releases are governed by two water accounts which accrue credits (acre feet of water in the reservoir) which can be used to provide groundwater recharge to the "Above Narrows" and "Below Narrows" areas downstream of the dam. Releases are seldom made in wet years when downstream water basins retain water throughout the summer and fall. During other years, releases are made in late spring, summer, or early fall. In general, releases are made at $130-150$ cfs for $12-15$ days to deliver water downstream to the Below Narrows Account. Once water reaches the appropriate point downstream to recharge the Below Narrows Account, releases are scaled back to provide just enough water to maintain surface flow throughout the recharge area. The duration of release is then based on the water available in the accounts and/or the amount of water needed to recharge the ground water basin. Releases made only for the Above Narrows Account work in a similar fashion, but the amounts are usually less and the duration is shorter.

Ramping

Ramping down of water rights release flows has been done as a trial operation in the recent past. Reclamation proposes to implement a formalized ramping policy for downstream water rights releases to minimize the potential for fish stranding as shown in Table 1.

Table 1. Reclamation proposed water rights ramping schedule.

Release Rate (cfs)	Ramping Increment (cfs)	Ramping Frequency (no more than once every...)
>90	25	4 hours
$90-30$	10	4 hours
$30-10$	5	4 hours

$10-5$	2.5	4 hours
$5-3.5$	1.5	4 hours
$3.5-2.5$	1	4 hours

Implementation is proposed to occur the first year water rights releases are needed. This is expected in the summer of 2000 .

Reservoir Surcharge

Reclamation is proposing to surcharge the reservoir (increase the reservoir's water level) 3.0 feet above the current maximum level. The 3.0 foot surcharge is proposed to be phased in over the next 5 years. Currently Reclamation can surcharge the reservoir by 0.75 feet. When flash boards are installed on the radial gates Reclamation will surcharge up to 1.8 feet on the first wet season providing enough water to do so. Environmental review of the 1.8 foot surcharge has been completed. Construction of the flash boards is expected to be finished by the end of 2001, and the first 1.8 foot surcharge may occur in 2002. Once environmental review on the 3.0 foot surcharge has been completed, Reclamation proposes to surcharge the reservoir to 3.0 feet, depending upon climate conditions. Reclamation anticipates that this is likely to occur in the Spring of 2005 or the first wet season following that provides enough water for the 3.0 foot surcharge. Several issues must be addressed including sensitive state species and reservoir facilities that will be affected. However, Reclamation is currently not aware of any reason or event that would preclude the approval and implementation of the 3.0 foot surcharge as noted above. Therefore, Reclamation has included the 3.0 foot surcharge as part of the proposed action. If Reclamation is unable to achieve the 3.0 foot surcharge, Reclamation will reinitiate consultation with NMFS (Young 2000b).

Flow-Related Fish Support Measures

Rearing Support

Until the 3.0 foot surcharge is achieved, Reclamation proposes the following flow targets in the mainstem, implemented at the location of the HWY 154 bridge, to support rearing steelhead:
A. In all years when the reservoir spills (when storage is above 120,000 acre feet) and the spill amount exceeds 20,000 acre feet, the target flow will be 5 cfs when no water rights release is underway.
B. In all years when the reservoir does not spill, or the spill amount is less than 20,000 acre feet, and the storage in the reservoir exceeds 120,000 acre feet, the target flow will be 2.5 cfs . C. In all years when storage in the reservoir is below 120,000 acre feet, but greater than 30,000 acre feet, the target flow will be 1.5 cfs .

Once the 3.0 foot surcharge is approved and implemented an additional amount of water estimated at 9,200 acre feet of water will be stored in the reservoir in approximately 37% of years
based on the hydrology model used by Reclamation and assuming the next 50 years are similar to the 1942-1993 period. This water will be used to provide steelhead rearing support in the mainstem, increase steelhead migration opportunity and provide an adaptive management account. The following flow targets in the mainstem are proposed to support rearing steelhead after the 3.0 foot surcharge is achieved:
A. 10 cfs will be maintained at the HWY 154 bridge in all years when the reservoir spills and the spill amount exceeds 20,000 acre feet.
B. 5 cfs will be maintained in all years when the reservoir does not spill, and storage is above 120,000 acre feet, or when the spill less than 20,000 acre feet.
C. 2.5 cfs will be maintained in all years when reservoir storage is below 120,000 acre feet, but greater than 30,000 acre feet.
D. When the spill amount exceeds 20,000 acre feet and steelhead are present at the Alisal Reach, 1.5 cfs will be provided at the Alisal Bridge.
E. 1.5 cfs will also be provided in the year immediately following a spill year which exceeded 20,000 acre feet if steelhead are present.

Flow releases for steelhead rearing are proposed to be further guided by the following criteria:
A. First priority for flow enhancement will be Hilton Creek.
B. Second priority will be the mainstem between Hilton Creek and HWY 154.
C. Third priority will be the area between Bradbury Dam and the Hilton Creek confluence, including the stilling basin and Long Pool.
D. Fourth priority will be the area downstream from HWY 154 to the Solvang area.

Migration Support

To supplement migration flows, Reclamation proposes to establish a passage account that would provide flow releases during the steelhead migration season (winter and spring) at both the 1.8 and 3.0 foot surcharge level. Passage flow releases will utilize some of the surcharged water to extend the duration of flows, and in many cases increase flows in the Santa Ynez River directly following storms when steelhead are likely migrating. Releases will occur after most storms until the water set aside for migration support is exhausted. Once climate conditions allow the reservoir to be surcharged again, migration supplementation will resume. Flow releases for migration will be operated in the following manner:
A. Water releases are made to augment storms in January through May.
B. Storms are defined as flows of 25 cfs or greater at the Solvang United States Geological Survey (USGS) gauge location.
C. The first storm of the season will not be supplemented as it is considered a recharge storm to saturate the groundwater in the lower watershed for future releases.
D. All storms in the passage period (A - C above) will be supplemented unless (1) flows at Solvang reach 25 cfs within the 7 days following a prior migration flow release (the second storm will not be supplemented), (2) the Adaptive Management Committee (see below) determines that
there is a greater biological benefit not to supplement a particular storm (saving water to supplement later storms), or (3) there is no water left in the Fish Passage Account (see below). E. A decay function based on the Los Laureles gauge above the reservoir will be used to determine the flow release profile at Cachuma to enhance the storm hydrograph at Solvang. The average storm recession from 150 to 25 cfs at Los Laureles takes 14 days during normal water years.
F. Releases will be made from the reservoir to mimic the average storm recession of the Los Laureles gauge (during normal water years) at the Solvang gauge location.
G. Flow releases will start when the unsupplemented storm hydrograph at Solvang recedes from its peak to 150 cfs .
H. In the event that storm peaks at the Solvang gauge location are less than 150 cfs but greater than 25 cfs , releases will be made to provide a peak of 150 cfs and then follow the decay curve described in E and F above.
I. From 25 cfs to baseflow, releases will be made based on the proposed mainstem ramping rate. J. Water will be released to supplement fish passage in years following surcharge until there is no water left in the fish passage account.

Flow Accounting

Reclamation proposes that flows for the purposes above be managed either by accounts or by meeting flow targets as described above and below. A fish passage account and adaptive management account will be established. Rearing support releases will be made to meet the mainstem rearing targets regardless of surcharge water availability as described above. Accounts will be allocated water in the following manner:
A. Once the flashboards on the radial gates are installed, and climate conditions allow the reservoir to be surcharged 1.8 feet, 2,500 acre feet will be allocated to the fish passage account. The remaining 3,000 acre feet (5,500 total) will be used to meet the mainstem rearing flow targets.
B. Once the reservoir can be surcharged by 3.0 feet, up to 3,200 acre feet of water will be provided to the fish passage account. Five hundred acre feet of water will be allocated to the adaptive management account. The remaining surcharged water (5,500 acre feet) will be used to meet the mainstem rearing target flows. The total allocation could thus be as high as 9,200 acre feet.
C. When the reservoir spills, each account is deemed to spill and the accounts receive a new allocation based on the amount of surcharge and the rules above. Otherwise, unused water from each account is carried over to the next year.

Adaptive Management

As more data on fish passage supplementation is gathered, an Adaptive Management Committee (AMC) may make modifications to the release protocols described above. The AMC will be made up of one representative from Reclamation, NMFS, the California Department of Fish and Game (CDFG), the Cachuma Conservation Release Board, the Santa Ynez River Water Conservation District Improvement District \#1, and the downstream water rights interests. Such
modifications might include changing the trigger flow level, changing the definition of storms, boosting storm peaks that are less than 150 cfs to different levels, and modification of releases in May to focus on smolt outmigrants.

In addition, the adaptive management committee will oversee the use of the 500 acre foot adaptive management account. This water will be used on a case by case basis where appropriate to increase benefit to steelhead. Both passage and rearing opportunities (mainstem and Hilton Creek) might be enhanced by use of this account.

Critical Drought Years

During extremely dry periods when there is less than 30,000 acre feet of storage in the reservoir, it is anticipated by Reclamation that there would only be enough water to refresh the stilling basin and long pool, directly downstream of the dam (about 30 acre feet per month) to provide for steelhead rearing in these areas. Reclamation will reinitiate consultation with NMFS to determine what, if any, actions will be taken for steelhead in the mainstem under these conditions.

Water Release Locations

With the construction of the Hilton Creek Water Supply Line, Reclamation proposes to vary the location of water releases among the stilling basin release point, upper Hilton Creek release point and lower Hilton Creek release point, based on antecedent conditions, the order of priorities given above, and the priorities for Hilton Creek, described below in the "Hilton Creek Water Supply Line" section.

Hilton Creek Water Supply Line

Currently it is estimated that the water supply line will be able to provide water to Hilton Creek in about 63% of years (Santa Ynez River Technical Advisory Committee 1999). This is due to the level at which the intake is located in the reservoir. Reclamation has included the addition of a pump and other equipment that will allow watering of Hilton Creek in about 98% of years (Santa Ynez River Technical Advisory Committee 1999). Installation of the pump and accompanying flexible intake will be completed by 2002.

The planned pump and provision of water in 98% of years will allow Reclamation to satisfy the mitigation agreement between NMFS and Reclamation for the seismic retrofit project. However, specific flow management for water rights releases were not determined as part of the mitigation agreement. Thus, Reclamation is proposing the specific flow targets above, in conjunction with using the pipeline supplying water to Hilton Creek to also supply water to the Santa Ynez as part of the Cachuma Project.

Reclamation proposes to operate the Hilton Creek pipeline according to the priorities for the mainstem given above, and to maintain flows between 1.5 and 5 cfs in Hilton Creek. Specific flows inside (or above) this range in Hilton Creek will depending upon water year type, natural
flow in Hilton Creek, mainstem flow needs and reservoir storage. In most years the upper release point will be used. However, releases may be shifted to the lower release point. The Adaptive Management Committee will manage Hilton Creek Releases within and among years. Factors that will be considered include: presence of spawning and/or rearing steelhead, water quality (temperature and dissolved oxygen), reservoir storage, system maintenance requirements, the relationship between flow and available habitat, water losses (flows may go subsurface near the top of the chute pool area in some years), water temperature at the intake point in the reservoir, and natural flow in the system.

Reclamation has provided NMFS with a list of maintenance activities to be performed on the water supply line (U.S. Bureau of Reclamation 1999b). Several of these activities will require that all or some of the release valves be shut down. Reclamation intends to conduct these maintenance activities only when natural flows in Hilton Creek are above 2 cfs . If this cannot be accomplished, steelhead would be relocated to suitable habitat areas if necessary.

Ramping of Hilton Creek Flows

When supplemental flows are to be reduced in Hilton Creek, the following ramping schedule will be followed:
A. Releases from 10 to 5 cfs will be reduced at no greater than 1 cfs every 4 hours. B. Releases below 5 cfs will be reduced at no greater than 0.5 cfs every 4 hours.

During the first year of the interim period, managed flow changes will be made during the daylight hours and the creek will be monitored by Reclamation for stranding during ramping events.

State Water Deliveries

The Central California Coast Water Authority (CCWA) delivers water to the reservoir via the Santa Ynez Extension pipeline to provide additional water for local use. CCWA water originates in Central California, but has been both treated and dechloraminated. This water may be mixed with downstream release water due to the way in which the pipeline is connected to outlet works. If water is released to the Santa Ynez River for downstream water rights and/or fish resources at the same time CCWA water is being delivered, no more than half of the total flow released downstream of the dam will be comprised of CCWA water. Reclamation and CCWA have agreed that this water will not enter the stilling basin with a temperature over 18 degrees Celsius. Pipeline water temperatures are monitored every 4 hours and release water and reservoir water temperatures are checked on a daily basis when CCWA is delivering water to the Cachuma Project and the outlet works are releasing water to the Santa Ynez River (U.S. Bureau of Reclamation 1999). When the full state water project entitlement is required (12,545 acre feet per year), CCWA is obligated to deliver water to the reservoir every month, if possible. When a shortfall in deliveries occurs during some months, CCWA attempts to make complete deliveries on a yearly basis. The CCWA pipeline can deliver up to 22 cfs through the outlet works.

Future deliveries and release frequencies of CCWA water to the Santa Ynez River estimated by Reclamation are as follows:
A. Delivery of CCWA water to the reservoir is not made during spill events.
B. Releases of CCWA water to the mainstem would only occur during water rights releases from May to October, with the bulk of releases occurring July - September.
C. CCWA water will not exceed 50% of the total rate of releases to the river.

Emergency Winter Operations

The Cachuma Project was not constructed to provide flood control. However, in the past the reservoir has been used to both delay storm peaks by 2.5 to 3 hours and decrease peak outflow by a few percent. Reclamation proposes to modify this approach to better address flood control needs by including:
A. Pre-storm Reservoir drawdowns of several feet, termed "precautionary releases".
B. Release of storm inflows up to a calculated maximum flow while holding the reservoir below normal operational level, termed "pre-releases".
C. Holding the spillway gates (keeping them closed) to achieve extra reservoir capacity, termed "gateholding".

Peak storm flows can be reduced by up to 40% by combining the above operations procedures. Reclamation intends to ramp down spills at the conclusion of storm events.

Implementation: Immediate, if needed to protect life and property.

Maintenance Activities

The following maintenance activities that may impact steelhead are conducted at the Cachuma Project. These activities will not occur when water is being released from the outlet works at Bradbury Dam.
A. Annual inspection and test of the high pressure guard gate located at the outlet works gate chamber. Gates are operated one at a time from full open to full closed only when the two hollow jet valves and butterfly valve are closed.
B. Annually test the two $30^{\prime \prime}$ hollow jet valves and 10 " butterfly valve.
C. Annually lubricate fittings on machinery deck and trunnion.
D. Periodically test and calibrate all meters.
E. Inspect trunnion anchor block four times per year.
F. Weekly operational testing of radial gate motors during spill release. Gates are left open until spill conditions occur and are then operated/tested according to spill release.

Low Flow Crossing

Reclamation proposed to sustain a low flow crossing in the mainstem near the confluence of Hilton Creek in both their biological assessment and revised project description. However, during recent consultation discussions Reclamation has indicated they have chosen not to maintain the crossing for the purposes of the Cachuma Project. Equipment may still need to ford the Santa Ynez River at the current crossing location. Reclamation proposes that NMFS July 19, 1999, letter regarding this issue be used as the basis for future equipment crossing, and; if Reclamation needs to improve the crossing they will consult separately with NMFS. This letter and Reclamation's Final Supplemental Environmental Assessment for the Bradbury Dam Modification Seismic Corrective Action Safety of Dams Program to which it refers, provide that 17 pieces of construction equipment may drive across the river bed during no more than 12 crossing events. Steelhead must be monitored via a fisheries biologist on site and construction equipment may not drive through areas containing steelhead.

Hilton Creek Habitat Modification

Reclamation proposes to modify parts of Hilton Creek to improve habitat conditions for steelhead. Specifically, passage impediment and barrier fixes and an artificial rearing channel are planned. Reclamation will modify a rocky cascade/bedrock chute section of Hilton Creek upstream of the proposed rearing channel to increase passage availability for steelhead. Structures are being designed to enable fish passage at flows of 5 cfs or more. The exact location and type of passage improvements are nearly completed. Implementation is expected in 2000.

At the Highway 154 road crossing over Hilton Creek, approximately 4,000 feet upstream of the confluence with the Santa Ynez, passage for steelhead is difficult at both low and high flows. Preliminary designs have been accomplished and are under review by Reclamation, NMFS, U.S. Fish and Wildlife Service, and CDFG. Project design is limited by the need to work within the 120 foot CalTrans easement for the HWY 154 bridge. Implementation is expected in 2002. The rearing channel, referred to as the channel extension in Reclamation documentation, will be approximately 1,500 feet long. Its exact specifications and location have yet to be finalized. Completed construction plans are not available. It is proposed that a flow control structure at the confluence with the current Hilton Creek channel would prevent flood damage to the constructed channel. This flow control structure would allow steelhead adults to migrate upstream past it. The new channel would be able to handle flows of up to 15 cfs . Implementation is expected in 2004.

Fish Rescue

Reclamation proposes to rescue steelhead in Hilton Creek in extremely dry years when water is not available to prevent fish stranding or exposure to harmful habitat conditions. Reclamation estimates this action may be needed in 2% of years. The protocol used (U.S. Bureau of Reclamation 1998b) for a previous fish rescue in Hilton Creek is proposed as the basis for any future rescue actions (U.S. Bureau of Reclamation 1999). The protocol includes trapping, handling, transporting, and release measures to minimize injury to steelhead. It is proposed that fish be relocated after consultation with NMFS and CDFG. In addition, it is proposed that predator removal be conducted in sites to receive relocated steelhead. Predator removal would be accomplished by the use of fyke nets and seines. Implementation of fish rescues will occur as needed with NMFS' prior approval.

Conservation Easements

Reclamation proposes to fund the establishment of conservation easements or lease agreements with private land owners along the mainstem Santa Ynez River and several of its tributaries downstream of Bradbury Dam in areas known to contain steelhead. Easements would allow for conservation measures such as buffer zones, riparian planting, and exclusionary fencing. Reclamation is working to obtain approximately ten miles of conservation easements or lease agreements along El Jaro Creek in the Salsipuedes watershed (a tributary of the Santa Ynez River) in the near future. Conservation easements depend upon the consent of private landowners. Reclamation is confident that ten miles of conservation easements can be obtained on El Jaro Creek (in an area known to contain rearing juvenile steelhead) by 2003 (Reclamation 2000).

Tributary and Mainstem Enhancement

Reclamation has identified eleven passage impediments and barriers on five tributaries downstream of Bradbury Dam. Reclamation will fund the improvement of passage at these sites using the Renewal Funds of the Cachuma Project and the Warren Act Trust Fund. Approximately $\$ 300,000$ dollars will be available each year. Reclamation intends to accomplish passage improvement at all eleven sites by 2008 at the latest (U. S. Bureau of Reclamation 2000a). Passage improvements may be completed earlier depending upon the availability of grants from outside sources. Specific project descriptions are not available, but the passage impediments and barriers are located as follows:

Passage impediment

1. Cascade/Chute Passage on Hilton Creek
2. HWY 1 on Salsipuedes Creek
3. HWY 154 Culvert on Hilton Creek
4. Six Culverts on Quiota Creek
5. Road Crossing on El Jaro Creek (Tributary of Salsipuedes)

Project implementation

Projects would be designed in consultation with NMFS and CDFG.
In addition, Reclamation proposes to institute a program of habitat enhancement in the mainstem and certain tributaries below Bradbury Dam (those known to contain steelhead). Enhancement would include the addition of instream structures to increase pool habitat cover and complexity, increasing the depth of pools, and creating new pools. Enhancement would also include riparian treatments to enhance and restore riparian vegetation where it can enhance shade and cover, and bank stabilization projects. Some information is available on pilot demonstration projects in El Jaro Creek. No other specifics regarding the location, timing, extent, or number and type of these projects is available, although Reclamation has outlined a proposed process for identifying areas where instream enhancement could be conducted by determining reasonable chance of success.

Watershed Monitoring Program

Reclamation is proposing to continue to provide funding to the fisheries monitoring program in the Santa Ynez resulting from the 1993 MOU described above. Many of the activities below would occur every year. Monitoring is intended by Reclamation to characterize fish habitat conditions, fish resources, and steelhead in the Santa Ynez River watershed below Bradbury Dam. In many cases, the specific monitoring proposed is a continuation of the current program. The monitoring program will occur for the life of the project, but it should be noted that specifics may change based on adaptive learning (management). A more complete description can be found in Reclamation's Revised Project Description for the Cachuma Project (U.S. Bureau of Reclamation 2000). The objectives of the monitoring program are to evaluate:
A. Seasonal patterns of water temperature, in both the mainstem and tributaries downstream of Bradbury Dam.
B. Diel variations in water temperature.
C. Diurnal variations in water temperature and dissolved oxygen.
D. Longitudinal gradients in water temperatures downstream of Bradbury Dam.
E. Vertical stratification and evidence of cool water upwelling in selected refuge pools.
F. Water quality suitability for various fish species including steelhead.
G. Reservoir temperature and dissolved oxygen profiles (stratification, depth of anoxic conditions, etc.).
H. Lagoon physical processes including the formation of the sandbar at the mouth.
I. Migrant fish use and timing in the mainstem and tributaries.
J. Steelhead spawning and rearing in the mainstem and tributaries.
K. Steelhead habitat availability in Hilton Creek in relation to water quantity.
L. Target flow provision in the mainstem and Hilton Creek.
M. Specific planned tributary enhancement projects (those noted above).
N. Specific habitat types in the mainstem and tributaries including their distribution, quantity, quality, and persistence over time.

In addition, Reclamation proposes to use a "properly functioning condition" methodology developed by the United States Bureau of Land Management (and suggested by NMFS during consultation) to characterize the status of instream and riparian habitats in the Santa Ynez watershed below Bradbury Dam, guide further habitat analysis efforts, and help determine locations for enhancement projects.

Public Education and Outreach

Reclamation proposes to develop a program of public education and outreach in the Santa Ynez river watershed with the goal of increasing voluntary private conservation of steelhead habitat. Technical assistance will be provided to help interested landowners implement habitat improvement measures, including funding assistance. Public workshops have occurred and more are planned. Educational materials are being prepared and distributed, including news releases to local papers, annual newsletters, a toll-free number providing news on habitat improvements, a web page, project biologist led field trips, etc..

STATUS OF THE SPECIES/CRITICAL HABITAT

Species/Critical Habitat Description

The steelhead population in the Santa Ynez River watershed is part of the Southern California steelhead Evolutionarily Significant Unit (ESU) which was listed as an endangered species by NMFS on August 18, 1997 (National Marine Fisheries Service 1997). The final designation of steelhead critical habitat was made on February 16, 2000 (National Marine Fisheries Service 2000). Critical habitat includes all waters and substrates below naturally impassable barriers that have existed for several centuries, and several dams that block steelhead from using historical habitat areas (National Marine Fisheries Service 1999b). This definition includes the action area for this proposed project action.

Life History and Habitat Requirements

Steelhead, an ocean-going form of rainbow trout, are native to Pacific Coast streams from Alaska south to northwestern Mexico (Moyle 1976; National Marine Fisheries Service 1997). Little is known about the specific life history and habitat requirements of steelhead populations south of San Francisco. The following description is based on the best available scientific and commercial information on the life history and habitat requirements of steelhead in all ESUs unless otherwise indicated.

The major life history stages of steelhead involve freshwater rearing and emigration of juveniles, upstream migration of adults, spawning, and incubation of embryos (Shapovalov and Taft 1954; Moyle 1976; Cederholm and Martin 1983; Barnhart 1991; Meehan and Bjornn 1991; Busby et al.

1996; National Marine Fisheries Service 1997). Steelhead young usually rear in freshwater for one to three years (but they have been found rearing in freshwater for up to 7 years) before migrating to the ocean, usually in the spring, where they may remain for up to three years. Steelhead grow and reach maturity at age two to four while in the ocean. Adults immigrate to natal streams for spawning during October to March, but some adults do not enter coastal streams until spring. Adults may migrate several miles, hundreds of miles in some watersheds, to reach their spawning grounds. Although spawning may occur during December to June, the specific timing of spawning may vary a month or more among streams within a region. Spawning and smolt migration may continue through June (Busby et. al., 1996). Steelhead do not necessarily die after spawning and may return to the ocean, sometimes repeating their spawning migration one or more years. Female steelhead dig a nest in the stream and then deposit their eggs. After fertilization by the male, the female covers the nest with a layer of gravel; the embryos incubate within the gravel pocket. Hatching time varies from about three weeks to two months depending on water temperature. The young fish emerge from the nest about two to six weeks after hatching.

Habitat requirements of steelhead in streams generally depend on the life history stage (Cederholm and Martin 1983; Bjornn and Reiser 1991). Generally, stream flow, water temperature, and water chemistry must be appropriate for adult immigration and juvenile emigration. Low stream flow, high water temperature, physical barriers, low dissolved oxygen, and high turbidity can delay or halt upstream migration of adults and timing of spawning, and downstream migration of juveniles and subsequent entry into estuary, lagoon, or ocean. Suitable water depth and velocity, and substrate composition are the primary requirements for spawning, but water temperature and turbidity are also important. Dissolved oxygen concentration, pH , and water temperature are factors affecting survival of incubating embryos. Fine sediment, sand and smaller particles, can fill interstitial spaces between substrate particles, thereby reducing waterflow through and dissolved oxygen levels within a nest. Juvenile steelhead require living space (different combinations of water depth and velocity), shelter from predators and harsh environmental conditions, food resources, and suitable water quality and quantity, for ontogeny and survival during summer and winter (Bjornn and Reiser 1991). Young-of-the-year and yearling steelhead generally use riffles and runs (e.g., Roper et al. 1994) during much of a given year where these habitats exist. Young-of-the-year and older juveniles may seek cover and cool water in pools during the summer (Nielsen et al. 1994), however.

Migration and life history patterns of Southern California steelhead depend more strongly on rainfall and stream flow than is the case for steelhead populations farther north (Moore, 1980). River entry ranges from September through June, with peaks in January and February. Available data are insufficient to specifically characterize the season timing and interannual variability in steelhead migration within the Santa Ynez River. Based on data from other watersheds it is estimated that steelhead may migrate in the Santa Ynez River and its tributaries as early as November (dependant on climate conditions) with most spawning taking place in February and March (Busby, 1996). Spawning primarily begins in January and continues through early June, with peak spawning in February and March. Average rainfall is substantially lower and more
variable in this ESU than regions to the north. This coupled with diversions of water for public water supplies and agricultural use, results in an increased duration of sand berms across the mouths of streams and rivers and, in some cases, complete dewatering of habitat. Environmental conditions in some habitats are extreme (e.g., elevated water temperatures, droughts, floods, and fires) and presumably impose selective pressures on steelhead populations. Steelhead use of southern California streams and rivers with elevated temperatures suggests that populations within this ESU are able to withstand higher temperatures than those to the north. The relatively warm and productive waters of the Ventura River resulted in more rapid growth of juvenile steelhead than occurred in northerly populations (Moore 1980; McEwan and Jackson 1996). However, relatively little life history information exists for steelhead from this ESU.

Population Dynamics-Status and Distribution

Wild steelhead populations in California have decreased significantly from their historic levels (Swift et al. 1993, National Marine Fisheries Service 1997). Historical estimates for the Southern California ESU indicate a minimum run size of 11,000 adult steelhead prior to 1950, without inclusion of the Santa Ynez River population (National Marine Fisheries Service 1997). The most reliable information on the large size of the historical run in the Santa Ynez during some years comes from CDFG records of the rescue of juvenile steelhead from stranding in drying areas of the mainstem between 1939 and 1947. The number of juvenile fish rescued ranged from 39,500 to $1,036,980$ (U.S. Bureau of Reclamation et al. 1995). Estimates of run sizes (returning adults) for the major rivers in the Southern California ESU in 1996 are as follows:
Santa Ynez River. < 100
Ventura River. < 200
Santa Clara River <100
Malibu Creek < 100(Busby et. al., 1996)

This dramatic decline and low abundance prompted NMFS to list the Southern California ESU of steelhead as endangered on August 18, 1997 (National Marine Fisheries Service 1997). Low abundance increases risk to this population because demographic and genetic variability in populations of this small size hinder long term survival and recovery. No time series of data are available within this ESU that can be used to estimate the current population trend, however, it is reasonable to assume that the population decline continues based on current habitat conditions.

Extensive habitat loss due to water development, land use practices, and urbanization are largely responsible for the current status of the ESU. In addition, these losses, habitat modifications, and the introduction of non-native species have resulted in increased predator populations in some river systems, which has led to an increase in the level of predation experienced by steelhead. Finally, hatchery practices and rainbow trout planting may have led to genetic introgression, but documentation is lacking to fully assess the situation (Busby et. al., 1996). The run estimates
above are not based on precise survey data and cannot be used to quantitatively assess the effects of specific project actions.

The most current information available regarding steelhead numbers confirms, but cannot specifically quantify, the small size of the ESU and Santa Ynez River steelhead population. Steelhead redd counts, migrant trapping, electrofishing, snorkel surveys and bank observations have been ongoing in the Santa Ynez River and its tributaries below Bradbury Dam starting in 1994 (A smaller survey effort was conducted in 1993). The highest number of redds counted in the Santa Ynez basin below Bradbury Dam was 92 in 1997. A survey with similar coverage in 1998 counted only 8 redds (Engblom 1999). The highest number of adult upstream migrants ever counted in one year is 68 (Engblom 1999). In addition, some of the fish or redds counted may be non-anadromous rainbow trout (see below). The amount of these fish in the action area is unknown.

The only other multi-year set of quantitative data on steelhead numbers in the Southern California ESU comes from fish trapping data on the Santa Clara River gathered from 19942000. These data are not comprehensive enough to specifically estimate the size of, or trends in, the Santa Clara River steelhead population. Less than 10 adults were found during the entire sampling period. Smolts returning to the ocean each year ranged in number from 81 to over 800 when the smolt trap was heavily used (National Marine Fisheries Service 1997a, National Marine Fisheries Service 2000). Both the numbers of adults and smolts counted at the diversion probably represent a subset of the total population based on a number of factors including when trapping was done in the fish ladder, when the smolt trap was operated, and the possibility for smolts to pass directly over the diversion sill and avoid the smolt trap.

There is no information available from any other watersheds in the Southern California ESU that could be reasonably interpreted to indicate a larger population size than described above. In addition to the likely continued downward population trend, NMFS believes the restricted spatial distribution of the remaining populations in the ESU is likely to reduce opportunities for recolonization of streams suffering local population declines and/or extinctions (NMFS 1997). The steelhead population in the Santa Ynez River is likely one of the largest remaining in the Southern California ESU. Ensuring the ability of this population to continue to exist into the future while retaining its potential for recovery is critical to the ESU's survival and recovery.

Critical Habitat Status

Steelhead critical habitat in the Southern California ESU has been affected by loss and modification. Information is not available to specifically quantify the condition of critical habitat and its constituent elements (including substrate, water quality, water quantity, water temperature, water velocity, cover/shelter, food, riparian vegetation, habitat area, and passage conditions). The following information regarding habitat conditions is based on project reviews, site visits, and field investigations by NMFS: Poorly designed road crossings currently block access to, and fragment habitat; water use partially or completely dewaters streams; flood control
and other modifications (such as gravel mining) to the banks and beds of streams and rivers reduce their quality for steelhead (and in some cases preclude steelhead use); water quality may be impacted from urban and agricultural runoff; and the introduction of non-native species has resulted in increased predator populations in some river systems, which has led to an increase in the level of predation experienced by steelhead. Thus, many of the constituent elements of critical habitat have been temporarily and permanently modified in ways detrimental to the biological needs of steelhead and these modifications hinder the ability of designated critical habitat to provide for the survival and recovery of the Southern California ESU.

Analysis of the Species/Critical Habitat Likely to Be Affected

Proposed operations, maintenance, and conservation measures for the Cachuma Project are expected to occur far into the future (several decades). Steelhead from the Southern California ESU are likely to be adversely affected by the project action through loss, alteration, and reduction of constituent elements of critical habitat including water quantity, cover/shelter, water velocity, food, water quality, and passage conditions. Beneficial effects including increased access to tributary and mainstem habitat areas, and improved rearing conditions in a portion of the mainstem, are also expected to occur. All freshwater life stages of steelhead are present in the action area, with the abundance of a particular life stage dependent upon time of year.

Generally, instream habitat in the action area (Figure 1) includes pool, run, and riffle habitat when water is present, based on observations made by NMFS staff. Cobble, boulder, and sand particle types are common in the mainstem of the Santa Ynez River and the tributaries listed above, with some spawning sized gravels available in certain reaches. Riparian vegetation in the action area is similar to riparian vegetation common to rivers and creeks of this size in Southern California and may also be affected. The mainstem and tributaries contain steelhead spawning, rearing, and migratory habitat of various quality, including vegetative cover, pools, riffles, and runs. Modification of these habitats is likely to adversely affect critical habitat for steelhead.

These adverse effects will occur in combination with other factors presently affecting the steelhead population in the Santa Ynez River watershed below Bradbury Dam and throughout the area used by the Southern California steelhead ESU. Consequently, the status of this species, its life history and habitat requirements, and recent factors affecting populations (i. e., environmental baseline) are described as follows.

ENVIRONMENTAL BASELINE

This section is an analysis of the effects of past and ongoing human and natural factors leading to the current status of the species, its habitat (including designated critical habitat), and ecosystem, within the action area. The environmental baseline is a "snapshot" of a species' health at a specified point in time. It does not include the effects of the proposed action under review in the
consultation.

Status of the Listed Species in the Action Area

The action area encompasses the entire area thought to be used by the steelhead population in the Santa Ynez to conduct the freshwater portion of their life cycle. This includes utilization of the entire 48 miles of mainstem below Bradbury Dam as a migration corridor, spawning and rearing in the first ten miles of mainstem below Bradbury Dam, and migration, spawning, and rearing in 5-6 tributaries below the Dam. Steelhead adults, eggs, fry, juveniles, and smolts all occur in the action area affected by the project. Available data are insufficient to specifically characterize the seasonal timing and interannual variability in steelhead migration within the Santa Ynez River. Based on data from other watersheds it is estimated that steelhead may migrate in the Santa Ynez River as early as November (dependant on climate conditions) with most spawning taking place in February and March (Busby 1996). Limited information from the Santa Ynez watershed indicates that the usual time of upstream migration is February to April with spawning activity observed during this same period. In wet years, migration can begin in late January and continue until early May with most spawning between February and April (Engblom 1999d). Rearing (and oversummering of adults) usually occurs from Spring until the next Winter wet season, when smolting may occur. In the Southern California ESU it is hypothesized by NMFS that juveniles may spend more than one summer in freshwater if access to the ocean is not available or food supplies are low, limiting growth.

Data on steelhead presence and numbers in the mainstem and tributaries indicates that the area with the most juveniles and/or migrants and/or redds varies by year, and in all cases numbers are very low. Tables 2 and 3 show numbers of steelhead observed in both the mainstem and the several tributaries still containing steelhead below the dam: Hilton Creek, Salsipuedes Creek, El Jaro Creek (a tributary of Salsipuedes), Nojoqui Creek, and Quiota Creek. In addition, migrating steelhead have been observed via migrant trapping in Alisal Creek and Nojoqui Creek ${ }^{1}$. As shown in the tables, it appears that relatively more spawning takes place in the tributaries. Only four redds have been found in the mainstem in the years surveyed (1994-1999). All were found in 1999 (Engblom 1999a). However, access problems related to private property have prevented surveys from occurring in areas of the mainstem and the amount of spawning that may occur in these areas is unknown (U.S. Bureau of Reclamation 1999).

The number of observed rearing steelhead in tributaries and the mainstem appears to fluctuate on a yearly basis from less than 10 fish to over 1000 (mainstem and Hilton Creek). But in only one case were more than 2,300 young of the year with a few juveniles ever observed in the watershed (Engblom 1999). Fluctuations are not concurrent, i.e., the area with the most juvenile fish varies from year to year. Rearing juveniles have been observed mostly in pools but also in a few runs and riffles (Santa Ynez River Consensus Committee and Technical Advisory Committee 1997,

[^1]Engblom 1999, Engblom 1999a, U.S. Bureau of Reclamation 1999).
Steelhead appear to persist in the mainstem from 0-10 miles downstream of Bradbury Dam over the summers of some of the years observed (in other years steelhead may not have survived, or poor visibility conditions may have prevented observation, etc.). Steelhead have been occasionally observed further downstream. In 1995 and 1996 a few adults were observed approximately 15 miles downstream of the dam. In 1998 a few adults were observed 20 miles downstream of the dam. (U.S. Bureau of Reclamation 1999). Additionally, two adults were observed in the lagoon in 1998, although these appear to be resident fish based on scale samples (Titus 1999).

Table 2. Numbers of steelhead observed in the mainstem from 1995-1999 in HWY 154, Refugio, and Alisal Reaches downstream of Bradbury Dam.

Location	Date	Number of Steelhead Observed: all age classes
HWY 154, 0-0.5 miles from Bradbury Dam (0.5-3.4 miles is inaccessible due to private property issues)	1995 August September October	173
	114 100	
	June May August October	7
	1997 October	26
	1998 June Long Pool survey ${ }^{1}$)	

Modified from U.S. Bureau of Reclamation, 1999, to reflect number of fish observed in entire reach areas. Data were presented by Reclamation as number of fish per 1000 ft .
Poor visibility prevented survey of the Long Pool.

Table 3. Steelhead migrant trapping, redd surveys, and snorkel/bank observations in the Santa Ynez River Watershed below Bradbury dam 1994-1999.

Activity	Year	Location	Description	\#Captured/ Observed
Migrant Trapping	1994	Hilton Creek Salsipuedes Creek	Upstream (u/s) Downstream(d/s) Upstream Downstream	3 adult 0 1 adult 10 juvenile/adult
	1995	Hilton Creek Alisal Creek Quiota Creek Salsipuedes Creek	u/s d/s u/s d / s u/s d/s	52 adult 12 adult 2 adult 0 0 2 adult 4 juvenile/adult
	1996	Hilton Creek Alamo Pintado Creek Nojoqui Creek Salsipuedes Creek Mainstem	u/s d / s u/s d/s u/s d/s	3 adult 0 0 0 2 adult 4 juvenile/adult 1 adult 0
	1997	Hilton Creek Alamo Pintado Creek Nojoqui Creek Salsipuedes Creek San Miguelito Creek Mainstem	u/s d / s u/s d / s u/s d / s u/s d/s	2 adult 0 0 34 Adult 10 juvenile/adult no trap 1 juvenile 0 1 adult

Activity	Year	Location	Description	\#Captured/ Observed
	1998	Hilton Creek Nojoqui Creek Salsipuedes Creek San Miguelito Creek	u/s d/s u/s d/s u/s d/s	4 adult 0 2 adult 1 adult 1 adult 17 juvenile/adult
	1999	Hilton Salsipuedes Creek San Miguelito Creek	u/s d/s u/s d/s u/s d/s	$\begin{aligned} & 0 \\ & 0 \\ & 40 \\ & 6 \\ & \\ & 0 \\ & 1 \end{aligned}$
Redd Surveys	1995	Hilton Creek Quiota Creek Salsipuedes Creek ${ }^{1}$ Mainstem		$\begin{array}{\|l} \hline 8 \\ 2 \\ \text { no survey } \\ 0 \\ \hline \end{array}$
	1996	Hilton Creek Salsipuedes ${ }^{1}$ Creek Mainstem		$\begin{array}{\|l\|} \hline 0 \\ 17 \\ 0 \end{array}$
	1997	Hilton Creek Alamo Pintado Creek Nojoqui Creek Salsipuedes ${ }^{1}$ Creek San Miguelito Creek Mainstem		$\begin{array}{\|l} 0 \\ 0 \\ 0 \\ 0 \\ 43 \\ 49 \\ \\ 0 \\ \hline \end{array}$

Activity	Year	Location	Description	\#Captured/ Observed
	1998	Hilton Creek Alamo Pintado Creek Nojoqui Creek Salispuedes ${ }^{\text {' }}$ Creek San Miguelito Creek Mainstem		$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 4 \\ & 2 \\ & 2 \\ & 0 \end{aligned}$
	1999	Mainstem Salsipuedes Creek San Miguelito Creek		$\begin{aligned} & 4 \\ & 40 \\ & 20 \end{aligned}$
Snorkel/Bank observations	1994	Mainstem Salsipuedes Creek		$\begin{aligned} & 3 \\ & 104 \text { (yoy), } 12 \text { juveniles } \end{aligned}$
	1995	Mainstem Hilton Creek Salsipuedes ${ }^{1}$ Creek Nojoqui Creek		$\begin{aligned} & 44-296^{2} \\ & 224 \text { (yoy) } 25 \text { (adult) } \\ & 6-15^{2} \\ & 0 \end{aligned}$
	1996	Mainstem Hilton Creek Salsipuedes ${ }^{1}$ Creek Nojoqui Creek		$\begin{aligned} & 39 \\ & \text { no survey } \\ & 64 \\ & 0 \end{aligned}$
	1997	Mainstem Hilton Creek Salsipuedes ${ }^{1}$ Creek Nojoqui Creek		$\begin{aligned} & 1 \\ & 19-25^{2} \text { yoy } \\ & 394 \text { (yoy/juv/adult) } \\ & 0 \end{aligned}$
	1998	Mainstem Hilton creek Salsipuedes ${ }^{1}$ creek Nojoqui Creek Quiota Creek		$\begin{aligned} & 100-1200^{2} \\ & 1000 \text { yoy mostly } \\ & 45^{3} \text { juv/adult } \\ & 1 \\ & 100 \text { yoy } \end{aligned}$
	1999	Mainstem Salsipuedes ${ }^{1}$		$\begin{aligned} & 118 \\ & 98 \end{aligned}$

(Engblom 1999, 1999a).
yoy= young of the year
juv= juvenile
${ }^{1}$ Includes El Jaro Creek, a tributary of Salsipuedes Creek.
${ }^{2}$ Multiple surveys
${ }^{3}$ Estimate, data not compiled

It is also noted by NMFS that the numbers for the mainstem in Tables 2 and 3 do not add up precisely. In NMFS's opinion, this is due to a lack of standardized data recording and reporting techniques among the entities conducting and reporting research on the Santa Ynez. The numbers are fairly close however, especially relative to each other, and clearly reflect the small size of the population.

Scale samples from Santa Ynez River steelhead analyzed by CDFG in 1999 showed evidence of steelhead/rainbow trout with and without growth commonly associated with time in the ocean; which may indicate the presence of both life forms (Titus 1999). The number of resident rainbow trout in the action area is unknown. The exact relationship between resident rainbow trout and steelhead is unknown (NMFS 1997), but it is thought that anadromous and resident forms can interbreed, and that anadromous individuals can have resident offspring and vice versa (NMFS 1997). ${ }^{2}$

The small number of steelhead observed in the Santa Ynez watershed is not encouraging with respect to the population's chance of long term survival in the action area. As noted above, the area with the most juveniles and/or migrants and/or redds varies by year, and in all cases numbers are very low. For example, Salsipuedes Creek appears a fairly consistent producer of juveniles, although in some years Hilton Creek and/or the mainstem contain more juveniles. NMFS concludes that the population is vulnerable not only to environmental variation (natural and human caused) but also to the loss of genetic variation due to low population size (U.S. Department of Energy 1993).

Quantity and Quality of Critical Habitat in the Action Area

Watershed Overview

The Santa Ynez River is one of five major river basins (Santa Ynez, Santa Maria, Ventura, Santa Clara, Malibu Creek) used or potentially used by the Southern California steelhead ESU. The watershed drains an area of approximately 900 square miles. The river itself is about 90 miles in length and flows west to the Pacific Ocean between the Pursima Hills and San Rafael Mountains (4,000 to 6,000 feet) to the north and the Santa Ynez Mountains (2,000 to 4,000 feet) to the South. The climate is typical of Southern California, with hot dry summers and cool wet winters. Droughts lasting several years reoccur, as do wetter periods (U.S. Bureau of Reclamation et al. 1995).

Land use in the Santa Ynez River watershed is mainly private, and within the jurisdiction of Santa Barbara County. There is some United States Forest Service (USFS) land in the upper

[^2]portion of the watershed above Bradbury Dam. Vandenburg Air Force Base has jurisdiction over the river mouth and estuary. There are some Bureau of Land Management lands in the watershed, along with Reclamation lands at the Cachuma Project. Agriculture, including ranching, is a dominant land use in Santa Barbara County and the Santa Ynez watershed. Small cities such as Lompoc, Solvang, and Buellton, are also found along the river below Bradbury Dam. The Santa Ynez Indian Reservation is also located in the watershed (U.S. Bureau of Reclamation et al. 1995).

Above Bradbury dam, the upper portion of the watershed is regulated by Gibraltar and Juncal Dams. Gibraltar Dam was completed in 1920 and regulates 216 square miles of the watershed. Juncal Dam was completed in 1930 and regulates 14 square miles. Gibraltar Dam's reservoir has a capacity of about 8,600 acre feet, while Juncal's has a capacity of about 5,000 acre feet. Diversions from Gibraltar are not operated on a safe yield basis, and could range from 9,000 acre feet to zero depending upon climate conditions. Juncal Dam currently diverts on average 1,750 acre feet of water per year (U.S. Bureau of Reclamation et al. 1995).

The area currently available to steelhead includes the mainstem below Bradbury Dam, approximately 48 miles long, and its tributaries. The river below the dam flows in a moderately constrained valley until it passes through the "Narrows" and emerges onto the Lompoc Plain. The active channel ranges from 40 to 400 feet wide, with a flood plain that is constrained by bedrock in the area termed "the Narrows", and over 1,000 feet wide both upstream at Solvang, and downstream at Lompoc (U. S. Bureau of Reclamation, 1999). Groundwater below Bradbury Dam follows the same pattern. The Santa Ynez Riparian Basin consists of the shallow alluvial material adjacent and hydrologically connected to the surface flows of the Santa Ynez River until the Lompoc Plain is reached. Here, the groundwater basin expands (Lompoc Basin). The Santa Ynez River is the primary water supply for the Santa Ynez Basin and an important component of the Lompoc Basin, which also receives water from precipitation, seepage from other streams, irrigation return flow, and wastewater effluent. Storage in the Santa Ynez River Basin depends upon climate conditions. Demand is greater than the supply in dry conditions. The Lompoc Basin has experienced declines in the level of groundwater available, but specific estimates of available supply appear variable. The Cachuma Project operates under Water Rights Order 8918 to supply water for recharge to both these basins in certain years and climate conditions (U.S. Bureau of Reclamation et al. 1995).

Reclamation has provided summary maps of habitat conditions in the watershed below Bradbury Dam. NMFS considers these maps to be preliminary because: 1) some of the habitat information has been collected using different sampling strategies sometimes in different but overlapping areas, and sometimes by different agencies during different years. 2) Much of this information cannot or has not been synthesized into a comprehensive quantitatively based whole that provides a clear picture of habitat conditions from a watershed assessment perspective. NMFS does consider the maps useful as an interim general overview and refers those interested to the biological assessment. NMFS has chosen to describe habitat quality in narrative form below.

Habitat Quality - Mainstem

The information available indicates habitat conditions for steelhead in the mainstem and lagoon are typical of conditions found in large rivers in Southern California, and reflect natural climate conditions plus human impacts. Substrates are a mix of cobble, gravels, and fine sediment. Pool habitat is often limited, and the river channel is braided in some areas (U. S. Bureau of Reclamation, 1999). The amount of vegetation in riparian areas varies, and in many cases does not provide shade or cover to the wetted channel during the summer, based on observations by NMFS biologists. Water temperatures are typical of those found in large Southern California rivers. Summer temperatures are often over 25 degrees Celsius during the day for several weeks during most summers (U. S. Bureau of Reclamation, 1999). The majority of the mainstem serves as migration habitat in NMFS's judgment, although as noted above, rearing and some spawning takes place in the first ten miles below the dam. Conditions in this area are often poor for rearing or spawning, as for example cover and pool habitats are sparse (U.S. Bureau of Reclamation 1999, field observations by NMFS biologists during 1998 and 1999).

Habitat Quality - Tributaries

Portions of the tributaries currently utilized by steelhead below the dam often have better habitat conditions than much of the mainstem. The lower reach (1,380 feet) of Hilton Creek (where the lower outlet of the water supply line will be operated and where fish rescues have occurred) is observed by NMFS biologists to be a well-confined channel shaded in many areas by riparian vegetation and by valley walls in incised areas. A rocky cascade and bedrock chute are likely passage impediments (but not a complete blockage) for migrating steelhead. Habitat conditions are considered good for steelhead spawning and rearing both below and above the passage impediment in most cases, although just above the passage impediment there is about 100-200 feet of riffle/run habitat with little, if any, riparian cover (U.S. Bureau of Reclamation 1999). The water supply line's two outlets are both above the passage impediment. Habitat above the impediment to the boundary of Reclamation property (1,593 feet - the location of the upper release point) appears to be in fairly good condition based on the best professional judgement of NMFS staff. According to Reclamation, habitat conditions beyond this point are similar or better (U.S. Bureau of Reclamation 1999).

Salsipuedes Creek and its tributary El Jaro Creek are located upstream of the town of Lompoc near the area known as the Narrows. Habitat conditions vary in this system, with a high silt load found in the lower part of the system in 1996, and a lack of canopy cover in some areas. Good quality habitat for steelhead also exists in both creeks. Salsipuedes Creek has good canopy cover, pool, and riffle areas for spawning and rearing steelhead near its confluence with El Jaro Creek. El Jaro Creek also has good steelhead habitat in this area and may have good habitat further upstream (U.S. Bureau of Reclamation 1999, field observations by NMFS biologists).

Quiota Creek drains to the Santa Ynez River downstream of the town of Santa Ynez and upstream of Solvang. Habitat conditions for steelhead appear good, but access problems prevent
consistent survey efforts. Nojoqui Creek (near Buellton) appears to contain good spawning and rearing habitat for steelhead in upper reaches, but only 1 or 2 steelhead have ever been documented in this creek. Data are currently not available to pinpoint reasons for the lack of use of this creek by steelhead. Habitat surveys have not been done in Alisal Creek, and a dam and small reservoir exist about 2-3 miles upstream of its confluence with the Santa Ynez. San Miguelito Creek joins the Santa Ynez River via a 2 mile long concrete box culvert at the city of Lompoc. The concrete box culvert has several drop structures and is expected to prohibit upstream fish passage. Other passage barriers exist upstream of the box culvert, but fish habitat above the culvert is considered fairly good in Reclamation's opinion. (U.S. Bureau of Reclamation 1999, field observations by NMFS biologists).

Factors Affecting Species Environment Within the Action Area

Steelhead habitat in the action area identified above is, or may be, affected by alteration or modification of stream flow and instream habitat, passage impediments and barriers, agricultural activities, flood control activities, urbanization, poor water quality, and sedimentation, based on the observations of several NMFS fishery biologists, and the record of NMFS section 7 consultations in the watershed. For example, six crossings in Quiota Creek are likely partial (45) or complete (1-2) passage barriers. Two problem crossings have been identified in Salsipuedes Creek, and as noted above, the large concrete box culvert in San Miguelito Creek impedes upstream adult passage. The introduction of exotics, including steelhead predators such as large mouth and small mouth bass (Micropterus salmoides and M. dolomieui), is also of concern (U.S. Bureau of Reclamation 1999). These species, and bluegill (Lepomis macrochirus), are often found in habitats containing steelhead fry and young of the year, and are expected to prey upon them (U.S. Bureau of Reclamation 1999). The amounts and frequencies of many of these activities, and their precise impacts to the small steelhead population and steelhead critical habitat are unknown.

Cachuma Project

Cachuma Project construction, operation and maintenance activities have occurred since the early 1950s, approximately two decades prior to the Endangered Species Act of 1973. The effects of project construction and operation during this time period are reflected, in part, in the current status of the species being considered in this biological opinion. This includes the complete blockage of access to the bulk of steelhead spawning and rearing habitat noted above and the impoundment of sediment that would normally be transported and distributed (at rates dependant upon climate conditions and other factors) throughout the mainstem Santa Ynez River. Operating and maintenance procedures have varied during the past. For example, procedures for water rights releases and winter flood control have varied over the years (U.S. Bureau of Reclamation 1999, U.S. Bureau of Reclamation et al. 1995). Data do not exist to precisely estimate the effects to steelhead and steelhead habitat of changes in operations and maintenance that have occurred since the project's construction. In general, the construction and operation of Bradbury dam has blocked access to spawning and rearing habitat, changed water flow patterns
downstream, resulting in a loss of migration time for steelhead, a potential for fish stranding, and modified rearing conditions in the mainstem in both beneficial and detrimental ways. Thus, the construction, operation, and maintenance of Bradbury Dam is one of the major contributors to the current status of steelhead and their habitat in the Santa Ynez River. Recent operating procedures (since 1995) have provided additional water during summers to increase the amount and quality of rearing habitat in a portion of the mainstem over past operating procedures.

Other Section 7 Actions

NMFS has conducted several section 7 consultations in the action area just prior to and after steelhead were listed in August 1997. The specific actions, and impacts to steelhead are summarized in Table 4.

Table 4. Section 7 consultations in the action area from March 10, 1997 to present.

Type and location	Impact determination
Bradbury Dam Seismic Retrofit	Conference Letter - Not Likely to Adversely Affect (NLAA) *Currently under renitiation
Emergency Flood Response in Alamo Pintado Creek	NLAA
Embankment stabilization (2) in Salsipuedes Creek	NLAA
Bridge replacement St. Route 246, Santa Rosa Creek	NLAA
Embankment replacement/rockslope protection of HWY 154, Alamo Pintado Creek	NLAA
100 feet of rock rip rap in Alamo Pintado Creek	NLAA
60 feet of rock rip rap in Alamo Pintado Creek	NLAA
Pipe and tire dike in Salsipuedes Creek	NLAA
Removal of Hilton Creek Temporary Watering Line	Likely to adversely affect, not likely to jeopardize 11 fish rescued 3 juvenile steelhead killed
Steelhead rescue at Hilton Creek	860 steelhead relocated (3 adults) 5 juveniles killed Approximately 10\% received electrical burn injury *Currently under follow-up consultation
Use of temporary road for seismic retrofit project	NLAA

Type and location	Impact determination
Construction of permanent Hilton Creek Water Supply Line	NLAA
Initial test of Hilton Creek Permanent Water Supply Line	NLAA
Opening Ceremony for Hilton Creek Permanent Water Supply Line	NLAA

NMFS has authorized the following take from scientific research permits under Section 10(a)(1)(A) of the ESA in the Southern California ESU as shown in Table 5.

Table 5. Authorized take of Southern California ESU steelhead.

| Authorized
 Take
 Observe/Harass | Capture/Release
 (Mortality in
 parentheses) | | Rescue | | Carcass |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Several of these take authorizations cover the entire Southern California ESU and could occur on the Santa Ynez River population. Currently only permit number 1091 occurs on the Santa Ynez River steelhead population. The total amount of steelhead take reported under the above permits for 1999 is shown in Table 6.

Table 6. Reported take of Southern California ESU steelhead in 1999.

Authorized Take	Observe/Harass		Capture /Release (Mortality in parentheses)		Carcass
Permit	Adult	Juvenile	Adult	Juvenile	
1050		3	$2(0)$		
1091	57	160	$42(2)$		4
1184		several			
Total	57	$163+$	$44(2)$		4

NMFS has received 4 applications for new section 10(a)(1)(A) permits for the Southern California ESU requesting observe/harass take of adult and juvenile steelhead, capture/release take with unintentional mortalities, and collection of steelhead carcasses for scientific research purposes. The take applied for is shown in Table 7.

Table 7. Proposed take of Southern California ESU steelhead.

| Proposed
 Take | Observe/Harass
 Capture/Release
 (Mortality in
 parentheses) | | Rescue | Carcass |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Due to the capture/release and observe/harass take allocation of approximately one-third to onehalf of the known adult steelhead population in the Southern California ESU, proposed capture and release take for a similar number of adult steelhead, proposed observe/harass for over twice the number of known adult steelhead, and exceedance of observe/harass take and unintentional mortality take in the implementation of permit 1091, NMFS is currently reviewing all authorized and proposed scientific take under section $10(\mathrm{a})(1)(\mathrm{A})$ in the Southern California ESU.

EFFECTS OF THE ACTION

The effects of the project action on steelhead and their critical habitat are those associated with the future operations and maintenance of the Cachuma Project. In general, critical habitat is likely to be adversely affected by changes to river flows, which will affect habitat quantity and quality. Steelhead may be harmed or killed by stranding, delay or prevention of migration, relocation, and degradation of habitat quantity and quality. The duration of many of these effects will be variable and somewhat unpredictable, and is expected to last as long as the project is operated and maintained. There are no other indirect or inter-related and inter-dependent effects of this project action.

Methodology for Effects Analysis

As noted (in the "Status of the Species and Critical Habitat" and "Environmental Baseline" sections) population data in the action area are not sufficient to allow direct quantification of the number of steelhead affected by the project's activities. Where NMFS has no specific data on the demographic responses of listed species, NMFS bases its assessment on the relationship between habitat and species' populations and assumes that an activity that significantly destroys or modifies habitat of listed species would be followed by a significant demographic response. Based on the extensive amount of published literature on the relationship between changes in habitat quantity, quality, and connectivity and the persistence of plant and animal populations, we believe our assumption is consistent with the best scientific and commercial information available. For detailed summaries readers can refer to the work of Fiedler and Jain (1992), Gentry (1986), Gilpin and Soule (1986), MacArthur and Wilson (1967) Nicholson (1954), Odum (1971, 1989), Shafer (1990), and Soule (1986, 1987).

Similarly, to determine a species' needs, NMFS often looks to historical conditions as a guide to conditions associated with self-sustaining and self-regulating populations. Where used, these conditions are not necessarily management goals. Instead, they serve as an important reference point for gauging the effects of projects on the species' ability to survive in the current ecosystem. In such cases, a project often has fewer impacts on a species where it minimizes or avoids changes to, and/or mimics the conditions necessary for the species' long-term survival to protect listed species from adverse effects. This approach has been used in evaluating this project, with the following important caveat: In some cases it is important to recognize that providing or mimicking a more "natural" condition with respect to one or more habitat features may be detrimental or neutral in effect to a listed species if other habitat features are not, or cannot be addressed in a coordinated fashion. For example, a return to what is potentially a more natural flow condition in the summer in the action area would likely increase the amount of time that the river bed below the dam was dry and incapable of supporting steelhead. Because Bradbury Dam precludes steelhead access to the river and tributaries above it, steelhead cannot escape detrimental habitat conditions that would occur in this area of the mainstem; a return to historic pre-dam conditions of flow would be a significant adverse impact. Thus, the analysis
below uses natural or historic conditions only as reference points where appropriate.
The approach used in this assessment is intended to determine if the proposed action is likely to degrade the quantity and quality of habitat necessary to support the population of steelhead in the action area. The assessment approach is intended to determine if the frequency, duration, and magnitude of habitat impacts carried forward into the future are likely to impact the size, number, dynamics, or distribution of the steelhead population in the action area in ways that can be reasonably expected to appreciably reduce the likelihood of both the survival and recovery of the Southern California Steelhead ESU. The ability of the ESU to survive and recover is contingent upon maintaining a sufficient ESU population represented by all necessary age classes, genetic heterogeneity, and number of sexually mature individuals producing viable offspring, which exists in an environment providing all requirements for completion of the species life cycle, including migration, spawning, and rearing.

A large amount of work has been done to characterize fish and wildlife habitat in the Santa Ynez River below Bradbury Dam and in Hilton Creek. Documents which summarize investigations and the results of data collection include: The 1995 Final Environmental Impact Statement/Environmental Impact Report for Cachuma Project Renewal (U.S. Bureau of Reclamation et al. 1995), the Revised Fish Resources Technical Report for the Final EIS/EIR for Cachuma Project Renewal (U.S. Bureau of Reclamation et al. 1995a), numerous Santa Ynez River Consensus Committee and Technical Advisory Committee (Santa Ynez River Consensus Committee and Technical Advisory Committee) reports and publications (1995-1999) of recent data collection/habitat studies, the draft and final biological assessment for the project (U.S. Bureau of Reclamation 1998, 1999), the Lower Santa Ynez River Fish Management Plan (Santa Ynez River Technical Advisory Committee 1999b), and a California Department of Water Resources Draft Instream Flow Needs Study (1989).

NMFS has analyzed the effects of the Cachuma Project by utilizing information from the above documents, the biological assessment and revised project description (U.S. Bureau of Reclamation 1999, 2000) and the scientific literature. The most current site-specific information has been used where such information exists and reflects the best available data. Many of the activities described above in the Description of the Proposed Action section occur concurrently in the action area. Thus, NMFS has focused where possible on analyzing the project activities in a combined fashion to synthesize effects. Where a lack of information prevents NMFS from being able to analyze the effects of a particular action or actions, NMFS has separated these actions out.

The proposed project is expected to affect the following essential features of steelhead critical habitat: passage conditions, usable area, cover/shelter, water quality (temperature, dissolved oxygen, turbidity and sedimentation), riparian vegetation, and food. Effects to these critical habitat features and the resulting and direct effects to steelhead from the proposed project are described as follows.

Effects to Migrating Steelhead

In order for the Santa Ynez steelhead population to maintain its viability, adults must have adequate opportunity to migrate to the remaining spawning areas in the watershed below the dam, and smolts must have adequate opportunity to reach the ocean. Access to spawning areas in the watershed below the dam requires (among others) sufficient streamflow to enable steelhead adults to swim through shallow areas of the Santa Ynez River on their way to tributary and mainstem spawning areas and on their (if they survive spawning) and their progeny's return to the ocean. In addition to minimum flows needed at shallow areas, flows must be available long enough for steelhead to complete their journey. The project action affects migration opportunity by the impoundment of water at the reservoir during the wet season (usually December-April). Impoundment will reduce the amount and duration of surface flows in the mainstem below the dam during the time adult steelhead and smolts are migrating.

Water Impoundment

Mainstem Santa Ynez

Adult upstream passage conditions have been analyzed by Reclamation and The Santa Ynez River Technical Advisory Committee through the use of cross sections at areas most likely to impede steelhead passage at low flows (Santa Ynez River Technical Advisory Committee 1999; U.S. Bureau of Reclamation et al. 1995). In this case the criteria used for passage availability was 8 feet of contiguous wetted channel at $1 / 2$ foot of depth at shallow river areas (U.S. Bureau of Reclamation 1999). Different flow at each transect is required to produce this depth and width: 30 cfs at Lompoc (37 miles downstream of Bradbury Dam), 15 cfs at Cargasachi (24 miles downstream of the dam), and 25 cfs at Alisal Bridge (10 miles downstream of the dam). In the opinion of NMFS fishery biologists and hydraulic engineers, these criteria are close to the minimums at which passage is possible, not water depth and width that produce good migration habitat.

The amount of time it takes adult steelhead to migrate in the Santa Ynez River is unknown (U.S. Bureau of Reclamation 1999). A number of factors affect the distance salmonids can or do travel each day of migration in a river or creek, including: stream flows, time of day, turbidity, and temperature. The information available indicates that stream flow is likely the dominant factor (Shapovolov and Taft 1954, Banks 1969). Steelhead will pause migration if flows decrease quickly after storms, and resume when the next storm increases flow. They may also resume migration at low flows if the period without storm flow is prolonged (Shapovolov and Taft 1954). Examination of the available scientific information on the migration of salmonids indicates that when averaged, coho, sockeye, and chum are able to migrate about 20 miles per day (with a range of 8 to 31 miles per day depending upon species and run) (Groot and Margolis 1991). Dettman and Kelly (1986) observed upstream migration rates of from 1 to 10 days (average 4 days), following increases in flow, for the first adult steelhead of a spawning group to travel the lower 18.5 miles of the Carmel River, California. Review of the two flow events that required 9 and 10 days for the first adult steelhead appear to be associated with the two largest
flow events over the 13 years of observation.
Although speculative due to incomplete sampling, trapping data from Hilton Creek provides some indicators of upstream migrant behavior in the Santa Ynez River. The following information is based on a qualitative review relating trapping records of upstream migrating steelhead ($>340 \mathrm{~mm}$) from Hilton Creek to flow records at the Solvang gauge (Alisal Bridge area). The data from 1995 and 1997 represent years of abundant discharge with multiple flow events and low discharge with a single event, respectively. The 1995 Solvang gauge record indicates that daily average flow following the first storm event in January to the end of May ranged from 95 cfs to $13,330 \mathrm{cfs}$. Thirty (65%) of the total number of fish trapped occurred on the descending limb of the hydrograph within 10 days of distinct flow events. Nine fish (20\%) were trapped on the apparent rising limb of the hydrograph within approximately 3 days of these peaks. The 1997 Solvang gauge record indicates one primary flow event where daily average flow recorded 166 cfs on January 26 and steadily declined to 0 cfs by the end of May. Eight (73%) of the total number of fish trapped occurred within 6 days of the flow peak. However, this event was preceded by an initial rise in the daily average flow from 37 cfs (January 22) to 143 cfs (January 23) resulting in additional migration opportunity relative to the January 26 peak. One fish was trapped the day following this initial increase in daily discharge. Gauge records in the lower Santa Ynez River near Lompoc indicate adequate flow conditions for migrating steelhead occurred prior to the flow events recorded at the Solvang gauge in both 1995 and 1997, thus, providing an opportunity for steelhead to enter the system and migrate through the lower reaches of the Santa Ynez River prior to ascending the remaining distance to spawning areas in the tributaries and mainstem near the dam. It must also be noted that in addition to the uncertainty regarding the time it takes steelhead to migrate in the Santa Ynez River, the river's lagoon at its connection with the Pacific Ocean may become blocked (like many Southern California streams) by a sand berm at times during steelhead migration season, dependent upon climate conditions. According to Reclamation, no information is available regarding the frequency the bar is open or the amount of flows required to breach it (U.S. Bureau of Reclamation 1999).

Reclamation proposes to continue to impound water at Bradbury Dam in the same manner as in the recent past and provide supplemental flows to assist steelhead migration as described in the "Description of the Proposed Action" section above. Therefore, NMFS has addressed the effects of the proposed project on migrating steelhead by analyzing the effects of continued water impoundment and supplemental flows for migration. In general, analysis of the transect passage data confirm information from the 1995 Revised Fish Resources Technical Report (U.S. Bureau of Reclamation et al. 1995), which also used a low flow approach. The data available (Santa Ynez River Technical Advisory Committee 1999), which model flows for natural conditions (without Bradbury Dam) and recent water impoundment operations as if they occurred from 1942-1993, indicate that the proposed water impoundment would decrease the amount of days minimum passage flows were equaled or exceeded at Lompoc by about 24% (2770 total days 2101 days with impoundment $=669$ days, divided by $2770=0.242$) over the 50 years modeled
when compared with natural (pre-dam) conditions ${ }^{3}$. A similar effect would occur if the proposed impoundment was carried forward into the future; assuming that the next 50 years of climate conditions will be similar to the last 50 years. This reduction would affect steelhead access to all the spawning and rearing areas in the Santa Ynez watershed below Bradbury Dam.

Based on the model, the number of days minimum passage flows are equaled or exceeded at Alisal Bridge is expected to be reduced by about 42% (2839 total days -1644 days with impoundment $=1195$ days, divided by $2839=0.421$) during the next 50 years if the proposed water impoundment is carried forward. This reduction would affect steelhead access to spawning areas in the mainstem, Hilton, and Quiota Creeks. It is important to note that this use of the model (and its use to determine the occurrence of mainstem rearing flows below) needs further verification in NMFS's judgment. The model represents the best available data and has been used in this analysis to draw generalized conclusions regarding changes in river flows. Where numbers of days, flow amounts, and/or frequencies of actions from the model are reported, they are used to determine relative effects of various operations over a 50 year time horizon and not as a predictor for exact project operations. In addition, the model used does not predict when the natural bar at the mouth of the estuary will be open to allow fish passage. Therefore the numbers reported above could over estimate the actual amount of migration time available under any condition, as the minimum flows noted above may not be enough to breach the bar or maintain passage through it.

Climate conditions and water use will affect the amount of reduction to migration availability in each year, and when the reduction occurs. For example, Table 8 shows the variability in passage availability from 1942-1993 based on the model. Further analysis of this variability indicates that according to Reclamation's model, during wet years (about 33% of all years) steelhead appear to have between 79 to 121 days from January - April when minimum passage flows or greater are available at Alisal Bridge under conditions associated with historical (pre-dam) conditions. The average number of passage days available under these conditions is about 101 days. Under the proposed water impoundment, steelhead will have between 9 and 120 days of minimum or greater passage flows available. The average number of passage days available is about 78. Under both historical conditions and the proposed water impoundment, approximately 95% of the wet years provide 26 or more days of minimum or greater passage flows ${ }^{4}$.
Additionally, the bar at the mouth of the estuary is also open often during wet years. Therefore NMFS does not believe that these years present a high degree of concern for migrating steelhead. In dry years (about 36% of all years) the model indicates that in about 90% to 95% of these years 4 or fewer days of minimum passage flows were available with (the proposed impoundment), or without the presence of Bradbury Dam. It is unlikely that much, if any, migration took place

[^3]Table 8. Summary of passage days generated by Reclamation passage proposal ${ }^{1}$.

1) Modified from data table provided by Stetson Engineers on $8 / 24 / 00$.
2) Reclamation passage proposal includes passage supplementation up to 3,200 (2,500 under 1.8 surcharge interim) acre-feet in years following a spill.
3) See Table 1 "Hydrologic Year Type Classification" from the May 11, 2000, memo titled "Analyses Regarding Passage Flow Supplementation Proposal."
4) Passage days are defined as number of days when flows at Solvang were 25 cfs or greater, January through April.
during these years historically, and the bar at the mouth of the estuary was unlikely to be open very often. Normal years comprise 31% of all years. When the model removes the effects of Bradbury dam, passage opportunities (flows at or greater than 25 cfs) ranged from 20 to 120 days, averaging 63.5 days. Under the proposed impoundment of water, passage opportunities ranged from 0 to 68 days, averaging 18.5 days. These years show the most impact when proposed water impoundment operations are compared with historical conditions for steelhead migration and thus are the years of greatest concern.

Therefore, the proposed water impoundment will reduce access to spawning and rearing areas in the mainstem within 10 miles of the dam (Alisal Bridge) including access to Hilton Creek, Quiota Creek, and possibly Alisal Creek by reducing the number of days minimum passage flows are available when these operations are compared with historical (no dam) conditions. Hilton Creek currently provides some of the best spawning and rearing habitat in the watershed below the dam, as evidenced by steelhead use in some years shown in Tables 2 and 3 above. Reduction in the duration of minimum migration flows has likely lowered rates of migration because lower flows occur more often, resulting in reduced water column depth. Reduced water column depth at locations in streams where passage of fish is limited by depth, such as the tail of pools or head of riffles, is expected to lower rates of migration, and alter the timing of migration (Mundie 1991, Washington Department of Fisheries 1992). This reduction in migration opportunity will be carried forward into the future by the proposed water impoundment operations. Lower rates of migration are likely to preclude some fish from successfully spawning. Fish (both adults and smolts) that are delayed are likely to experience increased predation and the extra cost in energy during the delay may reduce the ability of fish to successfully spawn (Mundie 1991, Banks 1969). Fish that spawn later due to migration delay are likely to produce offspring later in the season. Such offspring may have lower survival chances as they may have less time to rear and thus migrate to the ocean as smaller fish.

Quick reductions in flow could harm steelhead migrants by stranding them in small pools if flows become fragmented and on dry river bed if steelhead are unable to escape to areas still containing water. Steelhead separated from water by stranding will not survive longer than ten minutes (Washington Department of Fisheries 1992). Stranded fish in pools unconnected to surface flows can survive for longer periods of time, perhaps several weeks or months. However, fish in such a condition are often exposed to higher rates of predation, higher temperatures, and/or oxygen depletion (Cushman 1985). Returning higher flows may provide respite from these conditions, but the fitness of these fish, and therefore their chance of survival, has likely been reduced by the higher physiological costs of surviving in poor habitat conditions. Juvenile salmonids are more vulnerable to stranding than adults (Washington Department of Fisheries 1992). What little data are available (Engblom 2000a) do not indicate stranding of steelhead (adults or smolts) during migration. On average it takes several days for flows to fall from 50 to 25 cfs downstream of Bradbury Dam under recent climate and proposed operating conditions (U.S. Bureau of Reclamation 2000). It may be possible that steelhead could become stranded in isolated areas of surface flow downstream of the dam during drier years when the reservoir is actively impounding water if quick reductions in flow occur. NMFS cannot accurately estimate
this effect and believes that it is more likely that adult steelhead will avoid becoming trapped in isolated pools when they hold in the lower mainstem during low flow conditions. Juveniles need much less flows to successfully migrate due to smaller body size and their downstream direction of travel. Therefore, the lower rates of migration and migration delay noted above are more likely for adults.

Due to the reduction in migration time availability noted above, and likely adverse effects to steelhead, Reclamation is proposing to supplement migration flows as described above in the "Description of the Proposed Action" section of this opinion. According to Reclamation, the amount of inflow to the reservoir cannot be accurately predicted on a yearly basis. In addition, the reservoir surcharges of 1.8 and 3.0 feet will not be available in all years. Therefore, Reclamation will not always be able to supplement migration flows during the years of greatest concern for steelhead migration (normal years). However, NMFS's analysis indicates that when storms are supplemented, the proposal insures a minimum number of migration days per year during the 14 years the model predicts that surcharged water would be used to supplement storms (Table 9). Storm peaks are extended by mimicking the average storm flow decay rate upstream of the reservoir in normal years; which ensures approximately 14 days of migration availability downstream of Bradbury Dam after storm peaks in the years supplemented. Based on the limited information available, it is NMFS's best professional judgement that 14 days of consecutive migration availability is likely to significantly increase successful migration by steelhead in the Santa Ynez River. The average storm flow decay rate is mimicked at the USGS Solvang gauge location (Alisal). According to Reclamation, the minimum flow necessary to achieve passage at Alisal (25 cfs) will achieve the minimum conditions necessary for passage downstream at Lompoc 92% of the time (U.S. Bureau of Reclamation 2000). As the supplementation will provide a storm flow tail out that starts at 150 cfs , NMFS concludes that the proposal will ensure steelhead passage through all the shallow areas noted above during supplementation.

As above, this information is the best available for predicting approximately how many extra migration days will be provided during the next 50 years ${ }^{5}$ (assuming climate conditions are similar). During the interim period before the 3.0 foot surcharge is authorized and implemented, somewhat less additional migration days are provided. The interim period is expected to last for only 5 years, and the reservoir may be surcharged to 1.8 feet only during a few, if any, of these years. Therefore the number of additional migration days achievable during the interim period is not predictable with any useful degree of accuracy.

NMFS's analysis of data tables provided by Reclamation (U. S. Bureau of Reclamation 1999d, Stetson 2000), based on the modeling approach described above, indicates that during normal years proposed water impoundment operations result in 6 of 16 years (38% of years) providing

[^4]Table 9. Summary of passage releases and account for long term passage proposal.

Year	Spill?	Years from Surcharge	Release from Passage Account	End-of-Year Passage Account
1942	spill		0	3,200
1943	spill		0	3,200
1944	spill		0	3,200
1945	spill		0	3,200
1946	spill		0	3,200
1947		1	0	3,200
1948		2	0	3,200
1949		3	1,750	1,450
1950		4	1,450	0
1951		5	0	0
1952	spill		0	3,200
1953		1	1,550	1,650
1954		2	1,650	0
1955		3	0	0
1956		4	0	0
1957		5	0	0
1958	spill		0	3,200
1959		1	1,450	1,750
1960		2	1,750	0
1961		3	0	0
1962		4	0	0
1963		5	0	0
1964		6	0	0
1965		7	0	0
1966		8	0	0
1967	spill		0	3,200
1968		1	1,825	1,375
1969	spill		0	3,200
1970		1	1,070	2,130
1971		2	0	2,130
1972		3	0	2,130
1973	spill		0	3,200
1974	spill		0	3,200
1975	spill		902	3,200
1976		1	1,970	1,230
1977		2	0	1,230
1978	spill		0	3,200
1979	spill		0	3,200
1980	spill		0	3,200
1981		1	1,230	1,970
1982		2	1,760	210
1983	spill		0	3,200
1984	spill		0	3,200
1985		1	0	3,200
1986	spill		0	3,200
1987		1	1,950	1,250
1988		2	1,250	0
1989		3	0	0
1990		4	0	0
1991		5	0	0
1992		6	0	0
1993	spill		0	3,200

14 or more days of passage. The proposed supplementation of migration flows will increase the number of years providing 14 or more days of passage to 10 out of 16 years, or 63% of years. Three of the normal years would decline in number of passage days if supplementation is provided, likely due to the effect of impoundment operations. In one of these years the decline reduces the total number of migration days to 13 . Three other normal years would not receive supplementation and the total number of passage days for each of these ranges from 0 to 5 . While these years are a concern for steelhead passage, the proposed supplementation roughly doubles the amount of normal years when 14 consecutive days of migration opportunity are available under the proposed water impoundment.

During dry years the proposed water impoundment operations result in zero years with 14 or more passage days. The supplementation proposal will provide approximately 14 passage days in 7 out of 19 dry years, or in 37% of these years. Conditions may be poor for steelhead rearing during some of these years, depending in part upon previous and subsequent year conditions. Therefore, additional migration opportunity in dry years may have detrimental effects to the steelhead population in the Santa Ynez watershed. Adults could be encouraged to migrate and spawn in the Santa Ynez River watershed when conditions are not favorable for their offspring's survival. Based on Reclamation's intent to adaptively manage these releases to avoid the driest years and review of stream gauge records in the Santa Ynez River, NMFS believes this effect can be minimized (and releases for migration further shifted to years of higher concern) as dry climate conditions should become quickly apparent during steelhead migration season. The best available information does not allow NMFS to predict the exact number of years or days additional migration will be provided, nor the number of fish that may benefit (or possibly harmed if a large amount of releases are made during the driest years). The proposed increase in migration availability will occur for the life of the project.

Tributaries - Hilton Creek

Migrating steelhead (adults and juveniles) in Hilton Creek may be affected by the project action if flows in Hilton Creek are altered during the wetter months when migration and spawning occurs. As noted, changes to flows could delay, prevent, and/or strand steelhead. Based on review of the proposed use of the water supply line in Hilton Creek, NMFS does not believe migration of adults or juveniles will be adversely affected by the operation of the water supply line, provided the ramping procedures outlined in the Description of the Proposed Action are followed. The narrow confined Hilton Creek channel makes stranding unlikely.

Tributaries - Passage improvements

Reclamation is proposing to fix a total of eleven road crossings in tributaries in the watershed below Bradbury Dam to improve or restore steelhead passage. The tributaries included in this effort are Hilton, Quiota, Salsipuedes, El Jaro (tributary to Salsipuedes), and Nojoqui Creeks. The total length of these streams is about 209,616 feet, or 40 miles. The length of stream newly accessible to steelhead once passage impediments and barriers are fixed will be 63,564 feet, or about 12 miles (U.S. Bureau of Reclamation 2000a). Unfortunately, about 4.5 miles of proposed
newly accessible habitat is currently in poor condition according to Reclamation (U.S. Bureau of Reclamation 2000). The remaining habitat that will become accessible (7.5 miles) is all in good condition (U. S. Bureau of Reclamation 2000a) and located in Hilton and Quiota Creeks. Reclamation will also improve access to approximately half of the habitat available in the 4 tributaries (about 20 miles) by fixing passage impediments. Habitat with improved access is all in fair or good condition according to Reclamation (U.S. Bureau of Reclamation 2000a). Reclamation has proposed a schedule to accomplish tributary passage restoration and improvement by 2005 (U.S. Bureau of Reclamation 2000, 2000a). Road crossings may be fixed earlier if matching grant money can be obtained. Steelhead will benefit by the availability of additional spawning and rearing habitat in many cases. These actions are likely to substantially increase the amount of spawning and rearing habitat available below Bradbury Dam and/or improve steelhead access to habitat. Thus, these actions will improve the Santa Ynez River steelhead population's opportunity to survive and recover.

Emergency Winter Operations

Emergency winter operations and gate testing during spill release may also affect available migration habitat. The purpose of these operations is to provide extra storage in the reservoir for incoming storm flows, temporarily hold back storm flows entering the reservoir, release storm flows from the reservoir at a faster rate than the natural rule curve, or test radial gate motors. Reclamation estimates these emergency flood control procedures will vary in length from a few hours to 2-3 days and will occur in approximately 11% of years, although the effects will be of temporary duration in each year that they occur. Water released by flood control operations will be equaled and likely exceeded by flood flows occurring within 48 hours. Thus, it is possible that these operations may further delay steelhead migrating in the Santa Ynez River if they result in enough flow to prevent steelhead from migrating during the water releases. However, because these operations will only occur in 11% of years, and the magnitude of releases will vary, NMFS does not believe these operations will substantially affect the ability of steelhead to migrate in the Santa Ynez River during the next 50 years.

Effects to Spawning Steelhead

To spawn and incubate eggs successfully, steelhead require cool clean water flowing through gravels of appropriate size, and cover for spawning adults, among other factors. In order for the Santa Ynez population to persist into the future, adequate access to good quality spawning habitat needs to be available.

Santa Ynez River

Adults spawning in the mainstem could face the same effects noted above for migrating steelhead, including reductions in spawning habitat and stranding. Effects will vary based on climatic conditions and reservoir levels. Little information on spawning habitat quantity and quality has been collected in some areas of the mainstem, due mostly to access problems related to private property. The most recent information available (U.S. Bureau of Reclamation 1999)
appears to indicate that the proposed project provides more wetted area than historic conditions (pre-dam) in riffles in the first ten miles downstream of the dam during dry years, and similar, but slightly less area than historical conditions during normal and wet years, as shown in Table 10. However, the amount of spawnable gravels contained in these riffle areas is unknown and data do not currently exist to further refine this information, although four redds were found in 1998 in the areas where surveys have occurred. Therefore, specific amounts of spawning habitat in the mainstem affected by the proposed project cannot be adequately quantified in relation to recent operations and historical conditions at this time.

Due to the reduction of historical flows expected by the proposed project (noted above in the discussion of migrating steelhead) during the winter and spring (January-May) it is reasonable to conclude that the proposed project would provide less flows than were historically available during some years to potential spawning areas in the mainstem for the life of the project if these operations were continued into the future. Some steelhead attempting to spawn would likely be prevented from doing so, thus contributing to constraining the population at its current small size or further reducing its total offspring in each year this effect occurred. Reclamation's proposed supplemental flows will offset this effect somewhat by providing additional flows in the mainstem for migration and maintaining the rearing target flows during the migrating and spawning period (January - May). As noted, information is not available to allow NMFS to estimate the likely magnitude of spawning reduction. Data from the Revised Fish Resources Technical Report (U.S. Bureau of Reclamation et. al.1995a) appears to confirm NMFS's generalized conclusion above.

Table 10. Flow and Available Spawning Habitat ${ }^{6}$ Under Historic and Long Term Proposed Operations for January 1 through April 30th.

Location/Scenario	Dry Years ${ }^{\text { }}$		Normal Years ${ }^{7}$		Wet Years ${ }^{7}$	
	Flow (cfs)	Habitat area (acres)	Flow (cfs)	Habitat area (acres)	Flow (cfs)	Habitat area (acres)
Dam to HWY 154						
Historic	1.6	4.1	20.1	6.2	164.1	8.0^{8}
Proposed Project	3.4	4.8	5.3	5.6	33.2	6.5
HWY154 - Refugio Rd.						
Historic	0.3	0.4	18.9	4.0	167.1	5.2^{8}
Proposed Project	3.1	3.3	5.0	3.4	58.2	4.6
Refugio Rd. - Alisal bridge						
Historic	0.0	0.0	15.9	8.5	174.9	12.0^{8}
1999 Proposed Project	1.4	5.7	4.2	7.1	76.5	10.7

(From U.S. Bureau of Reclamation 2000, Updated by Reclamation during consultation)

Emergency Winter Operations

Emergency winter operations and gate testing during spill release may affect available spawning habitat in the mainstem. Reclamation estimates these emergency flood control procedures will vary in length from a few hours to 2-3 days and will occur in approximately 11% of years, although the effects will be of temporary duration in each year that they occur. Water released by flood control operations will be equaled and likely exceeded by flood flows occurring within 48 hours. It is possible that these operations may disrupt spawning behavior and/or redds. However, because these operations will only occur in 11% of years, and the magnitude of releases will vary, NMFS does not believe these operations will substantially affect the ability of

[^5]steelhead to spawn in the Santa Ynez River during the next 50 years.

Spawning Steelhead in Hilton Creek

Migrating and spawning steelhead may be affected by the project action if flows in Hilton Creek are altered during the wetter months when migration and spawning occurs. Impeding passage of migrant salmonids is a problem associated with regulation of discharge (Mundie 1991). Reduced water column depth at locations in stream where passage of fish may be limited by depth, such as the tail of pools or head of riffles, may lower rates of migration, alter the timing of migration, and/or strand individual fish. Varying and quickly reducing releases could harm steelhead migrants by stranding them in wetted areas. Juvenile salmonids are more vulnerable to stranding than adults (Washington Department of Fisheries 1992). Based on review of the Hilton Creek channel by NMFS biologists in the field, NMFS believes that stranding of spawning adults and dewatering of redds in Hilton Creek is unlikely to occur as a result of the proposed operation of the permanent water supply line and associated ramp downs due to the confined nature of the channel and as long as reduction in releases follow the proposed ramping schedule.

Tributaries - Passage improvements

The length of stream newly accessible to steelhead once passage impediments and barriers are fixed will be about 12 miles as noted above. About 4.5 miles of proposed newly accessible habitat is currently in poor condition according to Reclamation (U.S. Bureau of Reclamation 2000). The remaining habitat that will become accessible (7.5 miles) is all in good condition (U. S. Bureau of Reclamation 2000a) and located in Hilton and Quiota Creeks. Reclamation will also improve access to approximately half of the habitat available in the 4 tributaries (about 20 miles) by fixing passage impediments and barriers. Habitat with improved access is all in fair or good condition according to Reclamation (U.S. Bureau of Reclamation 2000a).

The newly accessible habitat (and habitat with improved access) contains several miles of spawning habitat for steelhead (U. S. Bureau of Reclamation 1999). The exact amount of spawning habitat cannot be precisely quantified based on available data. Adult fish from the Santa Ynez Steelhead population will have additional opportunities to spawn once renewed and improved access is achieved in the tributaries. This is likely to help the population to expand its numbers by utilizing an increased amount of spawning area.

Effects to Rearing Steelhead

Rearing steelhead need habitat area, cover to allow escape from predators, surface flows, water quality conditions, and food that allow them to survive and grow properly to reach smolt age in healthy condition. The proposed operations of the Cachuma Project will have adverse and beneficial effects on steelhead rearing in the mainstem. NMFS details these effects below and relates their occurrence to steelhead location in the action area.

Water Rights Releases

In the summers of dry and some normal years, water rights releases often increase the amount of surface water in the mainstem between Bradbury Dam and Lompoc for several weeks. These releases usually start in July when flows in the mainstem are intermittent to non-existent and may last through August (U.S. Bureau of Reclamation 1999). Releases start at about 150 cfs and are ramped down as described in the Description of the Proposed Action section. Water rights releases are not made unless continuous surface flows do not exist between Bradbury Dam and the City of Lompoc. In general, water rights releases are expected to occur in 65% of years (U.S. Bureau of Reclamation 1999c). Benefits to steelhead that are likely to occur during releases (additional habitat space, and/or more cover from predators for example) are lost when releases cease. Steelhead may also be exposed to stranding during the ramp down of releases.

Habitat area and Stranding

Water rights releases will alter available habitat area and composition. Data to directly quantify changes to available habitat area resulting from water rights releases and their cessation do not currently exist. However, recent cross section data are available in the first ten miles downstream of Bradbury dam for flows from 1.5 to 50 cfs . These data indicate that the top width of wetted channel habitats surveyed at the HWY 154 reach (Bradbury dam to the HWY 154 bridge, 3.1 miles) can change as much as $12-29$ feet when flows range from 50 to 1.5 cfs (16% to 40% of wetted area, depending upon habitat unit). At the Alisal reach about 10 miles downstream, top width of wetted channel habitats surveyed changed $10-26$ feet (29% to 45% of wetted area, depending upon habitat unit) at the same flow measurements (Santa Ynez Technical Advisory Committee, 1999a). Water rights releases are initially made at about 150 cfs and would thus be expected to produce larger changes in the wetted widths of habitats until releases are ramped down and ended and fish rearing releases instituted. Data from the Revised Fish Resources Technical Report also indicates that water rights releases will increase available juvenile rearing habitat. The initial discharge rate of 150 cfs appears to almost maximize juvenile habitat space between Refugio Road and Bradbury Dam at the flows modeled in 1995 (U.S. Bureau of Reclamation et. al. 1995a).

The composition of instream habitat will be altered by the ramping down and cessation of water rights releases because reducing discharge eliminates or decreases swift water habitat and cover, and increases the abundance of slow water habitat (Kraft 1972). Loss of habitat will occur when surface discharge is eliminated to the extent that swift water habitats such as riffles and runs are lost (Kraft 1972), or when surface discharge is reduced to the extent that water column depth is lost (Thomas R. Payne \& Associates 1992). NMFS notes that in the Alisal Reach deep pools and riffles experienced similar loss in percentage of wetted area (Santa Ynez Technical Advisory Committee, 1999a). The opposite changes will occur when discharge is increased at the beginning of water rights releases.

Thus available rearing habitat in water rights release years, including the area and depth of riffles, runs, and pools, will be temporarily increased while water rights releases occur. In some years
water rights releases may be made 2-3 times and/or fluctuate up and down during the release (U.S. Bureau of Reclamation 1999, Stetson Engineers 1999). These effects would occur in the mainstem Santa Ynez downstream to the furthest area receiving surface flows from water rights releases (approximately 30 miles). Steelhead rearing in the first ten miles of mainstem downstream of Bradbury Dam will be unable to effectively utilize the additional habitat space because the increases occur only for a short time. Riffle, run, and pool habitats are used by juvenile steelhead during their life history phase in freshwater (Everest et al. 1984; Roper et al. 1994), and reduced discharge has been associated with reduced quantity of cover (for shelter from predators and harsh environmental conditions), reduced abundance of fish, and changes in competitive interactions among fish (Kraft 1972, Mundie 1991). The amount of surface flow in streams has been found to be inversely related to the amount of trout fry found in the stomach of an avian predator (Mundie 1991). Reduced average velocities may decrease the availability of positions in streams used by fish to maximize energy intake while at the same time minimizing the cost of obtaining food and the chance of being eaten (Jenkins 1969; Fausch 1984; Gilliam and Fraser 1987). Thus, additional steelhead that survive and/or additional growth in steelhead due to additional habitat area are likely lost when the additional area is removed. Water rights releases also disrupt thermal refuges for steelhead (see below under "Water Quality -
Temperature").
The reduction of flows after water rights releases are ended could also harm individual steelhead by concentrating or stranding them in residual wetted areas where they are likely to be exposed to dewatering and desiccation, increased water temperature, decreased dissolved oxygen concentration, and predation (Cushman 1985; Washington Department of Fisheries 1992). The SYRTAC has studied fish movement during Water Rights releases using trapping (1994) and snorkel surveys $(1994,1996)$ and concludes that steelhead are not likely to move downstream to areas that would become dry after water right releases are ended (Engblom 2000). Nevertheless, steelhead may already be present in such areas within ten miles of Bradbury Dam (see below in the "Rearing Support" section).

Exact behavioral mechanisms in salmonid juveniles for responding to changes in flow rates are not well understood (Washington Department of Fisheries 1992). Juvenile steelhead are more vulnerable to stranding than adults, and fry are particularly vulnerable in cobble substrates (which, NMFS has observed, is a major component of habitat in the Santa Ynez River where steelhead occur). Fry have been found in laboratory experiments to retreat to spaces among cobbles when dewatering occurs, instead of moving to areas still maintaining water (Washington Department of Fisheries 1992). This is a potential concern in habitats that contain steelhead during water rights release ramp downs. NMFS notes that the complete dewatering of a reach of Hilton Creek in early 1998 resulted in steelhead stranding and death. Three juvenile steelhead died despite rescue efforts and a slow ramp down of flows (0.5 cfs per half hour) (NMFS 1997b). The dead steelhead were found in spaces under cobble (U.S. Bureau of Reclamation 1998a).

The proposed ramping schedule provided by Reclamation is intended to stimulate steelhead to move from drying habitats to remaining areas of surface water. Water rights releases are reduced
from 150 to 30 cfs or lower by a several step process. The ramp down rate proposed is much slower (likely ten times slower) than the rate recommended in the literature to avoid fish stranding (Payne, 1999). Surveys conducted during previous ramp downs (at somewhat faster rates) have not found stranded fish (Engblom 1999c). Therefore NMFS concludes that stranding of steelhead during ramp downs of water right releases is unlikely.

Water Quality - Temperature

The alterations in water flow caused by water rights releases affect water temperature in the mainstem. Water releases from the dam are made with water at a temperature of approximately 17 to 18 degrees Celsius (U.S. Bureau of Reclamation 1999). In general, when water rights releases occur, water temperatures are lowered for approximately 3 miles downstream of the dam (U.S. Bureau of Reclamation 1999-no access is available due to private property issues from 0.53.5 miles downstream of the dam $)^{9}$. Given the supply of additional water from water rights releases, overall water temperatures (runs, riffles, glides, and pools) might be expected to be lower throughout the area affected by releases. In general summer water temperatures often naturally exceed 25 degrees Celsius in the mainstem Santa Ynez River for several hours each day for several weeks with or without water rights releases (U.S. Bureau of Reclamation 1999).

Available information indicates that water rights releases in 1996 and 1997 appeared to disrupt thermal stratification in most, if not all, pools where data were recorded (Santa Ynez River Consensus Committee and Technical Advisory Committee 1997). This disruption mixes cool water at the bottom of pools with warmer surface water and increases the overall temperature of water in pools (U.S. Bureau of Reclamation 1999). Thermal stratification can be caused by several factors, including influxes of cold water from intergravel flow, tributary flow, groundwater seepage and/or structural factors. As rivers and streams are dynamic systems, the location and form of thermally stratified pools is expected to vary over time as changes to stream bed and banks occur due to natural conditions and human management (Nielsen et al. 1994). The data available indicate that many pools sampled in 1996 and 1997 lost thermal stratification at flows of about 40-70 cfs (Santa Ynez River Consensus Committee and Technical Advisory Committee 1997).

Nearer the dam in the Long Pool area, water rights releases disrupt thermal stratification in pools and lower water temperatures. For example, prior to 1996 water rights releases minimum and maximum average daily water temperatures at the surface of the Long Pool (within 1 mile of the dam) ranged from 21.0 to 25.0 degrees Celsius on a daily basis. After the water rights release, these temperatures ranged from 15.8 to 17.8 degrees Celsius. At the bottom of the pool, minimum and maximum average daily temperatures ranged from 18.0 to 18.6 degrees Celsius prior to water rights release, and 15.8 to 17.0 degrees Celsius after release. Conversely, further downstream (9.5 miles) water rights releases disrupt thermal stratification but do not lower water

[^6]temperatures. In this area of the mainstem, temperatures ranged from 21.0 to 27.0 degrees Celsius at the surface, and 19.4 to 22.5 at the bottom prior to release on a daily basis. After the water rights release, these temperatures ranged from 17 to 27.3 at the surface and 17.0 to 27.1 degrees Celsius at the bottom of the pool sampled (Santa Ynez River Consensus Committee and Technical Advisory Committee 1997) on a daily basis, indicating that bottom temperature matched surface temperature and stratification had ceased.

Temperature thresholds for steelhead indicate that physiological stress and reduced growth rates generally occur at temperatures over 20 degrees Celsius (U.S. Bureau of Reclamation 1999). Moyle and Marchetti (1992) reviewed several investigations of the upper incipient lethal temperature for rainbow trout and found that in most cases 25 degrees Celsius was indicated as lethal, with a range in reported values from 21 to 25.6 degrees Celsius. These data appear to be mostly from northern populations.

NMFS believes that data from Pacific Northwest steelhead populations may not always be applicable to steelhead in Southern California. Data available in southern California (Mathews and Berg 1997) and the visual observations of steelhead in the Santa Ynez river watershed feeding, persisting, and appearing to increase in size in habitats with temperatures that periodically exceed 25 degrees Celsius (Santa Ynez River Consensus Committee and Technical Advisory Committee 1997), indicate that these fish are able to survive in relatively high temperatures. Notwithstanding probable higher temperature tolerances, thermally stratified pools are thought to provide important refuge from high temperatures for steelhead in Southern California (Nielsen et al. 1994; Mathews and Berg 1997). Water rights releases are expected to reduce or eliminate temperature stratification in pools downstream of the dam, providing lower temperatures likely improving steelhead survival within 3.5 miles of the dam but removing thermal refuges and likely increasing temperature stress on, and reducing the survival of, steelhead in the mainstem 3.5 to 10 miles downstream of the dam. This effect will occur for the duration of water rights releases and is expected to occur in 65% of years for the life of the project. The additional water releases for fish may slightly reduce the magnitude and duration of water rights release in some years, although data are not available to precisely estimate the effect on the steelhead or their habitat.

Water Quality - Dissolved Oxygen

The data available indicate that in general, water rights releases increase the amount of dissolved oxygen found in mainstem pools monitored during the summer months. At these flows, dissolved oxygen concentrations measured in the mainstem Santa Ynez where steelhead are known to occur ranged from 7.4 to 12 parts per million (ppm) per day in the Alisal and Refugio reaches 3.5 to 10 miles downstream of Bradbury Dam (Santa Ynez River Consensus Committee and Technical Advisory Committee 1997). Conversely, in July prior to 1996 water rights releases, dissolved oxygen was 0.2 ppm at about maximum pool depth at one site but ranged from 4.4 ppm to 9.4 ppm at about maximum pool depth at a second site, at little to no surface flows (Santa Ynez River Consensus Committee and Technical Advisory Committee 1997).

In the spring, fall and winter, cooler temperatures and increase in flows appear to raise dissolved oxygen levels to $7-8 \mathrm{ppm}$ in most cases. Even at low flows (1 cfs or less) dissolved oxygen levels at one site sampled in the Alisal reach at the end of October in 1995 were at least 4.8 ppm , and ranged from 4.8-9.33 ppm (Santa Ynez River Consensus Committee and Technical Advisory Committee 1997). However, in mid October of 1993 (a spill year) dissolved oxygen levels measured at sites between 0.25 and 3.0 miles downstream of Bradbury dam ranged from 1.8 ppm to 13.8 ppm with the lowest levels occurring in the morning. By November 9 of 1993 dissolved oxygen remained at 3.0 ppm or above (Santa Ynez River Consensus Committee and Technical Advisory Committee 1997).

Dissolved oxygen levels will vary dependent upon climate conditions and the specific timing and magnitude of water rights releases. Based on the data available, NMFS cannot estimate specific flow and dissolved oxygen relationships. However, the data available indicate that water rights releases provide dissolved oxygen at levels near or equal/greater to levels at which salmonids are known to function normally ($6-8 \mathrm{ppm}$) (Santa Ynez River Consensus Committee and Technical Advisory Committee 1997). Therefore, dissolved oxygen levels are not a cause for concern during water rights releases.

Water Quality - Sediments and Turbidity

Sediments and other materials (algae) become suspended in the water column during water rights releases (Engblom 2000) but no data are available to estimate amounts or duration of turbidity or the amounts of sediments that may settle out of the water column in steelhead habitats. Turbidity may cause harm, injury, or mortality to juvenile and adult steelhead in the action area and downstream of the action area. High turbidity concentrations can cause fish mortality, reduce fish feeding efficiency, and decrease food availability (Berg and Northcote 1985; McLeay et al. 1987; Gregory and Northcote 1993; Velagic 1995). Substantial sedimentation rates could bury less mobile organisms (Ellis 1936; Cordone and Kelley 1961) that serve as a food source for many fish species, degrade instream habitat conditions (Cordone and Kelley 1961; Eaglin and Hubert 1993), cause reductions in fish abundance (Alexander and Hansen 1986; Berkman and Rabeni 1987), and reduce growth in salmonids (Crouse et al. 1981). Observations by SYRTAC (Engblom 2000) indicate that water rights releases produce a short term (3 days) debris load which is transported downstream through the steelhead habitat area 0-10 miles downstream of the dam. Thus, it is likely that some sedimentation from water rights releases will adversely affect steelhead habitat and steelhead. NMFS cannot specifically estimate the amount of sediment left behind by water rights releases, but notes that winter storms in the following wet season should substantially reduce this effect. The turbidity effects noted above are also likely. These effects to steelhead habitat are expected to be of temporary duration. However, steelhead may be injured by turbidity and sedimentation as noted above. These effects will likely occur with each year of water rights release, roughly 65% of years over the life of the project.

Riparian and Aquatic Vegetation

Operations of the Cachuma Project were thought to probably continue a slow increase in riparian vegetation due to water rights releases (U.S. Bureau of Reclamation, 1995). The functional
values of riparian corridors and the benefits they provide to aquatic systems in general, and stream fish populations in particular, are well documented (Hall and Lantz 1969; Karr and Schlosser 1978; Lowrance et al. 1985; Wesche et al. 1987; Gregory et al. 1991; Platts 1991; Welsch 1991; Castelle et al. 1994; Lowrance et al. 1995; Wang et al. 1997). The amount of riparian vegetation increase that occurs due to water rights releases cannot be estimated.

Algae growth is common in the mainstem Santa Ynez and portions of the tributaries during the summer (U.S. Bureau of Reclamation 1999). While algae reduces dissolved oxygen instream through photosynthesis and decomposition of dead algae, it also may provide some shade in certain habitat areas and a food source for aquatic macro invertebrates which are eaten by steelhead. The data available indicate that high flows from water rights releases (130-150 cfs) remove most of the algae growth that has occurred during the summer (U.S. Bureau of Reclamation 1999). Lower summer flows (no water rights releases) resulting from wet winters such as those occurring in 1998 appear to NMFS to result in less algae growth when compared to years without flood control spills. However, data are scant and NMFS is not confident that the amount of algae likely to be present at particular flows can be reliably estimated. In the years surveyed, algae growth begins to decline in October (U.S. Bureau of Reclamation, 1999).

Thus, any adverse or beneficial effects to steelhead are somewhat speculative and depend upon a number of unknown factors. Water rights releases will likely increase riparian vegetation which may provide more cover and indirectly more food supply to steelhead. When water rights releases occur they also remove most of the algae growth that occurs during summers. This likely decreases shade, increases dissolved oxygen, and may decrease aquatic macro invertebrate production (see below).

Aquatic Macro Invertebrates

The benthic (bottom dwelling) aquatic insect assemblage of most waterways typically comprises numerous species. Aquatic insects provide a source of food for stream fish populations, and may represent a substantial portion of food items consumed by steelhead juveniles at various times of year. Some species of insects are found in swift water habitats such as riffle and runs, whereas other species are found in slow water habitats such as glides and pools. Riffles are generally accepted as the most productive habitat in streams. Any activity that affects instream habitat could be reasonably expected to affect these food resources.

Available research suggests that aquatic invertebrates may be severely impacted by rapid flow fluctuations and/or dewatering. Rapid fluctuations and/or dewatering can strand these organisms (resulting in harm and/or death), and can cause increased drift downstream which may increase food supply for fish in some areas and leave others with less supply. Flows may also disrupt algae growth upon which certain species of herbivorous aquatic insects graze. (Cushman 1985; Washington Department of Fisheries 1992).

No data are available to quantitatively estimate effects to aquatic macro invertebrates from flow fluctuations and dewatering in the Santa Ynez River. Rapid flow fluctuations appear unlikely
based on how water rights releases will be delivered and ramped. However, it is likely that water rights releases may temporarily increase aquatic macro invertebrate production, depending upon the ability of specific species to colonize new habitats in a short period of time. Most, if not all, of any increased production will likely end when water rights releases end. Water rights releases may also displace macro invertebrate populations (but this is speculation as no data from the Santa Ynez River are available). As noted, water rights releases remove most of the algae growth that occurs in the Santa Ynez mainstem as a result of very low summer flows. The exact relationship among increased wetted area, decreased algae, and macro invertebrate production in the Santa Ynez River is unknown. In theory, both beneficial and adverse effects to steelhead could occur as noted above. The results of such effects are speculative.

Steelhead Rearing Support Flows

Santa Ynez River

During nearly all years, it is proposed that target flows be established to provide and supplement flows for steelhead in the mainstem of the Santa Ynez. Water is to be released based on Reclamation's proposed flow targets given in the Description of the Proposed Action section when water rights releases are not being made; and when natural flows do not meet the flow targets. Reclamation expects to meet flow targets based on climate conditions, water rights releases and rearing support releases as shown in Table 10. NMFS has used this table from Reclamation's 1999 Biological Assessment because the flows provided by the revised proposal for juvenile rearing are judged by NMFS to be essentially unchanged from the flows provided by the 1999 proposal.

Habitat area and stranding. Proposed rearing support releases (and water rights releases as noted above) for the revised project will provide for increased surface flows during years when such flows would normally not be available during the summer and fall of dry, normal, and wet years based on climate conditions and water use downstream of Bradbury Dam (Table 11). This indicates that, in general, Reclamation's revised project will provide additional water releases over natural conditions and past operations.

Table 11. Percent exceedance of different minimum flows for proposed project, past operating conditions, and historical conditions (based on data provided in U.S. Bureau of Reclamation 1998, 1999).

Proposed Project	\% exceedance 3.5 miles from Bradbury Dam HWY 154 bridge	\% exceedance 10 miles from Bradbury Dam -Alisal bridge
Reclamation flow target (cfs)		
10 cfs	40\%	34\%
5 cfs	78\%	54\%
2.5 cfs	98\%	65\%
(U.S. Bureau of Reclamation 1999)		
Operating conditions in the recent past (with the 2,000 acre foot fish account)	\% exceedance HWY 154	\% exceedance Alisal
Reclamation flow target (cfs)		
10 cfs	34%	32\%
5 cfs	40\%	41\%
2.5 cfs	80\%	50\%
(U.S. Bureau of Reclamation 1998)		
Historical (without Bradbury Dam)	\% exceedance HWY 154	\% exceedance Alisal
Reclamation flow target (cfs)		
10 cfs	32\%	30\%
5 cfs	40\%	35\%
2.5 cfs	45\%	38\%
(U.S. Bureau of Reclamation 1999)		

As shown in Table 11, the flow targets will provide more flow to the Santa Ynez River in summer and fall than past operations or natural conditions provided below Bradbury Dam. This will increase available habitat in the first ten miles downstream of Bradbury Dam over historical
and past operating conditions. It is likely to increase available habitat beyond ten miles during some years, but data are not available to NMFS to assess the effect beyond ten miles from the dam. Data from the study noted above indicates that the top width of wetted channel habitats can vary by as much as 5 tol5 feet (7% to 30% of wetted area depending upon habitat) when flows change from 2.5 to 10 cfs in the first 3.1 miles downstream of Bradbury Dam. At the Alisal reach about 10 miles downstream of the dam, the top width of wetted channel habitats surveyed varies by 12 feet (17 to 27% of wetted area depending upon habitat unit) (Santa Ynez River Technical Advisory Committee 1999a). As noted above for water rights releases, increasing flows will alter the composition of habitat by increasing swift water habitats (riffles and glides for example) and cover, although pool habitat again shows similar changes as runs and glides at Alisal. The amount of habitat provided will vary based on the flow target applied, with 10 cfs providing the most habitat and 2.5 cfs providing the least.

Steelhead rearing in the first ten miles downstream of Bradbury Dam may be, or likely were, subject to intermittent surface flows and stranding under historical, past operations, and the revised project proposal. NMFS cannot accurately predict if continuous surface flows will be maintained by Reclamation's proposed flow targets in the entire ten miles downstream of Bradbury Dam where steelhead commonly rear. The small amount of flow provided in some years, the variability of climate conditions, and water use downstream of the dam may result in loss of habitat during some years if surface flows become fragmented. Based on the flow targets proposed and the flow model used by Reclamation, it appears that continuous surface flow will not be provided in some years to the entire ten miles downstream of Bradbury Dam where steelhead commonly occur. Flows are expected to reach 0 cfs in the Alisal reach in 19 out of 51 years (Reclamation 2000), or 37% of years (Stetson 2000a). (This is based Reclamation's modeling of the proposed flows during the years 1942-1993 and assumes climate conditions in the next 50 years will be similar to the last 50 years). The available steelhead presence data indicates steelhead are found in the Alisal Reach in 4 out of the 5 years surveyed, or 80% of years. The years when nearly all of the observed steelhead were present were spill years or the year directly after a spill year. Reclamation's data analysis indicates that proposed long term operations are likely to provide continuous surface flows in the Alisal reach during all of these years for the next 50 years. Therefore NMFS believes it unlikely that more than a few, if any, steelhead in the Alisal Reach could become stranded in isolated pools or beached by the proposed project in more than 37% of years. NMFS cannot estimate the specific number of years this is likely to occur nor the specific number of steelhead effected, but expects it to be a very small number, based on the information noted above.

Rearing support releases for the long term operation of the proposed project will maintain some habitat area with low flows for rearing steelhead downstream of Bradbury Dam during the dry season in many years for the life of the project. However, flow targets during the proposed interim period (before the 3.0 foot surcharge is achieved) are lower and NMFS expects an increase in the amount of years steelhead are present at Alisal and not receiving water. Reaches farthest from the dam known to contain steelhead will not be supplied water in many years. Data are not available to accurately predict the effect of these potential steelhead strandings and
beachings on the small steelhead population in the Santa Ynez during the interim period. NMFS believes the following factors important: 1) The data available indicate that in some years the amount of juveniles rearing in the mainstem comprise as much as 50% of the observed ${ }^{10}$ juvenile population of steelhead in the Santa Ynez River below Bradbury Dam; 2) The number of steelhead in the Alisal Reach can comprise as much as 46% of the known mainstem rearing population (the range is from $0-46 \%$, average is 20% - these data are rough estimates only, survey procedures and locations varied); 3) Steelhead are currently unable to access several miles of spawning and rearing habitat below the dam in tributary streams due to improperly designed stream crossings; 4) In the opinion of NMFS biologists who have visited the action area, habitat for rearing in some of the tributaries below the dam is in better condition than rearing habitat in the mainstem; Thus, while the total number of steelhead in the Santa Ynez River below Bradbury Dam remains low, and impediments and barriers prevent access to some of the remaining habitat, the potential for lack of flow in the Alisal Reach during Reclamation's proposed interim period in many years remains a concern. NMFS notes that in some years steelhead do not appear to survive in the Alisal Reach. The data available do not allow for accurate correlation of fish survival and flow in both Alisal and Refugio Reach. NMFS believes that steelhead receiving surface flows, (or enough subsurface flows to maintain pool area) have a better chance of survival than steelhead in shrinking pools or dry streambed.

Water quality - temperature. About half of the pools sampled in summer 1998 at Alisal and Refugio reaches appear to have remained somewhat thermally stratified at flows of about 10-15 cfs (Scott Engblom 1999a). Thus, proposed fish rearing support releases may have much less of an effect on pool stratification than water rights releases in the area 3 to 10 miles downstream of the dam. Data are lacking to fully evaluate this however. Closer to the dam, fish rearing support releases are expected to lower water temperatures, based on available data (Santa Ynez River Technical Advisory Committee, 1997). The exact effects on temperature and stratification will depend on climate conditions, specific magnitude and timing of water releases, and the structural and hydrologic factors creating pool stratification. Based on the data available, NMFS cannot estimate exact flows at which stratification will be maintained or lost. Steelhead may be adversely affected by increased temperatures as noted above in the discussion of water rights releases if pools lose thermal stratification and temperatures increase. These effects on water temperature and steelhead are expected to be variable and somewhat unpredictable, likely much less than the effects of water rights releases due to lower flow amounts, and expected to last as long as the project is operated.

Water quality - dissolved oxygen. The provision of water for fish rearing support will increase the amount of time low flows are provided to pools during the summers, and will likely increase dissolved oxygen concentrations several miles downstream of the dam throughout the life of the project. However, in approximately 35% of years, flows are predicted to range from 0 to 2.5 cfs ten miles downstream of the dam during part of the summer under the proposed fish rearing

[^7]support releases. This area, and areas several miles upstream, are likely to experience low dissolved oxygen levels in some wetted stream habitats, especially those that do not receive surface flows. For example, in 1995 dissolved oxygen in a pool habitat (where steelhead are often present) ranged from 0.011 ppm (depth) to 2.33 ppm (surface) in the morning and 1.32 ppm (depth) to 17 ppm (surface) in the evening when measured on August 23 (Santa Ynez River Consensus Committee and Technical Advisory Committee 1997).

The low levels of dissolved oxygen associated with fragmented or lack of surface flows during summers are expected to be equal or below the 3 ppm threshold thought to be lethal to rainbow trout under many conditions (Matthews and Berg 1997). In general, salmonids are known to function normally at dissolved oxygen concentrations of $6-8 \mathrm{ppm}$. Indications of stress are commonly seen at 5-6 ppm and negative effects occur at concentrations below 4 ppm (Santa Ynez River Consensus Committee and Technical Advisory Committee 1997). However, steelhead in the Santa Ynez River and elsewhere in Southern California have been noted to survive in or near very low dissolved oxygen concentrations (Santa Ynez River Consensus Committee and Technical Advisory Committee 1997; Mathews and Berg 1997). The frequency, duration, and magnitude of tolerance for low dissolved oxygen concentrations in the southern California ESU steelhead is unknown. Steelhead rearing support releases will improve dissolved oxygen concentrations in those areas where surface flows are provided. But, as noted, there is a higher degree of probability that surface flows will not be present in areas likely to contain steelhead during the proposed interim period (prior to approval and implementation of the 3.0 foot surcharge) than during proposed long term operations. The improvement in dissolved oxygen conditions near the Dam and potential for poor dissolved oxygen conditions farther from the Dam are expected to continue for the life of the project.

Water quality - sediments and turbidity. Fish rearing support releases are not expected to affect turbidity and sediment levels in the Santa Ynez River mainstem. These releases will either occur after winter storms, which will have flushed sediments out, and/or after water rights releases that push sediments and debris downstream as noted above.

Riparian vegetation. The proposed fish rearing support releases would likely add and/or sustain additional riparian vegetation, but no data are available for NMFS to accurately estimate the effects of water releases on riparian vegetation. Additional riparian vegetation is likely to benefit steelhead by providing shade, cover, increased inputs of nutrients and increase in the production of certain types of macro invertebrates.

Aquatic macro invertebrates. In NMFS's opinion, fish rearing support releases are likely to increase aquatic macro invertebrate production in the areas of the mainstem affected by these releases. These releases will provide relatively little increase in habitat area when compared with the initial level of water rights releases. However, fish rearing support releases will occur for a much longer duration, providing stable low flow areas (where non fragmented low flows are maintained) for macro invertebrate production. Additional macro invertebrate production will increase steelhead food supply. This is expected to continue for the life of the project.

Hilton Creek

Reclamation proposes to deliver water to Hilton Creek based on the considerations outlined in the "Description of Proposed Action" section. The water supply line will be able to provide an increase in water quantity in Hilton Creek in 98% of years based on the addition of a planned pump in 2002. In general water will be released to maintain flows between 1.5 and 5 cfs in Hilton Creek, depending upon water year type, natural flows in Hilton Creek, and reservoir storage.

Habitat area. The proposed project is expected to increase wetted habitat area in Hilton Creek in nearly all years after 2002 (the planned pump, see above). As much as 2,980 feet of creek bed will become wetted during some years when natural surface flows would not be available. Flows in this area may range from 1.5 to 5 cfs during 98% of years. This beneficial effect to steelhead habitat and steelhead is part of the mitigation for the seismic retrofit project noted above, and while noted here, is not part of the effects analysis for this project. The effects to steelhead habitat and steelhead caused by specific flow management in Hilton Creek and the Santa Ynez River through the Hilton Creek pipeline are analyzed in this biological opinion as noted above and below. For example, higher or lower flow releases may affect migration, spawning, and rearing habitat.

Switching water releases between the pipeline's release points may also affect steelhead habitat and steelhead. A shift in water release from the upper release point (if it occurs) will result in reduction and loss of habitat area in the reach directly downstream of the upper release point. Approximately 1,600 feet of Hilton creek bed could be affected, depending upon climate conditions and water use decisions at Hilton Creek. Habitat area could reach zero in some years in the 1,600 feet between the upper and lower release points. The percentage of years that releases will be shifted to the lower release point is unknown. Currently, steelhead migrants are impeded, if not prevented from reaching the area between the upper and lower release points due to the passage impediment. Steelhead will not directly experience loss of habitat area here until the passage fix proposed by Reclamation (U.S. Bureau of Reclamation 1999), is implemented and steelhead begin to migrate, spawn and rear between the water supply line release points. Reclamation has indicated that if steelhead are present between the upper and lower release point, enough water to maintain good habitat will be provided in this area (David Young 2000a).

During these releases, loss of habitat will occur if surface discharge is reduced. The composition of instream habitat could be altered by the project action because reducing discharge reportedly eliminates or decreases swift water habitat and cover, and increases the abundance of slow water habitat (Kraft 1972). Because Hilton Creek is a confined channel in most areas, these habitat changes are not expected to be pronounced. In general, significant changes to habitat availability do not occur until flows drop below 2 cfs (Engblom 2000a). Therefore NMFS remains concerned that the revised project proposal will provide flows in Hilton Creek below 2 cfs at some times. The available data do not allow NMFS to accurately predict the frequency of flow reductions in Hilton Creek or the frequency that flows less than 2 cfs will be provided.

Flow ramping. As stated previously in "Water Rights Releases, Habitat area and Stranding", completely dewatering a portion of Hilton Creek in early 1998 resulted in steelhead stranding and death. The dead steelhead were found in spaces under cobble (U.S. Bureau of Reclamation 1998a). Relatively rapid or instantaneous fluctuations releases (particularly decreases) may cause harm, injury, and mortality to steelhead by confining them to areas that are predisposed to dewatering and desiccation, increased water temperature, decreased dissolved oxygen concentration, and predation (Cushman 1985). However, Reclamation's proposed ramping schedule for Hilton Creek is likely to avoid steelhead stranding as long as surface flows are maintained in areas containing steelhead. This is due to the slow reduction of flows proposed, and the relatively confined nature of the Hilton Creek Channel. As noted, flows would not be reduced faster than 1 cfs every 4 hours, which is slower than that ramping rate suggested by the literature (Washington Department of Fisheries 1992).

Water quality - temperature. During operation of the temporary watering system (located at the site of the permanent lower release point) water temperature and dissolved oxygen were suitable for steelhead in the watered area of Hilton Creek (U.S. Bureau of Reclamation 1999). There is some concern that water released at the upper release point could experience warming as it travels through the open reach lacking canopy cover and topographic shading down to the area currently often occupied by steelhead (U.S. Bureau of Reclamation 1999). The available data are not sufficient to estimate the likely temperature change in areas likely to be occupied by steelhead. Both surface flow exposure to the sun and gravel infiltration of flows will influence the temperature of water reaching the lower reach (U.S. Bureau of Reclamation 1999). As noted above, steelhead are likely to experience stress at water temperatures near and above 25 degrees Celsius. However, Hilton Creek has naturally exceeded 25 degrees Celsius in the past, and steelhead young of the year have been observed to be generally healthy and actively feeding at these high temperatures (Santa Ynez Technical Advisory Committee 1997). The use of the upper release point may have the potential to increase the frequency and duration of temperature stress experienced by steelhead in Hilton Creek. The data available are not sufficient to estimate the amount of time this may occur.

Water quality - dissolved oxygen. Dissolved oxygen levels are expected to be increased in Hilton Creek by the project action during 98% of years once the planned pump is installed. The amount of increase will depend upon release flows and climate conditions. Dissolved oxygen levels may be reduced by the proposed action if water release to Hilton Creek is reduced and/or surface flows become fragmented. For example, isolated pools may experience infiltration of groundwater that is oxygen depleted (Matthews and Berg 1997). As noted above, dissolved oxygen has generally decreased where it was measured in pool habitats in the mainstem Santa Ynez during summers as flows were decreased and became fragmented. NMFS believes it reasonable to conclude that dissolved oxygen levels in Hilton Creek pools would become stressful to steelhead in Hilton Creek if flows to these pools decreased and became fragmented. Based on the operating procedures for the permanent water supply line, NMFS believes this reduction in dissolved oxygen levels is unlikely to occur.

Water quality - turbidity and sedimentation. Use of the Hilton Creek Permanent Water Supply Line may increase turbidity and sedimentation if surface flows are increased rapidly and/or provided to dry areas of Hilton Creek. An initial test of the pipeline on January 27, 1999, resulted in unanticipated turbidity and sedimentation in pools containing steelhead in Hilton Creek (NMFS 1999). Some of this sedimentation resulted from the improper construction and placement of the concrete apron and rock and erosion matting below the lower Hilton Creek release valve. This has been corrected. (Young 1999). Some of the turbidity and sedimentation resulted from the addition of surface flows which mobilized sediment in isolated pools and previously dry areas of the creek bed (NMFS 1999). NMFS does not expect that surface flows will be provided to Hilton Creek in the future in a manner that results in turbidity or sedimentation. Therefore, the effects to steelhead outlined above for water rights releases are unlikely to occur.

Riparian vegetation. NMFS believes the provision of extra surface flows to Hilton Creek in 98% of years is likely to encourage the growth of additional vegetation along Hilton Creek, but NMFS cannot estimate the extent of any new growth that may occur. New growth would likely be beneficial to steelhead.

Aquatic macro invertebrates. NMFS believes that in general the provision of water to Hilton Creek in 98% of years will benefit aquatic macro invertebrate populations by providing a greater amount of flows during most years. When it occurs as proposed, reduction and cessation of flows in the area between the upper and lower release point in Hilton Creek will likely decrease the amount of aquatic insects available to steelhead in the reaches below. As noted above, no data are available to quantitatively estimate effects to aquatic macro invertebrates from flow fluctuations in the action area, including the amount and duration flows may be eliminated between the two Hilton Creek release points. However, the effect of macro invertebrate loss (steelhead food) on steelhead caused by cessation of flows between the upper and lower release point is likely to be temporary. Rapid recolonization by macro invertebrates of the disturbed area is expected once flows return to this area. Reported rates of recolonization range from about one month (Thomas 1985) to 45 days (Harvey 1986).

Tributaries - Passage Improvements

As noted in the "Effects on migrating steelhead" section, Reclamation will fix 11 passage impediments and barriers in the watershed below Bradbury Dam to restore or improve passage for migrating steelhead. Steelhead will have access to several more miles of rearing habitat once the passage impediments and barriers are fixed. As noted above access will be improved to about half of the tributary habitat available, and access will be restored to one quarter of the total tributary habitat that could be used by steelhead. Much of this is rearing habitat in fair to good condition, according to Reclamation (U.S. Bureau of Reclamation 1999) and observations made in the field by NMFS fishery biologists. Additional rearing habitat will provide areas for the additional juvenile steelhead expected from increased steelhead spawning (from passage improvements and migration flow supplementation) to grow to smolt age. Thus, the passage
improvements are expected to significantly improve population numbers and distribution.
Implementation of these projects (including the chute pool and HWY 154 on Hilton Creek) is expected during summers when steelhead juveniles may be rearing in areas directly affected by at least some of these projects. NMFS has a high degree of familiarity with these types of projects and expects that temporary turbidity and sedimentation are likely to result which are likely to adversely affect steelhead (as noted above) if they are present. The amount of turbidity and sedimentation will depend upon the specifics of each project. These adverse effects are not likely to substantially affect the survival of the Santa Ynez steelhead population if they are avoided and/or minimized during project construction.

El Jaro Creek Demonstration Projects

Reclamation is proposing to fund three habitat enhancement/remediation demonstration projects in El Jaro Creek, a tributary of Salsipuedes Creek. The projects are: 1) the replacement of a plugged road culvert to prevent catastrophic road crossing failure and resulting sediment delivery to the creek, 2) stabilization of an eroding hillside downstream of the culvert to avoid stream bank failure, and 3) stabilization of an actively eroding stream bank via installation of a hard rock toe. The ultimate effect of these projects is likely beneficial to steelhead and steelhead critical habitat, but due to the small amount of habitat affected by these demonstration projects, there is likely to be no easily measurable beneficial effect to the steelhead population in the Santa Ynez.

The purpose of the demonstration projects is to educate and inform landowners regarding beneficial actions that could be taken to protect and restore steelhead habitat. Such actions, if implemented by landowners on a larger scale than the demonstrations would likely have measurable, significant, beneficial effects to steelhead. Adverse effects from the three projects described above include temporary sedimentation and turbidity, and in the case of the third project, the possibility of contact between rearing steelhead and construction equipment should steelhead be present at the site of pool creation. Based on the available information NMFS can not accurately predict the rate and duration of sedimentation and turbidity but expects these effects to be temporary in nature. NMFS also believes that with proper measures, contact between steelhead and construction equipment can be avoided.

CCWA Water Releases

CCWA will supply water to the reservoir as described above in the "Description of the Proposed Action" section. As the water is treated and then the treatment chemicals are removed, effects are expected to be minimal, except for possible interference with steelhead imprinting. Steelhead and other salmonids are known to imprint on their natal streams during smoltification (Hasler and Scholz 1983). In the Santa Ynez River, smolts may migrate downstream from January through June. Therefore the possible mixing of CCWA water with Santa Ynez River water during dry years in May and June is a concern and potential adverse effect. However, water rights releases are made in dry years when there is no continuity between the mainstem and the
ocean before, during, or after water rights releases (until the next winter season's storms). It is unclear if juveniles rearing in mainstem pools would be encouraged to smolt and attempt to move downstream when water rights releases occur during dry years. The limited data available do not indicate that steelhead move in the mainstem during water rights releases (Engblom 2000). Based on the data available, NMFS cannot estimate the amount of incorrect imprinting that might occur. However, for the reasons given above, the risk of incorrect imprinting is expected to be remote.

Temporary Road Crossing

The continued use of the Santa Ynez River bed for vehicle crossing is likely to result in turbidity and sedimentation, and the possibility of direct contact between steelhead and construction equipment. Turbidity and sedimentation are expected to be temporary. NMFS cannot estimate the number of fish that may be affected in part because Reclamation has provided no estimate of the frequency the crossing may be used nor the number and type of equipment to be driven across the river bed at that location.

Fish Rescue

Fish rescue and relocation in Hilton Creek, while in general a beneficial action, may adversely affect some steelhead in the action area. The stress caused through capture, handling, and release can easily injure steelhead. Mortalities may also result. These effects may also occur if steelhead are inadvertently captured during proposed predator removal. NMFS notes that electrical burning (from electroshocking equipment) and several mortalities resulted during a recent steelhead rescue effort in the Santa Ynez. Sixty of about 860 juveniles were electrically burned (7%) and five juveniles (less than 1%) were killed (U.S. Bureau of Reclamation 1998). Reclamation estimates that fish rescues in Hilton Creek will be needed in approximately 2% of years due to climate conditions and the resulting ability to supply water to Hilton Creek. (U.S. Bureau of Reclamation 1999). Thus, NMFS expects the adverse effects of fish rescues on the steelhead population in the Santa Ynez River to be relatively insignificant. Rescues are expected to be ultimately beneficial to the population, as steelhead will be relocated to habitats likely to contain water for the rest of the summer.

Hilton Creek Habitat Modification

The proposed construction of a 1,500 foot long rearing channel extension for Hilton Creek also may result in sediment and turbidity impacts. These effects depend upon project magnitude and timing. If not carefully designed, the channel extension may disrupt steelhead migration into Hilton Creek. Maintenance needs are also unknown. Therefore NMFS will require more detail regarding this project through a tiering consultation or reinitiation of this consultation. The extension may provide benefits to steelhead rearing in Hilton Creek. However, as noted below, instream habitat manipulations have not always been successful. It is likely to take several years to fully evaluate the amount of benefits provided in this case.

Tributary and Mainstem Enhancement

The information NMFS needs (number of projects, timing, location, specific construction plans etc..) to assess possible tributary and mainstem enhancement projects other than the passage fixes and demonstration projects described above, is not available. Adverse effects such as sedimentation and turbidity could occur during enhancement projects, but would likely be temporary. Take may occur if steelhead need to be relocated to avoid interactions with project construction. Ultimately, NMFS expects most such projects will provide benefits to steelhead and steelhead habitat. However, NMFS notes that habitat manipulations in streams have sometimes brought mixed results (Mundie 1991). For example, in some cases artificially created habitat has not persisted for more than a few years. Until Reclamation develops a plan for enhancement in those areas under their jurisdiction, NMFS cannot predict the specific amount and extent of such projects nor their specific impacts. The specific extent of projects in areas outside of Reclamation's jurisdiction (but funded, at least in part, by Reclamation) also can not be predicted, in part because implementation will rely on willing landowners. However, based on the funding proposed by Reclamation to implement such projects, and the project schedule for the 11 passage fixes, NMFS does not believe that more than 4 enhancement projects are likely to occur each year, making their temporary adverse effects minimal and likely only temporarily affecting a portion of the steelhead population.

Monitoring Program

Most of the proposed monitoring program is already occurring. Take of steelhead associated with this program has been authorized by NMFS under ESA scientific research permit No. 1091 (which expires in 2003) and accounted for in the "Environmental Baseline" section of this opinion. Reclamation proposes to assume responsibility for the take authorized in research permit 1091 upon issuance of this opinion. The permit holder has agreed to turn in this research permit to NMFS. Therefore, Reclamation's proposed monitoring program will not result in a "doubling" of steelhead take through monitoring. However, the proposed additional migrant trap set in the mainstem is likely to trap steelhead that are headed to or returning from Hilton Creek where they are again likely to be migrant trapped (or have already been trapped). NMFS is concerned that trapping these fish twice could reduce the survival chances of each fish through additional stress related injuries.

Public Education and Outreach

NMFS does not believe that these programs will result in any measurable adverse effects to steelhead. Possible increases in poaching could occur based on more knowledge of steelhead presence in the Santa Ynez, but such increases are speculative. NMFS does expect benefits to occur based on education and outreach. For example, outreach programs may result in more conservation easements. However, quantifying the beneficial effects of such programs for ESA analysis purposes is not possible, as the amount of benefits provided cannot be predicted in terms of amount and quality of habitat likely to be produced.

SUMMARY AND SYNTHESIS OF EFFECTS

When determining the effects of proposed actions on listed species and critical habitat, NMFS relies on the best scientific and commercial data available to analyze effects as specifically as possible. Where information is lacking to specifically assess project effects, NMFS must err on the side of conservation to protect listed species (USFWS and NOAA final rule on "Interagency Cooperation - ESA of 1973, as amended" - 51 FR 19926 at 19952, June 3, 1986; H.R. Conf. Report 96-697-96 ${ }^{\text {th }}$ Congress, First Session, Dec. 11, 1979). As noted, the specific magnitude and frequency of adverse effects to steelhead and steelhead critical habitat resulting from several aspects of this proposed project are not easily determined. Therefore, NMFS has taken a conservative approach in the analysis of project effects on the species and its critical habitat.

As noted above, NMFS often relies on natural conditions as a guide to the conditions under which a species best survives and which are therefore associated with self-sustaining and selfregulating populations. However, in some cases it is important to recognize that providing or mimicking a more "natural" condition with respect to one or more habitat features may be detrimental or neutral in effect to a listed species if other habitat features are not, or cannot be addressed in a coordinated fashion.

To complete their freshwater life cycle in the Santa Ynez River watershed, steelhead must first migrate as adults up river and tributary to spawning habitat. Enough eggs and alevins must survive to become juvenile fish, many of which in turn must survive over at least one summer to become smolts during the next winter's rains. Enough smolts must survive migration and reach the ocean to ensure sufficient numbers of returning adults to repeat the cycle. In general, egg to smolt survival in salmonids ranges from 1 to 7%. Survival in the ocean has been estimated at 0.7 to 9.8% (Bradford 1995). These numbers have been reported here to emphasize NMFS's concern with the small size of the Santa Ynez steelhead population, and the importance of survival at each life stage. Such a small population may also be characterized by a lack of genetic diversity which negatively impacts the species' fitness, including its adaptability, reducing the chances of the population's survival in the face of environmental changes (Meffe and Caroll 1997). For a population to survive it must produce sufficient numbers of individuals at all life stages and/or age classes to maintain itself into the future regardless of expected environmental and human impacts. Habitat must provide all requirements for completion of the species' entire life cycle, including reproduction, sustenance, and shelter.

Impacts of the Proposed Action that Affect the Survival of Steelhead Freshwater Life History Stages

1. Reclamation will provide supplemental flows to assist steelhead with migration and these flows will be applied to storms in approximately 24% of years. Supplemental flows will roughly double the amount of normal years when 14 or more consecutive days of migration are available, significantly assisting steelhead migration during the years migration is most impacted by water
impoundment. These additional flows likely provide sufficient time after storms for steelhead to migrate from the Pacific Ocean to spawning areas near the dam, including tributaries, substantially improving baseline conditions. Therefore NMFS believes that the supplemental migration flows proposed likely appreciably increase steelhead survival in the Santa Ynez River watershed below Bradbury Dam over recent operating conditions, improving the Santa Ynez steelhead population's long term viability. However, migration opportunity below the dam will continue to be reduced over the life of the project when compared with natural conditions associated with the larger historical steelhead population in the Santa Ynez River.
2. Supplemental flows for migration may increase spawning habitat availability in the mainstem over recent operating conditions. Because data on the specific location, extent, and quality of spawning habitat in the mainstem are not currently available, NMFS cannot firmly conclude that spawning habitat will be increased or decreased by the proposed action. Spawning habitat in several other tributaries may be affected by enhancement actions but a lack of specific project information prevents NMFS from assessing the overall effects of these actions. Increase to spawning habitat in Hilton Creek that may occur is part of mitigation for the seismic retrofit project and is not considered an effect of this project.
3. Water rights releases, which were also part of recent operations, will continue to provide beneficial effects (except for temporary sedimentation and turbidity) near the dam, and detrimental effects in the area 3.5 to ten miles downstream from the dam in 65% of years. These releases create additional habitat area, water velocity and cover/shelter, better dissolved oxygen conditions, and better temperature conditions near Bradbury Dam. Temperature stratification in many pools downstream of the dam is likely to be lost however, resulting in the potential for increased temperature stress to steelhead between 3.5 and ten miles downstream of the dam. The benefits and temperature problem of releases are significantly reduced and/or negated when water rights releases are ramped down and/or fluctuated. Under these conditions, steelhead, especially those located from 3.5-10 miles downstream of the dam, are likely subjected to the following adverse effects: reduction in cover/shelter, reduction in food supply, increased predation, and lower dissolved oxygen conditions. These adverse effects likely negate the beneficial effects from increased flows. In addition, temporary turbidity is created during the first three days of release and sedimentation may occur. These effects are expected to continue under the proposed project for its duration, although they may occur in somewhat fewer years and/or for shorter duration due to the provision of water for fish which may reduce the need for water rights releases in some years. In NMFS's judgment, water rights releases are of beneficial value to steelhead near the dam, but detrimental to steelhead located 3.5 to 10 miles downstream of the dam.
4. Maintaining the proposed flow targets for steelhead will provide increased low flow summer rearing habitat when compared with recent or historical conditions. This will provide the benefits identified above, including increased food, cover/shelter, dissolved oxygen, and lower temperatures near the dam. However, at some low flows, areas of the river known to contain steelhead are likely to return to fragmented flow, or complete lack of flow based on the proposed
project. A lack of flow in the areas is likely to continue to reduce the survival chances of steelhead farthest from the dam (3.5 to 10 miles) if steelhead are present. As noted, this adverse effect is most likely to occur during the interim prior to approval and implementation of the 3.0 foot surcharge. Proposed long term flow targets will increase the survival chances of steelhead in the mainstem improving the Santa Ynez's populations viability. These effects are expected to continue in the mainstem for the duration of the project.
5. Steelhead passage impediment and barrier fixes scheduled to occur as part of the Cachuma Project will provide restored and/or improved access to 32 miles of habitat in the tributaries below Bradbury Dam. NMFS considers these actions to provide significant improvement in the survival chances of the steelhead population in the Santa Ynez when all are completely implemented. NMFS notes that the tributaries known to contain steelhead downstream of the dam have a total length of 40 miles. Eighty percent of this habitat will be made available for steelhead. Reclamation's supplemental flows for migration are also likely to improve steelhead access to these areas when compared with conditions in the recent past.
6. The adverse effects to steelhead and steelhead critical habitat caused by implementing the 11 passage impediment and barrier fixes, the three demonstration projects, and the temporary road crossing in the watershed below the dam are expected to be temporary; lasting less than a few months at most. The potential for contact between steelhead and construction equipment is unknown, but can be minimized by appropriate avoidance measures. Other potential enhancement projects described above are also likely to have only temporary effects. Based on the small number of projects anticipated due to the funding provided by Reclamation, NMFS does not believe that the levels of temporary turbidity and sedimentation, nor relocation of steelhead, are likely to rise to a level that might affect a substantial portion of the population.

Impacts on ESU Survival and Potential for Recovery

1. The Santa Ynez River steelhead population and the entire Southern California ESU population are very small. The steelhead population in the Santa Ynez River is comprised of very few adult fish. Redd counts, migrant trapping, and observations are all consistent with a very low population size, probably less than 200 adult fish. As noted previously, the information available on population numbers and distribution does not allow accurate quantification of the expected project effects on steelhead. The Southern California ESU was listed as endangered by NMFS due to its greatly reduced range and population size. The limited available information regarding fish abundance is insufficient to determine if the current ESU population is continuing to decline, has stabilized, or is increasing. In the absence of any significant actions to protect or recover the species, it is reasonable and conservative to assume that the population continues to decline. Less data are available on steelhead numbers in other rivers and streams in the ESU. As noted above, the entire Southern California ESU is thought to contain fewer than 500-600 adult fish, but the ESU's population cannot be reliably estimated due to a lack of consistent fish management data in Southern California such as redd counts and catch estimates. The existing data indicate that the Santa Ynez River population may be one of the largest remaining in the

ESU with a number estimated at less than 200 adult fish. The Santa Ynez River steelhead population is therefore an essential component of the Southern California ESU population as a whole.
2. NMFS' analysis indicates that proposed operations will: 1) Significantly increase the opportunity for steelhead to migrate to spawning areas in the Santa Ynez River below Bradbury Dam over recent conditions during 27% of years; 2) Increase the ability of steelhead to successfully rear within 3.5 miles of the dam; 3) Significantly increase habitat availability in tributaries downstream of the dam when all proposed passage fixes are fully implemented; 4) Continue to adversely affect steelhead rearing in some portions of the mainstem where steelhead are commonly found (3.5-10 miles downstream of the dam, most significantly during the proposed interim period); 5) Temporarily adversely affect steelhead in tributaries below the dam when passage fixes are implemented (turbidity, sedimentation, relocation); and 6) Result in additional migrant trapping stress (and possible mortalities) of Hilton Creek fish. NMFS cannot specifically predict the long term survival chances of this population based on the data available and the proposed project. However, in NMFS's best professional judgement, the improvements over recent conditions for migration, habitat access in the tributaries (once fully implemented), and rearing habitat in the mainstem near the dam are likely to outweigh the adverse effects noted above in \#s 4,5 , and 6 because such adverse effects are temporary and/or occur to only a portion of the population or small portion of critical habitat. Improved migration and habitat access will likely benefit the entire population. Thus, it is likely that this population's chance of persisting into the foreseeable future will be appreciably improved when the project is fully implemented. NMFS remains concerned about steelhead farthest from the dam during the interim due to the current population's small size and restricted access to habitat.

The Cachuma Project is one of the major factors affecting steelhead in the Santa Ynez River. Proposed Cachuma Project operations and maintenance, if carried forward many years into the future, will provide the small Santa Ynez River steelhead population with improved critical habitat conditions in the form of increased migration opportunity and better access to spawning and rearing areas in the watershed below Bradbury Dam, allowing the population to increase in size. Therefore the proposed project is likely to appreciably increase the likelihood of survival and recovery of the ESU by increasing its numbers and distribution. Monitoring will be needed to confirm this expected population trend.

CUMULATIVE EFFECTS

Cumulative effects include the effects of future State, tribal, local, or private actions that are reasonably certain to occur in the action area considered in this biological opinion. Future Federal actions that are unrelated to the proposed action are not considered in this section because they require separate consultation pursuant to section 7 of the Endangered Species Act. NMFS maintains general familiarity with actions affecting steelhead in the Santa Ynez River,
and is unaware of any such actions that are reasonably certain to occur within the proposed action area that would not require section 7 consultation (i.e. private actions). High property values in the Santa Ynez Valley have precluded much conversion of rangelands to vineyards (which could affect water demands) and this trend is expected to continue (United States Bureau of Reclamation, 1999). Consequently, we believe no cumulative effects are likely to occur in the near future.

CONCLUSION

Therefore, after reviewing the best scientific and commercial data available, the current status of steelhead, the environmental baseline for the action area, the effects of the proposed project, and the cumulative effects, it is NMFS' biological opinion that the proposed project action is not likely to jeopardize the continued existence of the Southern California steelhead ESU, and is not likely to destroy or adversely modify steelhead critical habitat.

INCIDENTAL TAKE STATEMENT

Take is defined as harass, harm, pursue, hunt, shoot, kill, trap, capture or collect, or attempt to engage in any such conduct of listed species of fish or wildlife without a special exemption under the Endangered Species Act. NMFS defines the term "harm" as an act which kills or injures fish or wildlife. Such an act may include significant habitat modification or degradation where it actually kills or injures fish or wildlife by significantly impairing essential behavioral patterns, including breeding, spawning, rearing, migrating, feeding or sheltering. "Incidental take" is any take of listed animal species that results from, but is not the purpose of, carrying out an otherwise lawful activity conducted by the Federal agency or an applicant. Under the terms of section 7(b)(4) and section 7(o)(2) of the Endangered Species Act, taking that is incidental to and not intended as part of the agency action is not considered a "prohibited taking", provided that such taking is in compliance with the terms and conditions of this incidental take statement.

The measures described below are non-discretionary and must be undertaken by Reclamation for the exemption in section $7(0)(2)$ to apply. Reclamation has a continuing duty to regulate the activity covered by this incidental take statement. If Reclamation fails to assume and implement the terms and conditions the protective coverage of section 7(o)(2) may lapse. In order to monitor the impact of incidental take, Reclamation must report the progress of the action and its impact on the species to the NMFS as specified in the incidental take statement [50 CFR § 402.14(i)(3)].

AMOUNT OR EXTENT OF TAKE

The NMFS anticipates that incidental take of Southern California ESU steelhead is likely to occur as a result of the ongoing operations of the Cachuma Project as proposed. Adequate data are not available to allow NMFS to determine the specific number of steelhead that may be taken in many instances as a result. Therefore, as in the analysis in this biological opinion, NMFS anticipates take in the form of harm due to the habitat modifications proposed by the project:

1) Harm to steelhead present in pools 3.5 to ten miles downstream of Bradbury Dam is likely to occur when water rights releases (made in 65% of years) disrupt thermal stratification in these pools, removing temperature refuges for steelhead.
2) Harm to steelhead is likely to occur in during the first three days of water rights releases (made in 65% of years) when sediments and organic debris are transported downstream.
3) Harm to steelhead is likely to occur when water rights releases are ceased (65% of years) and habitat space in the mainstem for steelhead shrinks.
4) Harm to steelhead is likely to occur in 37% of years under long term operations if water releases for fish do not reach areas occupied by steelhead during the dry part of each year.
5) Harm to steelhead is likely to occur if adults and/or juveniles are delayed or prevented from migrating in the mainstem due to water impoundment by the Cachuma Project when compared with historical (no dam) conditions. This may occur in 40% or more of years.

In each case, take is anticipated based on the specific operating procedures described by Reclamation in the revised project description (U.S. Bureau of Reclamation 2000). Operation of the project in a different manner than described in the revised project description may increase the level of harm to steelhead through additional adverse habitat conditions. Therefore such changes in project operation would require reinitiation of consultation.

In addition, NMFS anticipates take of steelhead through capture and collection as follows:

1) Rescue/relocation of steelhead in Hilton Creek to avoid severe drought conditions in 2% of the next 50 years, or in 1 year. Thus, in the next 50 years one relocation of all steelhead found in Hilton Creek at that time is anticipated.
2) Relocation of steelhead directly affected by implementation of the 11 passage barrier fixes, and three demonstration projects. NMFS anticipates (given the current low numbers of juvenile steelhead observed in this population) that as many as 800 juvenile steelhead may need to be relocated to accomplish all of these projects combined.
3) The number of steelhead that may need relocation as a result of future enhancement projects conducted and/or funded by Reclamation cannot be specifically anticipated in this opinion. Therefore these projects will be tiered to this opinion as described below (see Project Tiering).

NMFS anticipates that less than 1% of steelhead captured and collected will be killed during capture, transport to relocation sites, and release. Five percent may be harmed by electrical burning if electrofishing is authorized. NMFS notes that electrical injury greatly decreases a fish's chance of survival (Dalby et. al. 1996, Nielsen 1998). The steelhead numbers above are based on the data available for the total number of steelhead rearing in the Santa Ynez watershed and NMFS best professional judgement as to the number likely affected.
4) Take (observe, harass, capture, collect, and mortalities) associated with Reclamation's monitoring plan is anticipated as follows based on the small steelhead population in the Santa Ynez River below Bradbury Dam:
A. Observe/harass 50 adult and 400 juvenile steelhead per year (snorkel surveys, bank observations, redd counts)
B. Capture/release 150 adult and 110 juvenile per year with 1 adult unintentional mortality and 4 juvenile unintentional mortalities (migrant trapping).
C. Collection of 15 steelhead carcasses per year.

In addition, no more than 70 total adult and juvenile steelhead will be captured twice (both in the in the additional migrant traps each year and at the Hilton Creek traps. This is based on six years of steelhead migrant trapping Hilton Creek; where no more than 64 steelhead were ever trapped. Capture of adult and juvenile steelhead in the new migrant traps is anticipated the first year they are installed.

A large population response is not expected during the first five years of project operations as access to tributary habitats will still be limited and supplemental flows for migration will not be fully instituted. As the population expands, take from monitoring will have to be revisited through reinitiation of consultation.

PROJECT TIERING

Reclamation is committing funding to a tributary and mainstem enhancement program as part of the Cachuma Project. Except for the tributary passage impediment fixes and demonstration projects described and analyzed in this opinion, projects that are likely to result from the enhancement program remain relatively undefined. Therefore NMFS cannot anticipate take for these projects. As noted in the analysis of effects section above, NMFS expects the adverse effects from these projects to be low and temporary based on the small number of projects that could occur each year and types of projects proposed. In order for these projects to proceed, NMFS will need a complete description for each particular project. NMFS will work with

Reclamation to avoid, minimize and analyze the adverse effects of each project, and depending upon the effects of the particular project will concur with a "not likely to adversely affect" determination or issue a biological opinion, both of which will be tiered to this biological opinion.

REASONABLE AND PRUDENT MEASURES

The proposed project is likely to result in adverse effects in some situations, as noted above. The NMFS believes the following reasonable and prudent measures are necessary and appropriate to minimize and monitor incidental take of steelhead.

1. In addition to meeting the interim and long term flow targets described in the Description of the Proposed Action section, Reclamation shall maintain full residual pool depth in Alisal and Refugio reaches downstream of Bradbury Dam during spill years and the first year after spill years until the first 3.0 foot surcharge is achieved and the 11 passage impediment and barrier fixes are completed.
2. Reclamation shall maintain flows in Hilton Creek at levels currently considered to provide optimal habitat space until better data are available.
3. Reclamation shall develop and implement a plan to further refine supplemental releases for steelhead migration in the Santa Ynez River.
4. Reclamation shall reinitiate consultation if the tributary passage impediment and barrier fixes described in the revised project description (U.S. Bureau of Reclamation 2000) are not completed by 2005 .
5. Reclamation shall avoid mixing CCWA water in the Santa Ynez River downstream of Bradbury Dam when steelhead smolts could become imprinted with it.
6. Reclamation shall monitor fish movement during water rights releases.
7. Reclamation shall monitor stage and wetted width during mainstem and Hilton Creek ramp downs.
8. Reclamation shall avoid and minimize turbidity, sedimentation, loss of riparian vegetation, and steelhead relocation during implementation of tributary passage fixes, the El Jaro Creek demonstration projects, and future Reclamation enhancement measures. Reclamation shall obtain NMFS's approval of final project designs.
9. Reclamation shall avoid and minimize steelhead harm and death during relocation and predator removal.
10. Reclamation shall obtain NMFS approval of the adaptive management committee's decisions that affect listed steelhead prior to their implementation.
11. Reclamation shall provide NMFS with monitoring data and reports evaluating the effects of the proposed project on steelhead.
12. Reclamation shall relocate steelhead in danger of becoming stranded should releases fail due to mechanical or human error.
13. Reclamation shall implement the steelhead protection measures specified in the July 19 , 1999, letter from NMFS (including the measures specified in Reclamation's Final Supplemental Environmental Assessment for the Bradbury Dam Modification Seismic Corrective Action Safety of Dams Program) concerning vehicle use of the temporary road crossing and limit the amount of crossing events and vehicles using the crossing.
14. Reclamation shall reinitiate consultation if work to upgrade the Hilton Creek pipeline's capacity may adversely affect steelhead.
15. Reclamation shall develop and implement a plan to further verify the use of the model to analyze migration supplementation and mainstem target flows.

TERMS AND CONDITIONS

In order to be exempt from the take prohibitions of the ESA, Reclamation must comply with the following terms and conditions, which implement the reasonable and prudent measures described above and outline required reporting/monitoring conditions. These terms and conditions are nondiscretionary.

The following term and condition implements reasonable and prudent measure No. 1.

1) Until the first year that the 3.0 acre foot surcharge is achieved and the 11 passage barrier fixes are completed, Reclamation shall maintain pools in the Alisal and Refugio reaches in spill years and the first year after spill years, if steelhead are present. This shall be accomplished by maintaining residual pool depth. This may be accomplished by surface or subsurface flow and is in addition to meeting the flow targets in the interim and long term. Residual pool depth is the difference between the elevation of the deepest point in the pool and the elevation of the lowest point of the crest (outlet depth) that forms the pools' hydraulic control.

This term and condition provides a much better chance that steelhead farthest from the
dam will be provided some habitat during the interim when access to habitat in the tributaries below Bradbury Dam remains restricted and supplementation for improved migration opportunity is not fully implemented. This will increase their chance of survival and help maintain the very small Santa Ynez River population until the full benefits of proposed enhancements are available.

The following terms and conditions implement reasonable and prudent measure No. 2.

1) Flow in Hilton Creek will be maintained at levels no lower than 2 cfs once the pump is installed and Reclamation has the ability to provide water in 98% of years unless: 1) the adaptive management committee decides otherwise and NMFS approves (see below), and/or 2) transect data indicate that habitat space does not decrease significantly at flows below 2 cfs.
2) Reclamation shall implement the Hilton Creek Habitat Monitoring study plan described on page 3-60 of the Revised Project Proposal (U.S. Bureau of Reclamation 2000) and report the results to NMFS in each year the study is conducted.

The following term and condition implements reasonable and prudent measure No. 3.

1) Reclamation shall design a strategy within six months of the issuance of this opinion to further refine the supplemental flow releases for steelhead migration. Such a strategy shall include shifting migration supplementation releases away from dry years when releases may not be helpful to the steelhead population in the Santa Ynez and review of storm flow decay curves (mean, median, etc.,) and other methodologies for providing increased migration availability. Once this strategy is approved by NMFS, it shall be implemented. Such a strategy should include an adaptive management component.

The following term and condition implements reasonable and prudent measure No. 4.

1) Reclamation will reinitiate consultation with NMFS if information is available indicating that the planned tributary passage impediment and barrier fixes will not be completed by 2005. Reclamation shall provide the following information, at minimum:
2) Explanation of the delay in completing this aspect of the proposed action; and 2) Steps

Reclamation will take to complete this aspect of the proposed action and a new anticipated date of completion.

The following term and condition implements reasonable and prudent measure No. 5.

1) CCWA water will not be mixed into the waters of the Santa Ynez River during the months of December through June unless flow is discontinuous in the mainstem.

The following term and condition implements reasonable and prudent measure No. 6.

1) During the next three years of water rights releases Reclamation shall monitor steelhead downstream of Bradbury Dam to better confirm that they are not encouraged to move downstream by water rights releases. This shall be accomplished as follows:
A. A study design will be developed and forwarded to NMFS for approval that will include snorkel surveys of fish numbers and species in areas known to contain steelhead before and after the highest levels of water rights releases, snorkel surveys of fish numbers and species in areas downstream of Alisal reach before and after the highest water rights releases, and snorkel surveys of these areas after water rights releases are ended.
B. Upon NMFS approval of the monitoring plan it will be implemented during the next three water rights release years and each year's results will be reported to NMFS.

The following terms and conditions implement reasonable and prudent measure No. 7.

1) Reclamation shall implement the WR 89-18 Monitoring as described in the Revised Project Description for the Cachuma Project (U.S. Bureau of Reclamation 2000).
2) Reclamation shall report the results to NMFS in the year the data is collected.

The following terms and conditions implement reasonable and prudent measure No. 8.

1) Reclamation shall obtain NMFS's approval of final project designs for the tributary passage fixes, the El Jaro Creek demonstration projects, and future Reclamation enhancement measures.
2) Reclamation, or it's designated agent (here after referred to as Reclamation), shall isolate work spaces from flowing water for the purpose of avoiding heavy equipment in flowing water, sedimentation, turbidity, and direct effects to steelhead. Prior to work, sandbag cofferdams, straw bales, culverts, or visqueen (here after referred to as diversion) shall be installed to divert streamflow away or around the workspace. The diversion shall remain in place during the work, then removed immediately after work is completed.
3) As a result of isolating the workspace from flowing water, Reclamation shall ensure and maintain a corridor for unimpeded passage of steelhead during work activities.
4) When practical, Reclamation shall use existing ingress or egress points, or perform work from the top of creek banks, for the purpose of avoiding work and heavy equipment in flowing water and disturbing instream habitat.
5) Reclamation shall photograph the work space during and immediately before and after work activities are completed for the purpose of developing a reference library of instream and riparian habitat conditions.
6) Excavation of a channel for the purpose of isolating the work space from flowing water is prohibited.
7) Reclamation shall minimize disturbance of riparian and upland vegetation. Using only native plant species, Reclamation shall replace vegetation affected by the work and ensure a revegetation success ratio of no less than 2:1.
8) Reclamation shall revegetate soil exposed as a result of work activities using seed casting, hydroseeding, or live planting methods, no later than 30 days after the work has been completed. Only native plant species shall be used for revegetation.
9) Reclamation shall inspect the revegetated area during spring and fall for two years for the purposes of qualitatively assessing growth of the plantings or seedlings and the presence of exposed soil. Reclamation shall note the presence of native and non-native vegetation and extent (percent area) of exposed soil, and photograph the revegetated area during each inspection.
10) Reclamation shall prepare and implement a NMFS approved plan for restoring instream habitat and streambed within the areas affected by work activities to pre-work conditions and characteristics unless the intent of the work was to positively affect these areas by improving habitat conditions such as by fixing passage impediments and barriers or placing cover in pools. For example, if an access route cut into a stream bank for heavy equipment cannot be avoided by the use of existing ingress, then the bank must be returned to its pre-work condition when work is completed.
11) Reclamation shall retain or designate a fisheries biologist with expertise in areas of resident or anadromous salmonid biology and ecology, fish/habitat relationships, biological monitoring, and handling, collecting, and relocating salmonid species. On a daily basis Reclamation's fisheries biologist shall monitor work activities, instream habitat, and performance of sediment control/detention devices for the purpose of identifying and reconciling any condition that could adversely affect steelhead or their habitat. The fisheries biologist shall be empowered to halt work activity and to recommend measures for avoiding adverse effects to steelhead and their habitat. Reclamation's biologist shall ensure a corridor for unimpeded passage of steelhead during the work.
12) Reclamation's fisheries biologist shall continuously monitor the placement and removal of any diversion needed to isolate work spaces from flowing water for the purpose of removing any steelhead that would be adversely affected. The fisheries
biologist shall capture steelhead stranded in residual wetted areas as a result of streamflow diversion and workspace dewatering, and relocate the steelhead to a suitable location immediately upstream or downstream of the work area. The fisheries biologist shall note the number of steelhead observed in the affected area, the number of steelhead relocated, and the date and time of collection and relocation. One or more of the following NMFS approved methods shall be used to capture steelhead: dip net, seine, throw net, minnow trap, hand. Electrofishing is prohibited from use unless prior separate written consent is obtained from NMFS.
13) Reclamation's fisheries biologist shall contact NMFS fisheries biologist Darren Brumback (562-980-4026) immediately if one or more steelhead are found dead or injured. If Darren Brumback is unavailable Reclamation shall immediately contact NMFS Protected Resources Division at 562-980-4020. If no one at Protected Resources is available, Reclamation shall immediately contact NMFS's Office of Law Enforcement at 562-980-4050. The purpose of the contact shall be to review the activities resulting in take and to determine if additional protective measures are required. Reclamation will need to supply the following information initially: The location of the carcass or injured specimen, and apparent or known cause of injury or death, and any information available regarding when the injury or death likely occurred.
14) Erosion control and sediment detention devices shall be incorporated into Reclamation's work activities and implemented immediately before commencing work. These devices shall be in place during construction activities, and after if necessary, for the purposes of minimizing fine sediment (sand and smaller particles) and sediment water/slurry input to flowing water, and of detaining sediment laden water on site. The devices shall be placed at all locations where the likelihood of sediment input exists.
15) Placement of any soil/sediment berm for isolating any workspace from flowing water is prohibited.
16) When dewatering any area, either a pump shall remove water to an upland disposal site, or a filtering system shall be used to collect and then return clear water to the creek for the purpose of avoiding input of sediment/water slurry to flowing water. The pump intake shall be fitted with a device to exclude all life stages of steelhead.
17) Reclamation shall provide a written monitoring report to NMFS within 30 working days following completion of any work activity. The report shall include the number of steelhead killed or injured during the work activity and biological monitoring; the number and size of steelhead removed; and photographs taken before, during, and after work activity.
18) Reclamation shall provide a written report to NMFS describing the results of the revegetation task within 30 working days following completion of revegetation. The
report shall include a description of the locations planted or seeded, the area $\left(\mathrm{m}^{2}\right)$ revegetated, a plant palette, planting or seeding methods, proposed methods to monitor and maintain the revegetated area, performance or success criteria, and pre- and postplanting color photographs of the revegetated area.
19) Reclamation shall provide a written report to NMFS describing the results of the vegetation monitoring within 30 working days following completion of each fall inspection. The report shall include the color photographs taken of the work area during each inspection and before and after implementation of the work activities, and estimated percent of exposed soil remaining within each area affected by the work.

The following terms and conditions implement reasonable and prudent measure No. 9 .

1) During future fish rescues Reclamation shall implement the methods described in the Hilton Creek Fish Rescue Plan (U.S. Bureau of Reclamation 1998b), the recommendations of the August 9, 1998 Hilton Creek Fish Rescue Assessment Report (United States Bureau of Reclamation 1998c), and the reporting requirements of NMFS's June 23, 1998 letter (NMFS 1998) authorizing emergency fish rescue. Modifications to these methods and recommendations may be made with NMFS's approval and shall be documented in writing.
2) During future fish rescues Reclamation shall implement NMFS's forthcoming electrofishing policy if electrofishing is necessary. This term and condition will become effective upon delivery by NMFS to Reclamation of the NMFS electrofishing policy.
3) If predator removal operations are conducted in areas to receive relocated steelhead, the following measures will be taken:
A. Site inspections shall be performed prior to removal activities for the purpose of identifying the presence of endangered steelhead within the relocation area. Instream areas found to harbor steelhead shall be avoided during predator removal activities. Removal timing and techniques, and point of egress and ingress shall be modified to either avoid or minimize take of steelhead.
B. A fisheries biologist with training and expertise in steelhead biology shall supervise pre-action, removal, and post-removal surveys. The biologist shall be empowered to halt those activities that may adversely affect steelhead, and recommend and implement avoidance measures.
C. The fishery biologist shall conduct a brief training session for all project personnel who are not fishery biologists familiar with steelhead before the action is implemented. The training session shall include a description of the steelhead and its habitat, general provisions and protections provided by the ESA, and the
terms and conditions of this incidental take statement that will be implemented to minimize injury and mortality of steelhead.
D. Reclamation's fisheries biologist shall contact NMFS fisheries biologist Darren Brumback (562-980-4026) immediately if one or more steelhead are found dead or injured. If Darren Brumback is unavailable Reclamation shall immediately contact NMFS Protected Resources Division at 562-980-4020. If no one at Protected Resources is available, Reclamation shall immediately contact NMFS's Office of Law Enforcement at 562-980-4050. The purpose of the contact shall be to review the activities resulting in take and to determine if additional protective measures are required. Reclamation will need to supply the following information initially: The location of the carcass or injured specimen, the apparent or known cause of injury or death, and any information available regarding when the injury or death likely occurred.
E. Any steelhead captured, collected, or trapped shall be revived, if necessary, and immediately released without delay to either the capture location or a more suitable instream location. No steelhead body length or mass data shall be measured.
F. Reclamation shall provide a written report to the NMFS within 4 weeks following completion of the proposed action. One report shall be submitted to the NMFS for each year that the project action is implemented. The report shall include the number of steelhead observed, handled (captured, collected, trapped), killed and injured during the proposed action; the estimated size of individual steelhead observed, handled, injured, or killed; a map delineating the location(s) where steelhead were observed or handled; a description of any problem encountered during the project or when implementing terms and conditions; and, any effect of the proposed action on steelhead that was not previously considered.

The following term and condition implements reasonable and prudent measure No. 10.

1) All decisions made by the Adaptive Management Committee (AMC) which could reasonably be expected to affect steelhead must be approved by NMFS before they are implemented. NMFS will require 30 working days to review such AMC decisions and any supporting data available. However, until the ability to surcharge the reservoir 3.0 feet is achieved, NMFS will waive the 30 day requirement, but not the approval requirement, in order to allow short term fine tuning of fish support operations. The first point of NMFS contact for the AMC will be Darren Brumback at the number given above. For example, shifting water from different release points or different areas of the mainstem and Hilton Creek known to contain steelhead may require NMFS approval. Known effects to water supplies for fish later in the year from such shifts must be fully
described.

The following term and condition implements reasonable and prudent measure No. 11.

1) Monitoring of the Cachuma Project shall occur as described above and as described in the revised project description (Reclamation 2000) under the direction of a qualified biologist. Reclamation shall provide NMFS with yearly reports (unless otherwise noted) that include the data taken each year and preliminary data analysis. Especially important for monitoring the effects of the Cachuma Project will be monitoring of: steelhead movement during migration supplementation, successful access, spawning, and rearing of steelhead in previously inaccessible and/or access restricted tributary habitat, and mainstem flow targets and the condition of steelhead in the mainstem.
2) Monitoring involving take of endangered steelhead such as migrant trapping, snorkel and bank observations, tagging, and tissue sampling, shall be conducted as described in the revised project description and the following take minimization and avoidance measures shall apply (see A-G below). Current information on effects associated with migrant trapping have caused NMFS to revise migrant trapping procedures to avoid and minimize adverse effects (see H below). NMFS is currently reviewing migrant trapping and other procedures in the Southern California ESU. Should new procedures be needed, migrant trapping (and other) procedures in this opinion will be updated accordingly.
A. All ESA-listed fish handled out-of-water for the purpose of recording biological information must be anesthetized. Anesthetized fish must be allowed to recover (e.g. in a recovery bucket) before being released. Fish that are simply counted must remain in water but do not need to be anesthetized.
B. ESA-listed fish must be handled with extreme care and kept in water to the maximum extent possible during sampling and processing procedures. Adequate circulation and replenishment of water in holding units is required. The transfer of ESA-listed fish must be conducted using a sanctuary net that holds water during transfer to prevent the added stress of an out-of-water transfer.
C. ESA-listed juvenile fish must not be handled if the water temperature exceeds 21 degrees Celsius (70 degrees Fahrenheit) at the capture site. Under these conditions, ESA-listed fish may only be identified and counted. If any adult ESAlisted fish are captured incidental to sampling for juveniles, they must be released without further handling, and such take must be reported.
D. Visual observation protocols (such as snorkeling and stream side surveys) must be used instead of intrusive sampling methods whenever possible. This is especially appropriate to ascertain whether steelhead are merely present.
E. If there is any indication that the survival of ESA-listed fish will be affected by increasing water flows or other conditions, the traps must be removed from use until hazardous conditions have elapsed.
F. Due caution must be exercised during spawning ground surveys to avoid disturbing, disrupting, or harassing ESA listed adult steelhead when they are spawning. Whenever possible, walking in the stream must be avoided, especially in areas where steelhead are likely to spawn.
G. Tissues of ESA listed steelhead are the responsibility of Reclamation and remain so as long as they are useful for monitoring the effects of the Cachuma Project. The transfer of tissues from Reclamation on other entities requires written approval from NMFS.
H. Traps and live boxes must examined every 4-6 hours, at minimum to minimize delay and harm to steelhead. Reclamation shall redesign the migrant traps to provide additional habitat space for adult steelhead waiting to be released, prevent access by predators and prevent tampering by non-authorized persons. Trap design and staffing procedures are subject to NMFS approval.
3) Reclamation will develop a plan to monitor changes that may occur to the bed and banks of the Santa Ynez River that could affect the ability of steelhead to migrate. This plan will be developed within 1 year of the issuance of this opinion and implemented upon receiving NMFS's approval.
4) Until a gauge is installed at Highway 154, Reclamation will monitor the achievement of flow targets at HWY 154 on a weekly basis by having professional staff familiar with instream flow monitoring use a flow meter and standard methodology (transect of cells) to check flows at HWY 154. This shall only be done when flows decrease to the levels of flow targets. A marking device visible from outside of the wetted channel may be used once initial achievement of flow targets is measured with a current meter. If a gauge relationship is developed, weekly monitoring for at least one rearing season will be used to confirm the reliability of the model. If flow targets are not being met, water release shall be increased until the target is met.
5) If conditions occur during the interim period that require pool surface areas to be maintained in the Alisal and Refugio reaches, Reclamation shall monitor these pools on a weekly basis and adjust flows as necessary to maintain residual pool depth.
6) NMFS shall receive quarterly reports detailing water releases for fish and the achievement of flow targets (and pool surface areas) during the interim period (until the 3.0 surcharge is achieved) and for the first three years of long term operations. In later years, these reports may occur on a yearly basis.
7) Reclamation shall provide plans for changes in monitoring locations and methodologies and obtain approval from NMFS prior to implementation.
8) Reclamation shall identify to NMFS the personnel designated to conduct the monitoring activities described in this opinion prior to each monitoring season and confirm their experience through resumes or other evidence of their accomplishments.

The following terms and conditions implement reasonable and prudent measure No. 12.

1) If water releases to the mainstem and/or Hilton Creek fail, NMFS will be contacted immediately and Reclamation shall relocate any steelhead that may become stranded to appropriate habitats.
2) Reclamation will utilize the methods described in the Hilton Creek Fish Rescue plan (U.S. Bureau of Reclamation 1998b), the recommendations of the August 9, 1998 Hilton Creek Fish Rescue Assessment Report (United States Bureau of Reclamation 1998c), and the reporting requirements of NMFS's June 23, 1998 letter (NMFS 1998) authorizing emergency fish rescue. Modifications to these methods and recommendations may be made with NMFS's approval. If electrofishing is necessary, Reclamation shall also implement NMFS's forthcoming electrofishing policy.
3) Maintenance or other activities that will result in dewatering or quick flow reductions that must occur in emergency situations to prevent loss of life or property shall be subject to the emergency procedures under 50 CFR 402.05 .

The following term and condition implements reasonable and prudent measure No. 13.

1) Reclamation shall implement the steelhead protection measures for use of the temporary road crossing as described in the Final Supplemental Environmental Assessment for the Bradbury Dam Modification Seismic Corrective Action Safety of Dams program as modified by NMFS's July 19, 1999, letter regarding the temporary road crossing and:
2) No more than one crossing event (across and return) of six or fewer vehicles may occur each year.

The following term and condition implements reasonable and prudent measure No. 14.

1) If upgrading the Hilton Creek water supply line to increase capacity requires shutting down the supply of water to steelhead in Hilton Creek and/or the Santa Ynez, Reclamation shall reinitiate consultation on the Cachuma Project.

The following term and condition implements reasonable and prudent measure No. 15.

1) Reclamation shall work with NMFS to design and implement a strategy to further verify the analysis of migration supplementation and mainstem rearing targets within six months of the issuance of this opinion. Once approved by NMFS, the strategy shall be implemented and results provided to NMFS in a timely manner.

CONSERVATION RECOMMENDATIONS

Section 7(a)(1) of the ESA directs Federal agencies to utilize their authorities to further the purposes of the ESA by carrying out conservation programs for the benefit of endangered and threatened species. Conservation recommendations are discretionary agency activities to minimize or avoid adverse effects of a proposed action on listed species or critical habitat, to help implement recovery plans, or to develop information.

NMFS recommends Reclamation pursue the following:

1) Water rights releases produce a number of adverse effects to steelhead attempting to rear in the mainstem, most notably to steelhead 3.5 to 10 miles downstream of Bradbury Dam. NMFS recommends Reclamation investigate and implement alternative means of providing water to downstream users from the Cachuma Project that would avoid and/or minimize adverse effects to listed steelhead in consultation with NMFS.
2) The major portion of steelhead historical spawning and rearing areas are currently blocked by Bradbury Dam. Access to these areas would be of huge benefit to the Santa Ynez steelhead population. NMFS recommends Reclamation design and implement a study to determine effective passage for steelhead at Bradbury Dam, including upstream passage, a downstream smolt trapping facility, and proper screening of the Tecolote Tunnel and other water intakes in consultation with NMFS.
3) There is a growing body of scientific evidence that dominant river flows, i.e., flood flows, play an important role in river geomorphology and the production and maintenance of salmon and steelhead habitat (Mundie 1991). NMFS believes that further knowledge in this area could be helpful in understanding what effects, if any, winter operations may have on the ecological characteristics of the Santa Ynez River downstream of Bradbury Dam. Any potential impacts are purely speculative at this point. NMFS recommends Reclamation design and implement a study to determine if there any impacts on the ecological characteristics of the Santa Ynez River due to flood flow reduction in consultation with NMFS.

REINITIATION NOTICE

This concludes formal consultation on the actions outlined in the project proposal (U.S. Bureau of Reclamation 1999, 2000). In addition to the reinitiation events noted above, as provided in 50 CFR §402.16, reinitiation of formal consultation is required where discretionary Federal involvement or control over the action has been retained (or is authorized by law) and if: (1) the amount or extent of incidental take is exceeded; (2) new information reveals effects of the action that may affect listed species or critical habitat in a manner or to an extent not previously considered in this opinion; (3) the action is subsequently modified in a manner that causes an effect to the listed species or critical habitat not considered in this opinion; or (4) a new species is listed or critical habitat designated that may be affected by the action. In instances where the amount or extent of incidental take is exceeded, formal consultation shall be reinitiated immediately.

LITERATURE CITED

Alexander, G. R, and E. A. Hansen. 1986. Sand bed load in a brook trout stream. North American Journal of Fisheries Management 6:9-23.

Banks, J. W. 1969. A review of the literature on the upstream migration of adult salmonids. Journal of Fisheries Biology. Volume 1, pp 85-136. 1969.

Barnhart, R. B. 1986. Species Profiles: Life Histories and Environmental Requirements of Coastal Fishes and Invertebrates (Pacific Southwest) - Steelhead. U.S. Fish and Wildlife Service Biological Report 82 (11.60). U.S. Army Corps of Engineers, TR EL-82-4.c.

Barnhart, R. B. 1991. Steelhead (Oncorhynchus mykiss). Pages 324 to 336 in J. Stolz and J. Schnell (eds.) Trout. Stackpole Books, Harrisburg, PA.

Bradford, Michael J. 1995. Comparative review of pacific salmon survival rates. Canadian Journal of Fisheries and Aquatic Sciences. Volume 52, pp: 1327-1338. 1995.

Berg, L., and T. G. Northcote. 1985. Changes in territorial, gill-flaring, and feeding behavior in juvenile coho salmon (Oncorhynchus kisutch) following short-term pulses of suspended sediment. Canadian Journal of Fisheries and Aquatic Sciences 42:1410-1417.

Berkman, H. E., and C. F. Rabeni. 1987. Effect of siltation on stream fish communities. Environmental Biology of Fishes 18:285-294.

Bjornn, T. C., and D. W. Reiser. 1991. Habitat requirements of salmonids in streams. Pages 83 to 138 in W. R. Meehan (ed.) Influences of Forest and Rangeland Management on Salmonid Fishes and their Habitats. American Fisheries Society Special Publication 19.

Busby, P. J., T. C Wainwright, G. J. Bryant, L. J. Lierheimer, R. S. Waples, F. W. Waknitz, and I. V. Lagomarsino. 1996. Status review of west coast steelhead from Washington, Idaho, Oregon, and California. U. S. Department of Commerce, NOAA Technical Memorandum. NMFS-NWFSC-27, 261 pp.

California Department of Water Resources: Northern District. 1989. Draft Santa Ynez Instream Flow Need Study. August 25, 1989.

Campbell, R. N. B., and D. Scott. 1984. The determination of minimum discharge for $0+$ brown trout (Salmo trutta L.) using a velocity response. New Zealand Journal of Marine and Freshwater Research 18:1-11.

Castelle, A. J., A. W. Johnson, and C. Conolly. 1994. Wetland and stream buffer size requirements-a review. Journal of Environmental Quality 23:878-882.

Cederholm, C. J., and D. J. Martin. 1983. Habitat requirements and life history of wild salmon and trout. Pages 88 to 102 in Proceedings of the Salmon and Trout Conference, March 11-12, Seattle University, Washington.

Chubb, S. 1999. Forest Fisheries Biologist for the Los Padres National Forest. Personal Communication.

Cordone, A. J., and D. W. Kelley. 1961. The influences of inorganic sediment on the aquatic life of streams. California Fish and Game pp. 189-228.

Clothier, W. D. 1953. Fish loss and movement in irrigation diversions from the west Gallatin River, Montana. Journal of Wildlife Management 17:144-158.

Clothier, W. D. 1954. Effect of water reductions on fish movement in irrigation diversions. Journal of Wildlife Management 18:150-160.

Crouse, M. R., C. A. Callahan, K. W. Malueg, and S. E. Dominguez. 1981. Effects of fine sediments on growth of juvenile coho salmon in laboratory streams. Transactions of the American Fisheries Society 110:281-286.

Curtis, B. 1959. Changes in a river's physical characteristics under substantial reductions in flow due to hydroelectric development. California Department of Fish and Game 45:181188.

Cushman, R. M. 1985. Review of ecological effects of rapidly varying flows downstream from hydroelectric facilities. North American Journal of Fisheries Management 5:330-339.

Dalby, S. R., T. E. McMahon, and W. Fredenberg. 1996. Effect of electrofishing pulse shape and electrofishing-induced spinal injury on long-term growth and survival of wild rainbow trout. North American Journal of Fisheries Management 16:560-569.

Dolloff, C. A. 1986. Effects of stream cleaning on juvenile coho salmon and dolly varden in southeast Alaska. Transactions of the American Fisheries Society 115:743-755.

Eaglin, G. S., and W. A. Hubert. 1993. Effects of logging and roads on substrate and trout in streams of the Medicine Bow National Forest, Wyoming. North American Journal of Fisheries Management 13: 844-846.

Ellis, M. M. 1936. Erosion silt as a factor in aquatic environments. Ecology 17:29-42.
Elser, A. A. 1968. Fish populations of a trout stream in relation to major habitat zones and channel alterations. Transactions of the American Fisheries Society 97:389-397.

Engblom, S. B. 1999. Data on steelhead observations within the lower Santa Ynez River downstream of Bradbury Dam. Memorandum to National Marine Fisheries Service. January 8, 1999.

Engblom, S. B. 1999a. Data on temperature, dissolved oxygen, algae, and steelhead observations withing the lower Santa Ynez River below Bradbury Dam. A series of memorandums to National Marine Fisheries Service during 1999. On file at National Marine Fisheries Service.

Engblom, S. B. 1999b. Phone conversations with NMFS detailing the results of fish observations in the Alisal reach in July and August of 1999.

Engblom, S. B. 1999c. Memorandum to David Young, U.S. Reclamation, regarding fish stranding potential during water rights release ramp downs. October 14, 1999.

Engblom, S. B. 1999d. 1998-1999 Compilation Report for the Santa Ynez River Technical Advisory Committee Fisheries Studies.

Engblom, S. B. 2000. Memorandum to David Young, U.S. Reclamation, regarding fish movement during water rights releases. March 31, 2000.

Engblom, S. B. 2000a. Personal communication. April 13, 2000.
Everest, F. H., J. R. Sedell, G. R. Reeves, and J. Wolfe. 1984. Fisheries enhancement in the Fish Creek Basin: an evaluation of in-channel and off-channel projects, 1984. Contract Report No. DE-AI79BP16726 of the Bonneville Power Administration

Fausch, K. D. 1984. Profitable stream positions for salmonids: relating specific growth rate to net energy gain. Canadian Journal of Zoology 62:441-451.

Fiedler, P.L. and S.R. Jain (editors). 1992. Conservation biology. The theory and practice of nature conservation, preservation and management. Chapman and Hall, New York, NY.

Gentry, A.H. 1986. Endemism in tropical versus temperate plant communities. Pages 153-181 in: Soule, M.E. (editor). Conservation biology: the science of scarcity and diversity. Sinauer Associates, Inc., Sunderland, MA.

Gilliam, J. F., and D. F. Fraser. 1987. Habitat selection under predation hazard: test of a model with foraging minnows. Ecology 68:1856-1862.

Gilpin, M.E. and M.E. Soule. 1986. Minimum viable populations: processes of species extinction. Chapter 2 in Soule, M.E. Conservation biology: the science and scarcity of diversity. Sinauer Associates, Inc., Sunderland, MA.

Gregory, R. S., and T. G. Northcote. 1993. Surface, planktonic, and benthic foraging by juvenile chinook salmon (Oncorhynchus tshawytcha) in turbid laboratory conditions. Canadian Journal of Fisheries and Aquatic Sciences 50:233-240.

Gregory, S. V., F. J. Swanson, W. A. McKee, and K. W. Cummins. 1991. An ecosystem perspective of riparian zones. BioScience 41:540-551.

Groot, C. and L. Margolis (editors). 1991. Pacific Salmon Life Histories. Department of Fisheries and Oceans, Biological Sciences Branch, Pacific Biological Station, Nanaimo, British Columbia, Canada. UBC Press. Vancouver.

Hall, J. D., and R. L. Lantz. 1969. Effects of logging on the habitat of coho salmon and cutthroat trout in coastal streams. Pages 355 to 376 in T. G. Northcote (ed.) Symposium on salmon and trout in streams, Institute of Fisheries, University of British Columbia, Vancouver.

Harvey, B. C. 1986. Effects of suction gold dredging on fish and invertebrates in two California streams. North American Journal of Fisheries Management 6:401-409.

Hasler, A. D. and A. T. Scholz. 1983. Olfactory imprinting and homing in salmon: Investigations into the mechanism of the imprinting process. In Collaboration with R. W. Coy. Springer-Verlag 1983.

Hunt, R. L. 1969. Effects of habitat alteration on production, standing crops and yield of brook trout in Lawrence Creek, Wisconsin. Pages 281 to 312 in T. G. Northcote (ed.) Symposium on salmon and trout in streams, Institute of Fisheries, University of British Columbia, Vancouver.

Jenkins, T. M., Jr. 1969. Social structure, position choice, and micro-distribution of two trout species (Salmo trutta and Salmo gairdneri) resident in mountain streams. Animal Behavior Monographs 2:56-123.

Karr, J. R., and I. J. Schlosser. 1978. Water resources and the land-water interface. Science 201:229-234.

Kraft, M. E. 1972. Effects of controlled flow reduction on a trout stream. Journal of the Fisheries Research Board of Canada 29:1405-1411.

Lee, R. M. and J. N. Rinne. 1980. Critical thermal maxima of five trout species in the southwestern United States. Transactions of the American Fisheries Society 109:632635.

Lowrance, R., and twelve co-authors. 1995. Water quality functions of riparian forest buffer systems in the Chesapeake Bay Watershed. U. S. Environmental Protection Agency, EPA 903-R-95-004.

Lowrance, R., R. Leonard, and J. Sheridan. 1985. Managing riparian ecosystems to control nonpoint pollution. Journal of Soil and Water Conservation 40:87-91.

Mann, J. 1999. Personal communication.

McEwan, D. and T. A. Jackson. 1996. Steelhead Restoration and Management Plan for California. February 1996. California Department of Fish and Game.

McLeay, D. J., I. K. Birtwell, G. F. Hartman, G. L. Ennis. 1987. Responses of arctic grayling (Thymallus arcticus) to acute and prolonged exposure to Yukon placer mining sediment. Canadian Journal of Fisheries and Aquatic Sciences 44:658-673.

Matthews, K. R., and H. H. Berg. 1997. Rainbow trout responses to water temperature and dissolved oxygen stress in two southern California stream pools. Journal of Fish Biology 50: 50-67.

Meehan, W. R., and T. C. Bjornn. 1991. Salmonid distribution and life histories. Pages 47 to 82 in W. R. Meehan (ed.) Influences of Forest and Rangeland Management on Salmonid Fishes and their Habitats. American Fisheries Society Special Publication 19.

Meffe, G.K. and C.R. Carol. 1997. Chapter 6 of The Principles of Conservation Biology by GK Meffe, CR Carroll, and Contributors. Sinauer Associates, Inc. 1997.

Moore, M. R. 1980. Factors influencing the survival of juvenile steelhead rainbow trout (Salmon gairdneri gairdneri) in the Ventura River, California. Master of Science Thesis, Humbolt State University. June 1980.

Moyle, P. B. 1976. Inland fishes of California. University of California Press, Berkeley.
Moyle, P. B. and Michael Marchetti. Temperature requirements of rainbow trout and brown trout. September 1992. Davis, California.

Mundie, J. H. 1991. Overview of effects of Pacific Coast river regulation on salmonids and the opportunities for mitigation. American Fisheries Society Symposium 10:1-11.

National Marine Fisheries Service. 1997. Endangered and threatened species: listing of several Evolutionarily Significant Units (ESUs) of West Coast steelhead. Federal Register [Docket 960730210-7193-02, 18 August 1997] 62(159): 43937-43953.

National Marine Fisheries Service. 1997a. Internal memorandum summarizing the operation of the Vern Freeman Diversion and steelhead data. December 17, 1997.

National Marine Fisheries Service. 1997b. Biological Opinion. Cessation of Temporary Watering Operations in Hilton Creek, Santa Barbara County, California. December 31, 1997.

National Marine Fisheries Service. 1998. Letter to the U.S. Bureau of Reclamation granting emergency authorization to rescue fish in Hilton Creek. June 23, 1998.

National Marine Fisheries Service. 1998a. Letter to the U.S. Bureau of Reclamation concluding informal consultation on the construction of the Hilton Creek water supply line. October 20, 1998.

National Marine Fisheries Service. 1999. Letter to the United States Bureau of Reclamation expressing concerns regarding turbidity in Hilton Creek resulting from water supply line test. January 28, 1999.

National Marine Fisheries Service. 1999a. Designated critical habitat: Proposed Critical Habitat for nine Evolutionarily Significant Units (ESUs) of steelhead in Washington, Oregon, Idaho, and California. Federal Register [Docket 990128036-9036-01; I.D. 033198A, February 5, 1999] 64(24): 5740-5754.

National Marine Fisheries Service 2000. Vern Freeman Data. Email communication from Darren Brumback, NMFS fishery biologist. June 15, 2000.

Nicholson, A.J. 1954. An outline of the dynamics of animal populations. Australian Journal of Zoology 2:9-65.

Nielsen, J. L., T. E. Lisle, and V. Ozaki. 1994. Thermally stratified pools and their use by steelhead in northern California streams. Transactions of the American Fisheries Society 123:613-626.

Nielsen, J. L. 1998. Molecular genetic population structure in steelhead/rainbow trout (Oncorhynchus mykiss) from the Santa Ynez River, 1994-1997. Final Revised Report. November 20, 1998. Ramona Swenson. Entrix.

Nielsen, J. L. 1998. Scientific sampling effects: Electrofishing California's endangered fish populations. Fisheries V 23(12): 6-12.

Odum, E.P. 1971. Fundamentals of ecology, $3^{\text {rd }}$ Ed. Saunders College Publishing, Philadelphia, PA.

Odum, E.P. 1989. Ecology and our endangered life-support systems. Sinauer Associates Inc., Sunderland, MA.

Payne, Thomas R. 1999. Letter to Bruce Wales regarding comments on ramping issues in the Santa Ynez River. October 19, 1999.

Platts, W. S. 1991. Livestock grazing. Pages 389 to 423 in W. R. Meehan (ed.) Influences of Forest and Rangeland Management on Salmonid Fishes and their Habitats. American Fisheries Society Special Publication 19.

Riley, S. C., and K. D. Fausch. 1995. Trout population response to habitat enhancement in six northern Colorado streams. Canadian Journal of Fisheries and Aquatic Sciences 52:3453.

Roper, B. B., D. L. Scarnecchia, and T. J. La Marr. 1994. Summer distribution of and habitat use by chinook salmon and steelhead within a major basin of the South Umpqua River, Oregon. Transactions of the American Fisheries Society 123:298-308.

Santa Ynez River Consensus Committee and Technical Advisory Committee. 1997. Synthesis and analysis of information collected on the fishery resources and habitat conditions of the lower Santa Ynez River: 1993-1996. June 1997.

Santa Ynez River Technical Advisory Committee. 1999. Adult steelhead passage flow analysis for the Santa Ynez River. Internal Review Draft. August 18, 1999.

Santa Ynez River Technical Advisory Committee. 1999a. Habitat analysis for the Santa Ynez River. Internal Review Draft. February 5, 1999.

Santa Ynez River Technical Advisory Committee. 1999b. Lower Santa Ynez River Fish Management Plan. Volume I and II. April 10, 1999.

Shapovalov, L., and A. C. Taft. 1954. The life histories of the steelhead rainbow trout (Salmo gairdneri gairdneri) and silver salmon (Oncorhynchus kisutch) with special reference to Waddell Creek, California, and recommendations regarding their management. State of California, Department of Fish and Game, Fish Bulletin 98.

Soule, M.E. (editor). 1986. Conservation biology: the science of scarcity and diversity. Sinauer Associates, Inc., Sunderland, MA.

Soule, M.E. (editor). 1987. Viable populations for conservation. Cambridge University Press, Cambridge, United Kingdom.

Stetson Engineers, Inc. Fax Memorandum to Eric Shott and Margaret Tauzer, NMFS. September 9, 1999.

Stetson Engineers, Inc. Data tables transmitted electronically to Eric Shott, NMFS. July 18, and August 24, 2000.

Stetson Engineers, Inc. Data table transmitted electronically to Eric Shott, NMFS. August 29, 2000.

Swift, C. C., T. R. Haglund, M. Ruiz, and R. N. Fisher. 1993. The status and distribution of the freshwater fishes of Southern California. Bulletin of the Southern California Academy of Sciences 92:101-167.

Thomas R. Payne \& Associates. 1992. Instream flow study for the San Luis Obispo Creek wastewater reclamation project. Prepared for City of San Luis Obispo Utilities Department, September 8, 1992, San Luis Obispo, California.

Thomas, V. G. 1985. Experimentally determined impacts of a small, suction gold dredge on a Montana stream. North American Journal of Fisheries Management 5:480-488.

Titus, Robert. 1999. Data on steelhead length and scale samples taken from fish in the Santa Ynez River Lagoon and Salsipuedes Creek. Email to Entrix from CDFG. February 8, 1999.

United States Bureau of Reclamation. 1945. Report on relation to maintenance of fish resources of proposed dams and diversions in Santa Barbara County, California.

United States Bureau of Reclamation, Cachuma Project Authority, and Santa Barbara County Water Agency. 1995. Final Environmental Impact Statement/Environmental Impact Report: Cachuma Project Contract Renewal. Volumes I and II.

United States Bureau of Reclamation, Cachuma Project Authority, and Santa Barbara County Water Agency. 1995a. Revised fish resources technical report for the EIS/EIR: Cachuma Project Renewal. December 1995.

United States Bureau of Reclamation. 1998. Draft biological assessment for Cachuma project operations and the lower Santa Ynez River. U.S. Reclamation, Fresno, CA. 93727.

United States Bureau of Reclamation. 1998a. Results of stream survey on Hilton Creek after ramp down and cessation of water releases. Letter to NMFS. February 9, 1998.

United States Bureau of Reclamation. 1998b. Hilton Creek Fish Rescue Plan. June 3, 1998.

United States Bureau of Reclamation. 1998c. Hilton Creek fish rescue assessment report. August 9, 1998.

United States Bureau of Reclamation. 1999. Biological assessment for Cachuma project operations and the lower Santa Ynez River. U.S. Reclamation, Fresno, CA. 93727.

United States Bureau of Reclamation. 1999b. Memorandum to NMFS in late spring/early summer 1999 detailing expected maintenance actions at the Hilton Creek Water Supply Line.

United States Bureau of Reclamation. 1999c. Letter to Jim Lecky, Assistant Regional Administrator for Protected Resources. November 16, 1999.

United States Bureau of Reclamation. 1999d. Summary of passage analysis. Data tables presented to NMFS during an August 19, 1999, meeting during consultation on the Cachuma Project.

United States Bureau of Reclamation. 2000. Revised section 3 (proposed project) of the biological assessment for Cachuma project operations and the lower Santa Ynez River. June 13, 2000.

United States Bureau of Reclamation. 2000a. Draft schedule and budget for tributary enhancement measures. Received April 13, 2000.

United States Bureau of Reclamation. 2000b. Data table of spawning habitat availability. Transmitted electronically to National Marine Fisheries Service on August 16, 2000.

United States Department of Energy, Bonneville Power Administration, Division of Fish and Wildlife. 1993. Evaluation of Delisting criteria and rebuilding schedules for snake river spring/summer chinook, fall chinook, and sockeye salmon. Recovery issues for threatened and endangered Snake River salmon. Technical Report 10 of 11.

Velagic, E. 1995. Turbidity study: a literature review. Prepared for Delta planning branch, California Department of Water Resources by Centers for Water and Wildland Resources, University of California, Davis.

Wang, L., J. Lyons, P. Kanehl, and R. Gratti. 1997. Influences of watershed land use on habitat quality and biotic integrity in Wisconsin streams. Fisheries 6:6-12.

Washington Department of Fisheries. 1992. Hydropower flow fluctuations and salmonids: a review of the biological effects, mechanical causes, and options for mitigation. Technical Report Number 119. September 1992.

Weisberg, S. B., and W. H. Burton. 1993. Enhancement of fish feeding and growth after an increase in minimum flow below the Conowingo Dam. North American Journal of Fisheries Management 13:103-109.

Welsch, D. J. 1991. Riparian forest buffers: functions and design for protection and enhancement of water resources. USDA Forest Service, NAPR0791, Radnor, Pennsylvania. Wesche, T. A., C. M. Goertler, and C. B. Frye. 1987. Contributions of riparian vegetation to trout cover in small streams. North American Journal of Fisheries Management 7:151-153.

Young, David. 1999. Phone conversation with Reclamation Environmental Specialist regarding the sedimentation resulting from the first Hilton Creek Water Supply Line test and the status of the seismic retrofit project. November 18, 1999.

Young, David. 2000. Personal communications during consultation on the Cachuma Project regarding Reclamation's intention to supply water to steelhead in Hilton Creek between the upper and lower release points. April 13, 2000, August 18, 2000.

Young, David. 2000a. Personal communication during consultation on the Cachuma Project regarding the capacity of the Hilton Creek water supply line. July 7, 2000.

Young, David. 2000b. Personal communications during consultation on the Cachuma Project. August 18, 2000.

Great effort was made to ensure this e-copy of the document (Shapovalov and Taft, 1954) matched the paper copy in content and format... we did on occasion, however, merge some tables that ran across two or more pages in the hard copy onto single pages. The result of this is a slight asymmetry of page numbering between the two forms of the document.

We apologize for any inconvenience or confusion this might create.

Please email comments to mckier@lerisweb.com.

Thank you

STATE OF CALIFORNIA DEPARTMENT OF FISH AND GAME

FISH BULLETIN No. 98

> The Life Histories of the Steelhead Rainbow Trout (Salmo gairdneri gairdneri)

Silver Salmon
(Oncorhynchus kisutch)

With
Special Reference to Waddell Creek, California, and Recommendations Regarding Their Management

By LEO SHAPOVALOV and ALAN C. TAFT

1954

FISH BULLETIN No. 98

The Life Histories of the

Steelhead Rainbow Trout
 (Salmo gairdneri gairdneri)

and

Silver Salmon
(Oncorhynchus kisutch)

With
Special Reference to Waddell Creek, California, and
Recommendations Regarding Their Management

By LEO SHAPOVALOV and ALAN C. TAFT

1954

TABLE OF CONTENTS
 Page

FOREWORD 5
ACKNOWLEDGMENTS 7
INTRODUCTION 9
DESCRIPTION OF THE EXPERIMENTAL PLAN 11
DESCRIPTION OF WADDELL CREEK 13
OUTLINE OF THE LIFE HISTORIES OF THE SILVER SALMON AND STEELHEAD RAINBOW TROUT 18
TERMINOLOGY 19
Common and Scientific Names 19
Terms Applied to Various Life History Stages 21
Terminology of "Scale Reading" 22
Designation and Recording of Age 23
TECHNIQUES AND METHODS OF MEASUREMENT 25
Preparation and Examination of Scale Samples 26
FISH FAUNA OF WADDELL CREEK 26
WADDELL CREEK VERTEBRATES OTHER THAN FISHES 27
WADDELL CREEK INVERTEBRATES 28
LIFE HISTORIES OF THE SILVER SALMON AND STEELHEAD 31
LIFE HISTORY OF THE SILVER SALMON 33
Spawning Migration 33
Time and Size of the Spawning Migration 33
Age and Size of the Fish 40
Sex Ratio 48
Changes in Sex-Age Composition During the Run 51
Factors Influencing the Time of Upstream Migration 51
Changes in Body Form and Coloration Associated with Maturation 56
Spawning Beds 56
Spawning 57
Egg Production 59
Correlation of Number of Eggs with Size of Fish 59
Percentage of Eggs Deposited 62
Percentage of Eggs Fertilized 62
Embryology and Hatching of Eggs 63
Emergence from the Gravel 68
Stream Life Prior to Seaward Migration (General Features) 70
Seaward Migration of Juveniles 73
Factors Influencing the Time of Migration and Size at Migration 86
Characteristics of the Migration 88
Sea Life 89
Homing and Straying 91
Survival 95
Survival of Marked Waddell Creek Silver Salmon 97
Pathology 101
Diseases 101
Teratology 104
Food 105
Page
LIFE HISTORY OF THE STEELHEAD 108
Spawning Migration 108
Time and Size of the Spawning Migration 108
Age and Size of the Fish 117
Sex Ratio 139
Changes in Sex-Life History Category Composition During the Run 141
Factors Influencing the Time of Upstream Migration 142
Changes in Body Form and Coloration Associated with Maturation 143
Spawning Beds 143
Spawning 144
Egg Production 148
Correlation of Number of Eggs with Size of Fish 149
Percentage of Eggs Deposited 150
Percentage of Eggs Fertilized 151
Return of Adults to the Sea (Post-spawning Behavior) 151
Embryology and Hatching of Eggs 154
Emergence from the Gravel 155
Stream Life Prior to Seaward Migration (General Features) 156
Downstream Migration of Stream Fish 160
Time and Size of the Migration 160
Age and Size of the Fish 160
Sex Ratio 176
Factors Influencing the Time of Migration and Size at Migration 176
Characteristics of the Migration 180
Upstream Migration of Stream Fish 180
Time and Size of the Migration 180
Age and Size of the Fish 183
Sex Ratio 183
Factors Influencing the Time of Migration and Size at Migration 183
Characteristics of the Migration 191
Sea Life 191
Homing and Straying 197
Survival 204
Survival of Marked Waddell Creek Steelhead 206
Pathology 239
Diseases 239
Teratology 242
Food 243
PREDATORS 251
Predators in Fresh Water 251
Fishes 252
Reptiles 258
Birds 259
Mammals 260
Crayfish 261
Insects 261
Predators at Sea 262
RECOMMENDATIONS FOR MANAGEMENT 263
Regulation 265
Physical Habitat Improvement 269
Biological Habitat Improvement 271
Pollution Control 272
Fish Rescue 273
Artificial Propagation 273
SUMMARY 275
REFERENCES 299
APPENDIX 305

FOREWORD

The California Department of Fish and Game has received a continuing stream of requests from administrators, legislators, biologists, and sportsmen for basic, quantitative information on the life histories of the steelhead and silver salmon. This bulletin has been prepared in response to these requests.

As additional information about the steelhead and silver salmon is gathered the concepts regarding their management will be broadened and in some instances changed to meet new situations. However, the fundamental facts about the life histories of these fishes will remain unchanged and from this viewpoint this bulletin will have lasting value.

Leo Shapovalov and Alan C. Taft
May, 1954

ACKNOWLEDGMENTS

The California Department of Fish and Game and the U. S. Fish and Wildlife Service are indebted to Mr. Theodore J. Hoover, Emeritus Dean of the School of engineering of Stanford University, for the use of Waddell Creek for experimental purposes and for the provision of field quarters at the stream. Mr. Brian Curtis, Supervising Fisheries Biologist of the Bureau of Fish Conservation (Retired), assisted with many suggestions in the preparation of the manuscript. Dr. Earl S. Herald and Mr. John C. Marr rendered great help in the early phases of the preparation of the manuscript. The latter made a number of the calculations, especially those necessary for the preparation of the egg production and scale length-fish length data. Mr. William E. Rowley provided invaluable assistance in the final preparation of the manuscript for publication. Miss Cliffa Corson drew most of the graphs with her usual skill and imagination. Thanks are due to Dr. P. R. Needham, who was in charge of the California Trout Investigations, and to the several field men who carried on the routine work at Waddell Creek and also made various valuable observations: Frank H. Sumner, Hugh R. Israel, Mitchell Hanavan, Leo Erkilla, George D. Werden, Jr., J. Harry Cook, and Myron Moore. Prof. Eugene L. Grant of the Department of Civil Engineering of Stanford University and Mr. H. M. Orem of the U. S. Geological Survey assisted in the installation of stream flow gages and the calculation of discharge measurements. Several employees of the Department of Fish and Game rendered valuable help in patrolling the stream, carrying on the routine duties during absence of the resident field observers, and making chemical analyses of the water. Stanford University kindly furnished laboratory space to the writers and to the California Trout Investigations. Finally, acknowledgment is made of the help rendered by the personnel of WPA Project No. 50-12364 and preceding projects in tabulating data, mounting scales, and typing and proofreading portions of the manuscript.

Leo Shapovalov and Alan C. Taft
May, 1954

The Life Histories of the Steelhead Rainbow Trout (Salmo gairdneri gairdneri) and Silver Salmon (Oncorhynchus kisutch)

With
Special Reference to Waddell Creek, California, and Recommendations Regarding Their Management

LEO SHAPOVALOV
Inland Fisheries Branch
California Department of Fish and Game and
ALAN C. TAFT ${ }^{1}$

INTRODUCTION

The Steelhead Rainbow Trout, Salmo gairdneri gairdneri Richardson, and Silver Salmon, Oncorhynchus kisutch (Walbaum), are two of the most important fishes found along the Pacific Coast of North America. A considerable amount of published material regarding their biology, distribution, systematic status, propagation, and management already exists. However, up to the present time, and especially to the start of the experiments described in the present paper, there has been a notable lack of quantitative data regarding both species, particularly with regard to their life histories.

Because of this lack of quantitative data, so necessary for sound regulatory, stocking, and other management programs, the California Trout Investigations, a cooperative unit of the California Division of Fish and Game (now the California Department of Fish and Game) and the U. S. Bureau of Fisheries (now a part of the U.S. Fish and Wildlife Service) in 1932 initiated a program of study at Waddell Creek, a typical coastal stream in Santa Cruz County, California. Upon the termination of the formal cooperative agreement in 1937, these studies were conducted independently by the California Division of Fish and Game.

The plan of the experiment was to study the steelhead and the silver salmon in their natural habitat. Since both fishes are anadromous, the logical approach was to construct a dam or weir at which both the upstream and downstream migrants could be counted. In the process of counting, observations could be made on the migrants (measurements, scale samples, sexual maturity, parasites, etc.), fluctuations of popula-

[^8]tions determined from the counts, and the counts complemented by observations made on the fishes in the stream (spawning activities, feeding habits, etc.).

Waddell Creek was chosen for the following reasons: It was a stream under as nearly natural conditions as could be found in California at the present time and was still reasonably accessible; it was large enough to possess a full biota and small enough to be dammed at reasonable cost and to permit complete counts of at least all upstream migrants, and thus avoid errors that might result from sampling; it was so situated that it could be kept under observational and legal control as a unit, with the general public excluded.

Waddell Creek in its general characteristics is typical of the great majority of California coastal streams of like size. Moreover, in miniature it is almost a replica of the larger stream systems, such as the Klamath and the Eel. This fact is of great importance in that the habits and ecology of the trout and salmon in the small streams and the large

Figure 1. Steelhead and salmon streams of the California coast.
ones are similar. Consequently, the conclusions regarding the proper management of these fishes derived from the present study are applicable, at least in the broader aspects, to the coastal streams in general.

Obviously, certain limitations are imposed by a program that consists of studying the natural fluctuations of a population in a limited area. Large-scale sampling involving the killing of specimens cannot be carried on without danger of disturbing the natural balance. Thus, it is not possible to make various measurements such as egg counts and pyloric caeca counts, stomach analyses, etc. The very great advantage of Waddell Creek in this respect was that its drainage basin is adjacent to that of Scott Creek, a stream of comparable size, with comparable environmental conditions and a similar fauna, in which the lacking data could be gathered. Scott Creek had the advantage of being the location of a State egg collecting station and a State hatchery (the latter situated on a tributary, Big Creek) and of being set aside as a State Fish Refuge. Consequently, it was possible not only to gather data on egg production and to secure measurements but also, through marking of the naturally-spawned fish in Waddell Creek and the artificially-spawned and hatchery-reared fish in Scott Creek, to carry out a comparative study of two adjacent streams, one under natural conditions and the other under artificial management, and to study the amount of "homing" and "straying" between the two streams.

As will be discussed further in this paper, certain conditions already existed or were created by the experiment which altered natural conditions to varying degrees, especially in the direction of making difficult a true evaluation of population fluctuations under natural conditions, but the essential quantitative picture of the life histories of the species concerned has remained a correct one.

DESCRIPTION OF THE EXPERIMENTAL PLAN

The basic physical portion of the Waddell Creek experiments consisted of a dam and a two-way trap for counting upstream and downstream migrants (Figure 2). This trap was designed by Taft, who has presented accounts of its operation in two papers $(1934,1936)$. A detailed description and illustrations of the physical plan are contained in the latter publication. This detailed description will not be repeated in the present paper, but a general explanation of the nature and operation of the dam and trap is in order.

The dam and trap were constructed during the summer of 1933, approximately 7,250 to 9,250 feet above the mouth of the stream (the distance depending upon the varying location of the mouth) and 3,300 feet above the uppermost limit of tidewater. The location of the dam (elevation about 25 feet) was the point farthest downstream at which it was believed that a dam could be constructed without danger of floodwater washing around it.

The dam acted as a barrier which the fish could not pass on their migration upstream. As a result they sought the "fish ladder" which led into a tank, where they were trapped. Downstream migrants were brought into another compartment of the same tank by way of a short flume leading from the stream above the dam. They were separated from the upstream fish and were prevented from passing downstream by a double set of screens, the finest of which was of quarter-inch mesh.

Figure 2. Waddell Creek dam and trap at low water, showing apron to prevent upstream fish from jumping over dam. California Department of Fish and Game photograph.

All of the adult fish coming to the dam were taken in the trap and were counted and scale samples taken for purposes of life history determination. The number of adults of each life history category in each season ${ }^{2}$ was thus determined. This was the first and most important step in determining the population fluctuations from season to season. (During extreme flood water in some seasons a certain number jumped upstream over the dam and in each season some fish spawned below the dam. The numbers of such fish and their effects on the experiment will be discussed further in this paper.)

The second and more difficult step was the determination of the number of juvenile fish of each age moving from the stream to the ocean in each season. It was possible to strain only a small portion of the water passing downstream during high water (Figure 3) and it therefore follows that only a portion of the total number of fish migrating could be trapped. However, the calculation of the percentage of fish taken in the trap was possible through the marking of the migrants caught in the trap. Alternate pectoral fins and the adipose were removed in each season during the seasons 1933-1934 to 19371938, inclusive, so that the fish migrating downstream in each season could be recognized when they returned as adults. The total number of migrants

[^9]

Figure 3. Waddell Creek dam and trap at high water; apron submerged Photograph by Leo Shapovalov.
in any one year was then calculated in accordance with the proportion of marked to unmarked fish of the same life history. During the seasons 1938-1939 to 1941-1942 the downstream migrants taken in the traps were not marked, but were counted and measured.

DESCRIPTION OF WADDELL CREEK

Waddell Creek is located in central California, approximately twothirds of the way from San Francisco to Monterey Bay. It enters the Pacific Ocean approximately 17 air-line miles and 20 miles by coast northwest of the northern end of Monterey Bay and three air-line miles southwest of Año Nuevo Point, on the coast of Santa Cruz County, at lat. $37^{\circ} 6^{\prime} \mathrm{N}$., long. $122^{\circ} 17^{\prime} \mathrm{W}$. The location of the stream and its relation to nearby features of interest in connection with the present study are shown in Figure 4.

The area is near the southern border of the humid coast belt. The headwaters of most of the streams in this belt are subject to a great deal of precipitation during the winter months. The headwaters portion of Waddell Creek has a mean annual rainfall of between 55 and 60 inches. The lower portion of the watershed receives much less rainfall, averaging in the neighborhood of 30 inches near the coast. More than one-half of the rain falls during December, January, and February.

Because of the distinct wet and dry seasons, there are tremendous fluctuations in the flow of most of the coastal streams. The extent of these fluctuations in Waddell Creek may be gathered from Table 1, which shows the peak floods and low points in each year during the period 1934-1942.

Figure 4. Waddell Creek and nearby streams.
During a portion of the year, which may be spring or summer or both, dense fogs roll in from the ocean and blanket the lower portion of the stream. These cool the water and even temporarily increase the flow to a slight extent.

Like nearly all California coastal streams, small or large, Waddell Creek terminates in a drowned mouth or lagoon, which is subject to tidal action during those portions of the year when it is not closed by a sand bar. The mouths of only a few of the larger California streams (Klamath River, Eel River, Noyo River) regularly stay open throughout the summer months. Depending upon stream flows, tides, and wind and wave action, from approximately April to July or August sand bars intermittently open and close the mouths even of such streams as the Russian River and the San Lorenzo River. During July or August
the bars usually form to remain until they are broken (October-November) by the first heavy rains of the wet season. Following this there may again be a period of intermittent closings, until the bars finally break out (usually December) to remain open until the following spring or summer. Table 2 shows the openings and closings of the mouth of

TABLE 1
Waddell Creek: Yearly Maximum and Minimum Flows *

	Maximum flow		Minimum flow	
	Date	Second-feet	Date	Second-feet
1934	February 26	278	September 8	0.7
1935	April 3	625	September 19	2
1936	February 22	1,390	October 3	1
1937	March 21	1,390	November 7	3
1938	January 31	1,540	September 27	2
1939	March 9	114	September 28	4
1940	March 30	6,460	November 15, 16, 22	5
1941	February 9	2,065	October 15	4
1942	January 24	1,800		

* Measurements made at the dam.

Waddell Creek. The mouth of Scott Creek has usually opened and closed on the same dates.

The lagoons of the different California streams are not all of a size proportionate to the size of the stream. Some streams have characteristically "large" lagoons, while others have "small" lagoons. In a given stream, too, the size and shape is not constant from year to year, especially in those cases in which man-made construction (bridges, jetties, etc.) has affected the lower end of the stream or caused abnormal fluctuations of flow. The mouth of Waddell Creek has shifted over a distance of 2,500 feet during the course of these experiments and the depth of the lagoon has varied from only a few inches of running water to over eight feet. The area of the lagoon has also varied widely. In 1933 it was subject to tidal action for about one mile from the ocean.

TABLE 2
Waddell Creek: Openings and Closings of Mouth

Year	First closing date	Permanent closing date	First opening date	Permanent opening date
1933			October 31	December 28
1934	April 21	May 11	November 18	December 13
1935	May 30	July 19	October 11	December 29
1936	June 19	July 3	November 19	December 26
1937	August 24	August 24	October 26	December 8
1938	October 25	October 25	October 27	October 27
1939	June 29	July 9	November 24	December 7
1940	July 26	August 14	September 13	December 16
1941	July 24	September 14	October 9	December 9
1942	September 25			

FIGURE 5. Lower Waddell Creek in late summer, showing the drying lagoon (at right). Photograph by Leo Shapovalov, August $31,1939$.

Waddell Creek has its source in the Redwood belt of the Santa Cruz Mountains, at an altitude of 1,500 to 2,300 feet, in the form of half a dozen or so small tributary streams located in the California Redwood State Park (Big Basin). These small tributaries unite to form two larger streams, the East Branch and the "West Branch, which in turn join to form the nain branch of Waddell Creek. The length from month to source is approximately 12 miles. The hydrographic basin of Waddell Creek has an area of 26 square miles.

The distance from the uppermost limit of tidewater to the junction of the Bast Branch with the West Branch (called "The Porks") is 14,500 feet. The distance from The Forks (elevation about 90 feet) to Slippery Palls (elevation about 185 feet) on the West Branch, usually the uppermost limit to which upstream migrants can ascend on the West Branch, is 14,000 feet. The distance from The Porks to the Main Palls on the East Branch (elevation about 210 feet), the uppermost limit to which upstream migrants can ascend the East Branch, is almost exactly one mile.

The current of Waddell Creek is rapid to moderate throughout its course. The small headwater tributaries of Waddell Creek first meander over sandy bottoms or tumble through ravines among the virgin redwoods of Big Basin. As they become larger and unite to form the East and West branches, thej ${ }^{r}$ cascade and fall over boulders and bedrock and cut through steepwalled, fern-covered gorges. Especially the East Branch has many deep pools (up to 15 feet), which are separated by short stretches of stream flowing over large rubble and boulders and bedrock and alminating in falls up to five feet in vertical drop. These upper reaches of stream flow through the Transition Life Zone, characterized here by a forest of Redwood (Sequoia sempervirens) and Douglas Pir (Pseudotsuga taxifolia). ${ }^{3}$
${ }^{3}$ The major plant associations of the region have been discussed by Orr (1942).

The lower portion of the West Branch (from Henry Creek to The Porks) and the main stream (below The Porks) are broader and contain fewer deep pools. Here there are abundant gravel and small rubble beds, interspersed with stretches of sandy bottom or coarse rubble. The stream banks are lined by Red Alder (Alnus rubra), Big-leaf Maple (Acer macrophyllum), Buckeye (Aesculus californica), Madrono (Arbutus menziesii), California Laurel (Umbellularia californica), and, in the lowermost portion, by willows (Salix spp.). Also encountered occasionally are Tan Oak (Lithocarpus densiflora), Box Elder (Acer negundo), White Alder (Alnus rhombifolia), Black Cottonwood (Populus trichocarpa), California Nutmeg (Torreya californica), Redwood, and Douglas Pir.

The redwoods extend to within about a mile of the coast at this point and the lowermost portion of the stream flows through the Upper Sonoran Life Zone. Here several patches of cultivated grassland and crop fields are scattered through a valley, which is about 2,000 feet wide at its broadest point and extends inland about 6,000 feet. The hill-slopes are populated mostly by chaparral, pines, and Douglas fir. The predominant sandstone formation is covered with a loose, whitish, diatomaceous shale.

Immediately above the lagoon the stream flows through a small area of marshland. The lagoon is bordered by shifting sand dunes.

Some changes from the primitive condition of the area have taken place as a result of human usage. The redwood forest of the watershed below Big Basin was logged off by 1870 and is now covered by a second growth. The early lumbering operations have resulted in the creation of several semipermanent log jams and temporary accumulations of logs, which have hastened erosion of the stream banks, with consequent increase in silting during flood stage.

OUTLINE OF THE LIFE HISTORIES OF THE SILVER SALMON AND STEELHEAD RAINBOW TROUT

In order that those not fully acquainted with the silver salmon and steelhead might have a better understanding of the purposes and character of the experiments, a brief outline of the life histories of these species is here presented.

Both the silver salmon and the steelhead are members of the family Salmonidae, which includes such groups as the trouts, salmons, charrs, and whitefishes.

Generally, the salmonids are inhabitants of cool, clear waters in the temperate and boreal regions of the world. A good, readily understandable description of the distribution and relationships of the salmonids, particularly the trouts, and the species present in California is given by Snyder (1940).

In appearance, the steelhead and the silver salmon, although belonging to different genera, are very similar. The outstanding difference between the two and also the genera that they represent is not a morphological, but a biological one. The several species of the genus Oncorhynchus, commonly called the Pacific salmons, all die after spawning once, whereas the numerous species of the genus Salmo, which includes not only all of the true trouts but also the Atlantic Salmon (Salmo salar), are biologically capable of spawning more than once.

Under the proper environmental conditions both the steelhead and silver salmon are anadromous, i.e., they spend a portion of their lives, during which they put on the greater part of their growth and attain sexual maturity, in the ocean and then ascend streams for spawning purposes. The eggs are deposited in pits, known as redds or nests, dug in the gravel of the stream bottom by the female fish. Immediately after deposition and simultaneous fertilization by the male fish, the eggs are covered with gravel by the females. After a certain period in the gravel, the length of which depends upon temperature, oxygen, and other factors, as well as the species involved, the young fish hatch from the gravel and gradually work their way to the surface of the stream bed. After emergence from the gravel, the young fish spend a certain time in the stream, which is usually a year or longer but depends primarily upon the species and secondly upon various environmental factors, and then descend to the ocean. In the case of the silver salmon, some of the males mature and return to spawn after one summer in the ocean, while the females and the remaining males return to spawn after two summers in the ocean. In the case of the steelhead, some of both males and females mature and return to spawn after one summer in the ocean, and practically all of the remaining fish return after the second summer. It must be pointed out that a certain proportion, in some cases perhaps a considerable proportion, of the steelhead may remain in the stream, attain sexual maturity, and spawn without descending to the ocean. Silver salmon do not spawn until they have spent some time in the ocean. ${ }^{4}$

[^10]From the foregoing account it is seen that the life histories of the steelhead and silver salmon are in general quite similar, except in that all of the silver salmon die after spawning once and do not spawn without a period in the ocean. This brief account of the life histories of the two fishes will suffice for the present, but more detailed descriptions of the various life history phases will be presented further on in this paper, along with references to the published literature. It should be kept in mind that there are certain exceptions to most of the above general statements.

The general distribution of the steelhead is in the coastal streams of the Pacific Coast of North America, from the United States-Mexico boundary or possibly even Baja California northward to and including Alaska. The general distribution of the silver salmon is from some of the streams entering Monterey Bay, California, to the Amur River in Asia. Again, it must be kept in mind that certain exceptions occur. A discussion of the geographic distribution of the Pacific salmons is given by Davidson and Hutchinson (1938).

To a varying but in each case marked extent, both the steelhead and silver salmon exhibit a "homing instinct," i.e., the young fish which descend from fresh water to the ocean return to their "parent stream" for spawning purposes (young fish artificially hatched and liberated return to the stream in which they were liberated, not to the stream to which their parents returned or in which they were hatched). Some of the experiments on which these conclusions are based are described by Taft and Shapovalov (1938), and the whole subject of a homing instinct in trout and salmon is reviewed and discussed by Shapovalov (1941b).

In California, the steelhead (as well as all other trout) are barred to commercial fishermen, but are taken in very large numbers by sports anglers, both as adult and as immature fish, at sea and in fresh or brackish water. The silver salmon is of both commercial and game importance, being taken in the mature form by commercial fishermen at sea, and by sports anglers both as adult and as immature fish at sea and in fresh or brackish water.

A biological and economic comparison of the two species is given in Table 3.

TERMINOLOGY

In order that further portions of this paper may be better understood, the writers believe that it is well at this point to define the terminology that will be used.

Common and Scientific Names

First the use of common names should be clarified. In this paper, the common name Silver Salmon will apply to the species Oncorhynchus kisutch. One popular misconception that has existed along various parts of the Pacific Coast is that the hook-nosed salmon, called "dog salmon" by local residents, form a distinct species. Such fish are simply males whose snouts have become hooked and elongated during the spawning season. This phenomenon takes place to a greater or less extent in all of the species of Pacific salmons and to some extent in the steelhead. A

TABLE 3
Steelhead and Silver Salmon: Biological and Economic Comparison

	Steelhead	Silver salmon
Die after first spawning?	No	Yes
Sometimes spawn without some time spent in the ocean?	Yes	No
Females dig spawning nests in gravel?	Yes	Yes
Some males return to spawn after one summer in ocean?	Yes	Yes
Some females return to spawn after one summer in ocean?	Yes	No
Remaining males and females return to spawn after two summers in ocean?	Yes*	Yes*
Spawning range	U.S.-Mexico boundary to and including Alaska	Monterey Bay to Amur River, Siberia Exhibit homing instinct?
Caught commercially in California?	Yes	Yes
Caught as game fish in California?	No	Yes

* A few fish, probably less than 1 percent in most streams, may return to spawn after three summers in ocean.
distinct species of salmon, the Chum Salmon (Oncorhynchus keta), is sometimes also known as dog salmon, but it occurs comparatively infrequently in California. Common names applied to the silver salmon are jack salmon (applied especially to young males), dog salmon or hookbill (applied to males with hooked snouts and red sides), coho, and silversides.

In this paper, the common name Steelhead Rainbow Trout will apply to the subspecies Salmo gairdneri gairdneri, irrespective of the habitat, size, or sexual condition of the individuals concerned, but for the sake of brevity the unofficial common name "steelhead" will be used. When individuals of this subspecies remain in a stream throughout their lifetime they grow at a much slower rate than those individuals which have entered the ocean, and take on the typical bright coloration of "stream trout" or "rainbow trout."

Some writers fully recognize that the small coastal trout and the adult spawning fish form a single species or subspecies, but prefer to use the term "steelhead" not as the common name of a distinct species or subspecies but as a term designating any species of trout that has been in salt water. According to this system of nomenclature, there are both "rainbow steelhead" and "cutthroat steelhead." In the east there would then be "eastern brook steelhead." This terminology has certain merits, but its chief fault is that it has not "stuck" in the popular usage of the vast army of anglers.

There has also been some difference of opinion as to which scientific name should be applied to the steelhead, Salmo gairdneri or Salmo irideus. This is a technical point, depending upon the date and validity of the original descriptions which first used these names. Inasmuch as the great majority of scientists up and down the Pacific Coast now use the name Salmo gairdneri and because the writers have satisfied themselves that the description of the fish which accompanied the first use of this name could apply only to the form herein called steelhead, this name will be used in this paper. A discussion of the scientific name that should be applied to this species is given by Shapovalov (1941a).

Among common names that are applied to the steelhead are the following: rainbow (applied to individuals that color up and/or mature
in fresh water), half-pounder (applied to small sea-run individuals or large, silvery individuals that have remained in fresh or brackish water, weighing usually from one pound to two and one-half pounds; term used particularly on the Eel River system of California), summer salmon (applied to green spring-run fish, especially in the Middle Fork of Eel River), and sea-run rainbow.

Terms Applied to Various Life History Stages

The following list is one of terms applied in this paper to various stages in the life histories of the steelhead and silver salmon.
Juvenile. Fish which is sexually immature.
Adult. Fish which has matured sexually in one or more summers of sea life. This term includes grilse.
Grilse. Fish which has matured sexually in only one summer of sea life.
Resident fish. Fish which is an offspring of parents that spawned without having been to sea and which itself has not been to sea.
Sea-run fish Fish which has entered a stream to spawn after one or more summers of sea life. ${ }^{5}$
Stream fish. Fish which has not been to sea, irrespective of its parentage or sexual maturity.
Ripening fish. Fish whose sexual products are developing preparatory to spawning.
Spent fish. Fish which has not yet recovered from the effects of spawning.
Fall-run fish. Fish which enters a stream at any time from the late summer through the following spring and will spawn sometime during that same period. ${ }^{6}$
Spring-run fish. Fish which enters a stream in the spring or early summer, but which will not spawn until the following fall, winter, or spring.
Maiden fish. Fish, whether male or female, which has not spawned.
Ripe fish. Fish which is ready for spawning.
Most of the terms in the above list are in general use, but some often have been used dissimilarly in different publications or have not been sharply defined. The term "grilse" has sometimes been used to designate not only those fish which have matured after only one summer of sea life, but also those which have matured prior to the modal year of maturity for the species. Sometimes the term "mature fish" has been used as a synonym for what in this publication is called "sea-run fish." Pautzke and Meigs (1940) apply the term "immature" to steelhead prior to their initial entrance into salt water and "mature" to

[^11]fish which are returning from salt water to fresh water for the purpose of spawning. Since steelhead often become sexually mature without entering salt water, the writers believe that the terms used in the present paper are more applicable. The term "trout" has not infrequently been applied, especially in the parlance of the angler, to those steelhead which in the present paper are defined as "stream fish" and the term "steelhead" to what are here called "adult," Such usage has been based on misconception.

Terminology of "Scale Reading"

As has long been known, the determination of the life histories of salmonids is possible from a microscopic examination of the scales. The developed scale shows ridges which appear as concentric rings, and are termed circuli. In general, the scales start to register the growth of the fish immediately after their formation, the circuli being more widely spaced during rapid growth and more narrowly spaced during slow growth. A prolonged cessation, brief interruption, or disturbance of growth is reflected by notably closer spacing and usually by irregularities and anastomosis of the circuli. In the present paper any such closely spaced and irregular group of circuli will be termed a check. One that forms between annual growing seasons will be termed an annulus or year check, while one that forms as a result of some disturbance during the course of the growing season will be termed a false annulus or false check. Over the range of salmonids as a whole the annulus forms during the winter, but in Waddell Creek and other California coastal waters with mild winters and dry summers such growth cessation or slowingdown often takes place in the autumn or even in late summer, as will be discussed more fully further in his paper. Freshwater growth will be used to denote that part of the scale which had formed during residence in fresh water, and sea growth or saltwater growth to designate the part formed at sea, Intermediate growth will indicate the portion of the scale formed during the season of migration to the sea, prior to entry into salt water. New growth will be used to designate that part of the scale which had formed during the growing season in which the scale was collected. Spawning is reflected in the scale by a more or less marked erosion or absorption of the edge of scale. Since spawning usually takes place at the time of formation of the annulus, this erosion usually replaces or obliterates the annulus that has just formed or is forming. Since the silver salmon spawns but once, the spawning erosion is found only at the edge of a scale. In the case of the steelhead, however, spawning is normally followed by a growing period, so that in following years the erosion of the spawning season is reflected in the scale as a jagged scar or line typically cutting across a number of circuli. Such a formation is known as a spawning mark. Regenerated scales are those which have replaced lost scales. In regenerated scales the portion represented by the lost scale is "blank," i.e., without circuli, and so such scales are generally of little use in scale reading.

Designation and Recording of Age

Standard methods of (1) designating and (2) recording the age of fishes, and even of salmonids as a group, have never been adopted and are very difficult to compose. Some of the difficulties encountered in attempting to designate age are posed by the following questions: Should the beginning of life be computed from the time of fertilization of eggs or time of hatching of eggs? Should the end of a year of life be computed as the end of a calendar year, the anniversary of the date of fertilization or hatching, or the end of a growing period?

In the case of human beings, the exact date of birth of an individual is ordinarily known, and so it is an easy matter to mark age by birthday anniversaries. This method of age designation for human beings is satisfactory because it is accurate and because we are often interested in human beings as individuals. In the case of fish under natural conditions, however, it is impossible in practice to determine from scale reading the exact time of either fertilization or hatching. Furthermore, from the viewpoint of fisheries management and especially in the case of salmonids, the thing that we are interested in and around which the biological work centers is not individuals as such but brood years, and individuals only as units of the year classes that result from the brood years.

In the present paper the year in which the fish hatched is considered as the brood year of a fish and the end of a growing period as the end of a year of life.

The year in which a fish hatched rather than the one in which the egg was fertilized is chosen as the brood year for the following reasons. (1) Although in some waters the calendar year in which the fish hatched and in which the egg was fertilized are the same, in many others the beginning of a calendar year comes in the middle of the spawning season for various salmonids, while the hatch from a given spawning run always or practically always takes place within a calendar year. (2) The time of hatching places the beginning of life in salmonids on a comparable basis with the beginning of life for human beings, while the time of fertilization would not for purposes of age designation. The time of hatching also makes this system of age designation more readily applicable to viviparous fishes, while the time of fertilization would not. (3) The time of hatching marks the beginning of growth of the fish in its approximate final form. (4) The time of hatching in all fishes is ordinarily followed by a growing period within the same calendar year, while the time of fertilization often is not.

Salmonids spawn only once a year and, although in some cases they have a prolonged spawning season, a definite growing period normally intercedes between the spawning seasons. Thus, it is logical to use growing periods as indexes of years of life and the end of a growing period to mark the end of a "year" of life. From scale examination it is usually impossible to mark exactly the beginning of the formation of the annulus for the reason that this is not a clearly marked point but appears as a gradual narrowing of the circuli. (This is particularly true of waters in which there is no season of markedly low temperatures.) On the other hand, the end of the formation of the annulus, which is also the beginning of new growth, is nearly always quite
clearly marked. In this paper, then, the end of the annulus and the beginning of new growth have been chosen as the point marking the completion of one year of life and the beginning of another. In the case of fish that spawn at the end of a growing season an annulus often is not formed, so the beginning of new growth following the spawning mark is used as the point marking the completion of that year of life. ${ }^{7}$

The computation of the end of a year of life on the basis of anniversary of date of fertilization or hatching would both be unsatisfactory, if only from the point of view that these dates cannot be determined in scale reading. The basis of the end of a calendar year would also be unsatisfactory, for the reason that the fish of a given age group would change their age with the end of that year without any biological basis. Confusion in recording age would be apt to result in the case of a species whose spawning season extended from one calendar year into the next, as in the case of both steelhead and silver salmon at Waddell Creek.

The procedure herein outlined places the age of the fish on a biological basis and thus makes possible the comparison of the age and growth of the same species from different waters, even when the spawning and hatching times are quite different for such waters.

In accordance with the system outlined above, a fish is in its first year of life from the time that it hatches until the beginning of formation of new growth following completion of the first annulus. The age group of such a fish is recorded by the sign "+." (Some writers, e.g., Hile (1941) record fish which have not yet formed their first annulus as members of the "O" group.) From the time that new growth begins following completion of formation of the first annulus until completion of the second annulus or formation of a spawning mark and the beginning of new growth, the fish is in its second year and its age is recorded by the numeral " 1, " and so on. In other words, the numerals used to show the age of the fish also show the number of annuli and spawning marks. If the annulus is thought of as the birthday anniversary of the fish, this system places the age on the same basis as that for human beings and becomes understandable to the layman as well as the biologist.

The procedure outlined in the preceding paragraph is adequate when the discussion is concerned only with total age. It is sometimes also desirable to record the details of the life histories of individuals or groups, and for this purpose the following system is proposed and used in the present paper. The sign "/" is used to separate life in fresh water (stream life) from that in salt water (sea life). Thus, a fish which had spent two growing seasons in fresh water only would be represented by the formula $2 /$ and one that had migrated to sea in its first year and had spent its first two years at sea would be represented by the formula $+/ 2$. Continuing, the formula $2 / 1$ represents a fish that had spent two years (growing seasons) of stream life and one year of sea life. In the case of steelhead, a capital "S" is used to indicate a

[^12]spawning, normally represented on the scales by a spawning mark. The S is not added until a fish has completed spawning. Thus, if a fish had spent two years of stream life and one year of sea life and had then entered fresh water and spawned it would be represented by the formula $2 / 1 \mathrm{~S}$. A period is used to separate years (growing seasons) followed by a spawning from years not followed by a spawning. Consequently, if the same fish had not entered fresh water and spawned until the end of a second year of sea life it would be represented by the formula $2 / 1.1 \mathrm{~S}$. If instead the fish had spawned at the end of both its first and second years of sea life it would be represented by the formula $2 / 2 \mathrm{~S}$. If the same fish began another year of sea life it would be represented by the formula $2 / 2 \mathrm{~S} .1$ until it had again entered fresh water and spawned, when it would be represented by the formula $2 / 3 \mathrm{~S}$. By this system, the total age of the fish may easily be computed by adding the numerals in the formula.

This system for recording life histories is easily understood and had the advantage over some other systems that have been used in that it is readily reproduced on a typewriter. It has been described in further detail by Shapovalov (1947); the system used for recording measurements is also described in this paper.

TECHNIQUES AND METHODS OF MEASUREMENT

Scales were removed from the side of the body in the region between the lateral line and the anterior portion of the dorsal fin and stored for mounting in scale books. Scale samples from juveniles, resident fish, and stream fish were taken from the right side of the body and those from adults from the left side of the body. This system was followed in order to avoid taking regenerated scales in sea-run fish that had been sampled as juveniles.

All fish were measured according to fork length, which is here defined as the distance from the tip of the snout to the fork of the caudal fin, and hereafter references to "length" will mean such length. It was not practicable to take the standard length (distance from tip of snout to end of hypural fan) with live fish. The measurement used was also deemed more accurate than a total length based on distance from tip of snout to end of the caudal fin, for the reason that the tips of the caudal fin are often frayed or worn off, especially in spawning trout and salmon. In both sea-run steelhead and silver salmon the relation of the standard length to the fork length appears to be fairly constant, the standard length varying from 88.4 to 90.1 percent of the fork length in seven specimens from Waddell and Scott creeks. All measurements were made in a straight line between the points indicated with the fish placed on a rule and were recorded to the following unit of measurement. Fish 300 mm . or under in length were measured to the following millimeter and those over 300 mm . to the following centimeter. In practically all cases sea-run fish are more than 300 mm . in length and juveniles, stream fish, and resident fish are less than 300 mm . in length.

Preparation and Examination of Scale Samples

The scales were soaked in water and cleaned with a small brush, or merely by rubbing between the fingers. They were mounted "dry" (in air), with the edges of the cover glass glued down with "Duco Household Cement," in some cases and in white "Karo Syrup" in others. Each form of mounting produces a permanent slide. Two or three scales were mounted in the case of sea-run fish and from that number to a dozen in the case of the smaller fish. Care was taken to avoid scales with regenerated centers or of highly asymmetrical or otherwise irregular form.

All measurements were made along the anterior radius of the scale, using a microscope and a mechanical stage, with attached micrometer which recorded in hundredths of a millimeter.

The following procedure generally was used to gage the validity of scale interpretations. The investigator recorded his measurements and immediately denoted doubtful features. He then re-examined the doubtful scales only, without reference to his initial interpretation. If a doubtful but probable feature was interpreted the same way on each occasion, the interpretation was listed as "certain." In a few instances the other investigator checked the doubtful scales, again without reference to the initial interpretation.

FISH FAUNA OF WADDELL CREEK

In common with the other coastal streams from the Golden Gate to Monterey Bay, Waddell Creek contains no strictly fluvial fishes. As Snyder (1914) has pointed out, the San Lorenzo, Pajaro, and Salinas rivers, farther to the south, possess a fluvial fish fauna whose affinities are with that of the Sacramento River system.

The species regularly found in flowing (fresh) water in Waddell Creek, besides the steelhead and silver salmon, are the Prickly Sculpin (Cottus asper), the Aleutian Sculpin (C. aleuticus), the Three-spined Stickleback (Gasterosteus aculeatus), and the Tidewater Goby (Eucyclogobius newberryi).

Other native species that are found only in the brackish water of the lagoon or only occasionally enter the fresh water of the stream are the following: Starry Flounder (Platichthys stellatus), Staghorn Sculpin (Leptocottus armatus), and Top Smelt (Atherinops affinis).

The only introduced species in Waddell Creek is the Striped Bass (Roccus saxatilis), which in some years enters the lagoon from the ocean, but insofar as the writers have been able to ascertain, does not spawn in the Waddell Creek drainage.

Lampreys, so common in many of the larger California coastal streams, and usually called "eels" by local residents, do not enter Waddell Creek nor Scott Creek. They are, however, found in the San Lorenzo River.

A number of facts concerning the habits and ecology of the various non-salmonid species mentioned have been discovered in the course of the studies, but these will be discussed in the present paper only in part and only as they concern the steelhead and/or silver salmon. However, just enough facts regarding the local distribution and breed-
ing habitat of these species will be stated at this time to orient the reader for further discussion of their interrelationships with the trout and salmon.

Cottus asper is the larger and by far the more abundant of the two species of sculpins present. Although at times occurring farther upstream, both species apparently breed within 3,300 feet above the uppermost limit of tidewater. Both species make regular upstream and downstream migrations. The downstream migrations apparently are for spawning purposes.

The Three-spined Stickleback is found in fresh water, brackish water, and in the salt water of the ocean and apparently breeds in all three habitats. At times there is a marked downstream migration of this species in Waddell Creek.

The Tidewater Goby has been found only in the brackish portion of the upper part of the lagoon and in the lower half-mile of flowing water. No intrastream migrations have been observed.

The Starry Flounder, Top Smelt, and Staghorn Sculpin are normally saltwater forms and only occasionally enter the lagoon. However, apparently the same individuals may remain in the lagoon for days and even weeks. In nearby Pescadero Creek, the Starry Flounder has been caught by angling with salmon eggs several hundred yards above the lower end of the flowing water of the stream.

The Striped Bass enters the lagoon only occasionally, but at such times may remain for over a month. In former years this species was reported by local residents on occasion to have ascended about a mile into the flowing water of the stream, but since the start of the experiments, in 1933, no individuals of this species have been seen above the limits of tidewater. No evidence has been gathered to show that the species spawns in Waddell Creek.

WADDELL CREEK VERTEBRATES OTHER THAN FISHES

Amphibians

The amphibians which regularly enter the stream are the following: California Newt (Triturus t. torosus), Pacific Giant Salamander (Di-camptodon ensatus), California Yellow-legged Frog (Rana boyli boyli), and California Red-legged Frog (Rana aurora draytoni). The Pacific Giant Salamander has been seen but infrequently in Waddell Creek. The other species are more or less common and make regular downstream migrations.

Reptiles

The reptiles which regularly enter the stream are the following: Pacific Pond Turtle (Clemmys m. marmorata) and one or two species of garter snake (Thamnophis). Some of the garter snakes make regular downstream migrations.

Birds

Several species of aquatic or semiaquatic birds are regularly associated with the stream, as follows: California Heron (Ardea herodias hyperonca), American Egret (Casmerodius albus egretta), Blackcrowned Night Heron (Nycticorax nycticorax hoactli), American Bittern (Botaurus lentiginosus), Wood Duck (Aix sponsa), American

Coot (Fulica americana americana), Western Belted Kingfisher (Megaceryle alcyon caurina), and Dipper (Cinclus mexicanus unicolor). Several other birds, such as loons, grebes, ducks, various shore birds, gulls, and terns are occasional visitors to the lagoon or lower stream, but in all probability do not affect their economy to a marked extent. None of the species present are to be found in great abundance. Over the entire drainage of Waddell Creek, probably no species is represented by more than a dozen or at the most several dozen individuals. Both the Golden Eagle (Aquila chrysaëtos canadensis) and the Southern Bald Eagle (Halicaetus leucocephalus leucocephalus) are represented by a few individuals, and at least the latter species feeds on the carcasses of spent salmon, but they do not play an important role in the economy of the stream. The American Merganser, often called "fish duck," which in other California streams appears to eat appreciable numbers of trout and salmon and trout and salmon eggs, and the American Osprey are absent from the area or are rare visitants.

Mammals

The only mammal that is known to have a direct relationship to the salmon and trout in Waddell Creek is the California Coon (Procyon lotor psora), which eats dead or weakened adult steelhead and salmon. No beaver or mink are present.

WADDELL CREEK INVERTEBRATES

The assemblage of native aquatic invertebrates in Waddell Creek is quite varied, with numerous genera represented, and is rather typical of the invertebrate life in other coastal streams. Nearly all of the aquatic invertebrates have some relation to the trout and salmon and most of them are eaten by these fishes to a greater or less extent. The importance of the various groups as trout and salmon food will be discussed further in the paper.

The largest mollusk present in the stream is the freshwater mussel Margaritifera margaritifera falcata. During the course of the experiments it has not been observed in abundance anywhere in the stream. Several other mollusks, consisting mainly of several species of small snails, are present.

The introduced (?) crayfish Pacifastacus klamathensis apparently increased greatly in abundance during the last three years of the experiments (1940-42). It is the largest and most conspicuous crustacean. Several other crustaceans are present. Corophium, Gammarus, Neomysis, and Exosphaeroma are abundant in the lagoon.

The aquatic insects are strongly represented by the orders Trichoptera, Ephemerida, Diptera, Plecoptera, and Neuroptera. The order Coleoptera is represented chiefly by the Parnidae (riffle beetles).

Several references to aquatic invertebrates in Waddell Creek and its lagoon have appeared in the literature, as follows: Needham (1934a, 1934b, 1935, 1938, 1940), Shapovalov (1936), and Shepherd (1928).

A list of the aquatic invertebrates recorded from Waddell Creek and its lagoon, which undoubtedly is not a complete list of the invertebrate fauna of the stream, is given below. Terrestrial forms eaten by trout
or salmon have been included. Symbols used have the following meanings : 1 = larvae; $\mathrm{p}=$ pupae; $\mathrm{n}=$ nymphs; $\mathrm{a}=$ adults; $\mathrm{A}=$ typically aquatic; $\mathrm{T}=$ typically terrestrial; $\mathrm{T} /=$ semiaquatic, inhabiting shores of streams, etc. The symbol (X) under the column heading "Stream" means that the organism has been found under freshwater conditions, but in an area covered at times by brackish water.

Scientific name	Common name	Literature reference		E	碞		
PROTOZOA							
Class Ciliata							
Spirostomus	--------	Needham 1940	A		X		
Euplotes	--------	Needham 1940	A		X		
Pleuronema	--	Needham 1940	A		X		
Colpidium	--	Needham 1940	A		X		
Prorodon	--	Needham 1940	A		X		
Oxytricha	--------	Needham 1940	A		X		
ROTIFERA	--------	Needham 1940	A		X		
ANNELIDA							
Class Chaetopoda							
Order Oligochaeta	--------	Needham 1940			X		
		Shepherd 1928		X		X	
ARTHROPODA							
Class Crustacea							
Order Ostracoda	--------	Needham 1940	A		X		
Order Isopoda		Needham 1940	A	(X)	X	X	
Exosphaeroma oregonensis (Dana)							
		Shapovalov MS	T	X		X	
	"Pill bugs"	Shepherd 1928		X		X	
Order Copepoda	--------	Needham 1940	A		X		
Salmincola californiensis							
Dana	------	Shapovalov MS	A	X			
Order Amphipoda Gammarus confervicolis (Stimpson)	Scud	Needham 1940	A	(X)	X	X	
Corophium spinicorne Stimpson	------	Needham 1940	A		X		
Order Mysicacea	--------	Needham 1940	A		X		
Neomysis mercedis Holmes							
Order Decapoda Crago sp.	Shrimp	Shapovalov MS	A		X		
Pacifastacus klamathensis	Crayfish	Shapovalov MS	A	X			
Class Diplopoda	Millipeds	Shapovalov MS	T	X		X	
Class Insecta							
Order Corrodentia	Psocids, bark lice, etc.						
Fam. Psocidae a	---		T	X		X	
Order Ephemerida n	Mayflies	Shapovalov MS	A	X		X	
Fam. Heptageniidae n	--------	Shepherd 1928	A	X		X	
Fam. Baetidae n	--------	Shepherd 1928	A	X		X	
Baetis sp. N	--------	Shapovalov MS	A	X		X	
Paraleptophlebia sp. N	--------	Shapovalov MS	A	X		X	
Order Odonata	Dragonflies Damselflies	Shepherd 1928	A	X		X	
	Damsel fly a						
Order Neuroptera	Dobson flies, ant lions, etc.	Shapovalov	A	X			
Fam. Myrmeleonidae 1	Ant lions	Shepherd 1928	T	X		X	
Fam. Sialidae		Shapovalov MS	A	X			
Sialis sp.	--------	Shapovalov MS	A	X		X	

Scientific name	Common name	Literature reference		E	$\begin{aligned} & \text { I } \\ & \text { 品 } \\ & \tilde{y} \end{aligned}$		
ARTHROPODA - Continued							
Class Insecta - Continued							
Order Plecoptera	Stoneflies						
Fam. Perlidae n	---------	Shepherd 1928	A	X		X	
Alloperla sp.	--------	Shapovalov MS	A	X		X	
Order Trichoptera 1, p, a	Caddisflies	Shepherd 1928	A	X		X	
Fam. Rhyacophilidae	---------	Shepherd 1928	A	X		X	
Glossosoma sp. 1	--------	Shepherd 1928	A	X			
Agapetus sp. 1	--------	Shepherd 1928	A	X			
Fam. Hydroptilidae.	--------	Shepherd 1928	A	X		X	
Hydroptila sp. 1	--------	Shepherd 1928	A	X		X	
Fam. Philopotamidae	--------	Shepherd 1928	A	X			
Chimarrha sp.	--------	Shepherd 1928	A	X			
Fam. Odontoceridae	--------	Shepherd 1928	A	X		X	
Nerophilus californicus Hagen 1	--------	Shepherd 1928	A	X		X	
Psilotreta sp. 1	--------	Shapovalov MS	A	X		X	
Fam. Hydropsychidae	--------	Shepherd 1928	A	X		X	
Hydropsyche sp. 1	--------	Shepherd 1928	A	X		X	
Fam. Sericostomotidae 1, p	--------	Shepherd 1928	A	X		X	
Brachycentrus sp .	--------	Shepherd 1928	A	X			
Lepidostoma cinereum Banks 1	--------	Shepherd 1928	A	X		X	
Atomyia unicolor Banks (?)	--------	Shepherd 1928	A	X			
Notidobia nigricula McLachlan (?) 1	--------	Shepherd 1928	A	X		X	
Notidobia sp .	--------	Shapovalov MS	A	X		X	
Fam. Limnophilidae 1	--------	Shepherd 1928	A	X		X	
Limnophilus sp. 1		Shapovalov MS	A	X		X	
Halesus sp.		Shepherd 1928	A	X			
Genus I sp.		Shepherd 1928	A	X			
Glyphopsyche sp. (?) 1		Shepherd 1928	A	X		X	
Apatania sp.		Shepherd 1928	A	X			
Order Homoptera.	Leafhoppers aphis, etc.						
Fam. Cercopidae a	--------	Shepherd 1928	T	X		X	
Fam. Jassidae a	--------	Shepherd 1928		X		X	
Fam. Chermidae a	--------	Shepherd 1928	T	X		X	
Order Hemiptera	True bugs						
Fam. Corixidae a		Shepherd 1928	T	X		X	
Fam. Notonectidae a		Shepherd 1928		X		X	
Fam. Reduviidae a		Shepherd 1928	A	X		X	
Fam. Coredidae a.		Shepherd 1928	A	X		X	
Fam. Saldidae a		Shepherd 1928	T	X		X	
Fam. Gerridae	Water striders	Needham 1935	T	X			
Fam. Belostomatidae	Giant water bugs		T/				
Lethocerus americanus (Leidy)	---------	Shapovalov MS		X			
Abedus hungerfordi DeCarlo		Shapovalov MS		X			
Order Coleoptera.	Beetles		A				
Fam. Pyrochoridae a	---------	Shepherd 1928	A	X		X	
Fam. Carabidae a	--------	Shepherd 1928		X		X	
Fam. Histeridae a	--------	Shepherd 1928	T	X		X	
Fam. Dytiscidae a	--------	Shepherd 1928	T	X		X	
Fam. Cryptophagidae a	--------	Shepherd 1928	T	X		X	
Fam. Staphylinidae a	--------	Shepherd 1928	A	X		X	
Fam. Scolytidae a	--------	Shepherd 1928	T	X		X	
Fam. Curculionidae a	--------	Shepherd 1928	T	X		X	
Fam. Parnidae 1, a	--------	Shapovalov MS	T	X			
Order Diptera,	True flies	Needham 1940	T		X		
Fam. Cecidomyiidae 1	---------	Shepherd 1928	A	X		X	
Fam. Scatophagidae a	--------	Shepherd 1928		X		X	
Fam. Muscidae a		Shepherd 1928	T	X		X	

Scientific name	Common name	Literature reference		E D 馬	喏		
ARTHROPODA - Continued							
Class Insecta - Continued							
Order Diptera - Continued							
Fam. Chironomidae 1, p	--------	Shepherd 1928	A	X		X	
Fam. Chironomidae 1, a	--------	Shapovalov MS	A	X		X	
Fam. Mycetophilidae a	--------	Shepherd 1928	T	X		X	
Fam. Syrphidae 1, a	-------	Shepherd 1928	T	X		X	
Fam. Simuliidae 1, p, a	--------	Shepherd 1928	A	X		X	
Fam. Simuliidae 1	------	Shapovalov MS	A	X		X	
Simulium sp.	--------	Needham 1934b	A	X			
		Needham 1940	A	X			
Fam. Tipulidae 1	-----	Shepherd 1928		X		X	
Fam. Tabanidae 1	--------	Shepherd 1928	T	X		X	
Fam. Dixidae		Shapovalov MS		X		X	
Dixa sp. 1	--------						
Order Lepidoptera 1	--	Shepherd 1928		X		X	
Order Hymenoptera							
Fam. Chalcididae a	--------	Shepherd 1928	T	X		X	
Fam. Vespidae a	--------	Shepherd 1928	T	X		X	
Fam. Apidae a	-------	Shepherd 1928	T	X		X	
Fam. Bombidae a		Shepherd 1928	T	X		X	
Class Arachnida	-----	Shepherd 1928		X		X	
Order Acarina							
Fam. Hydrachnidae	Water mites	Needham 1940	A		X		
MOLLUSCA							
Class Pelecypoda Order Eulamellibranchia Margaritifera margaritifera falcata (Gould)	Freshwater mussel	Shapovalov MS	A	X			

LIFE HISTORIES OF THE SILVER SALMON AND STEELHEAD

In the following pages for the sake of clarity the life histories of the silver salmon and of the steelhead will be treated separately. That of the silver salmon will be treated first because in nearly all of its aspects it is the simpler, for the following reasons: (1) all of the adults die after spawning once, (2) all of the juveniles migrate to sea and reach sexual maturity there, (3) all of the adults return to spawn either in their second or third year, (4) practically all of the juveniles migrate to sea in their second year.

Before the separate life histories are considered, however, it is felt apropos to make some general remarks in connection with them. First, we must constantly keep in mind that variation, i.e., deviation from the norm, is one of the most marked characteristics of animal life. And of the vertebrates, the trouts are among the most variable of all. Further, of the trouts the steelhead is one of the most variable forms. Variation is also often encountered among the silver salmon, but to a lesser extent. Such variation applies not so much to the essential biology of the two species as to their habits, form, and behavior. This does not mean that on a mass basis we cannot predict what each species will do in a given environment, but it does mean that a departure from the
norm, often a wide departure, may be expected among individuals. As an example, in the coastal streams most of the juvenile steelhead migrate to sea in their second year, but some fish migrate in their first, third, fourth, or fifth years, or do not migrate at all.

This factor of variation is of considerable importance in planning a management program for the species involved.

Secondly, we must constantly keep in mind the factor of compensation. Thus, if environmental factors act to interfere with the normal course of the life history of an individual trout or salmon or a certain year class, that individual or year class attempts to overcome the obstacle in its path toward the normal completion of its life cycle. For example, if a barrier is placed in a stream the fish will either try to ascend the barrier or drop down and spawn below it; if the best spawning beds are crowded a fish will either try to drive off the other fish or will select a less favorable site, which it would not use if the crowding did not exist; if a certain type of food is scarce or not available, the fish will switch to some other type of food.

Under natural conditions, then, with no control of environmental conditions, it is extremely difficult to analyze the individual influence of the many factors affecting the life history of an individual or a year class. This does not mean that each of these factors is not exercising an influence, but that it is very difficult or impossible to analyze the quantitative amount of the influence of a particular factor. To illustrate, an unsuccessful attempt was made (Frances Felin, unpublished MS) to establish a correlation between water volume and temperature and the spawning migration of silver salmon at Waddell Creek. Yet poachers and other interested local residents and biologists who have an intimate field acquaintance with the various species of anadromous salmonids usually know rather definitely at what times a particular species is going to enter and ascend a particular stream. Certainly, water volume and temperature (there is a general correlation between the two, since rainfall creates a water temperature of approximately 50 to 55 degrees F.) do exercise an influence on the spawning migration, but the extent of their influence is greatly altered by other complicating factors (variables), such as the time of year, the number of fish that have already entered and ascended the stream, the length of time that it has been raining and consequently the length of time that the stream has been high, the condition of the tides, etc. The existence of homing, which has been briefly mentioned on page 19 and will be discussed in greater detail further in this paper, limits the potential total number of fish that may enter the stream. Obviously, if most of this number have already entered the stream, comparatively few more will enter even with optimal physical conditions of water height, temperatures, tides, etc. This approach seems so obvious that it would not be necessary to mention it, except for the fact that biologists so often have tended to disregard it, by ignoring influencing factors if they could not be graphed to show correlation, or conversely, by considering their graphs in error if exceptions occurred. Actually, graphs suitable for a given set of conditions could be made, but the trouble often has been that no graph showing a correlation could be prepared when all of the variables that enter into the problem exerted their influences.

LIFE HISTORY OF THE SILVER SALMON

Spawning Migration

There may be some question as to what is the proper point in the life cycle of the silver salmon to begin a discussion of its life history, but the writers believe that the clearest presentation can be obtained by starting with the adults that are about to enter the stream for spawning purposes.

Time and Size of the Spawning Migration

Over the range of the species, spawning runs of silver salmon enter streams, move upstream, and spawn within the period September through March. The major spawning takes place during the period November through January. In most streams entry, upstream migration, and spawning take place within the confines of a more limited season characteristic of the particular stream or area. Spring-run silver salmon are not known.

As has been noted earlier in this paper, Waddell Creek and most other California streams are closed by sand bars at their mouths during a portion of the annual dry season. Obviously, under such conditions no fish can enter the stream until the bar breaks open. The permanent breaking of the bar occurs with the first heavy rains of the wet season, or after a series of light rains sufficient to increase the discharge of the stream to an appreciable extent. On occasion the bar will open with early rains or high tides and winds and will then again close the stream for a period of days or weeks, before it finally breaks out to remain open until the following spring or summer.

Figure 6. Waddell lagoon at low water, showing tenuous connection with the ocean. Photograph by Leo Shapovalov, December 11, 1939.

At Waddell Creek (and Scott Creek) some silver salmon have entered the stream whenever the first opening of the bar has been of sufficient extent to enable them to do so. The dates of openings of the bar and those on which the first silver salmon have been taken in the trap are shown in Table 4. This implies that the fish are "waiting" at or very near the mouth of the stream for the bar to open, or make a rapid journey to the mouth of the stream with the approaching storm.

TABLE 4
Waddell Creek, Silver Salmon: Time of Initial Capture in Trap, in Relation to Opening of the Bar

Year	First opening of bar	First silver salmon taken in trap	Permanent opening of bar
1933	October 31	December 8	December 28
1934	November 19	November 21	December 13
1935	October 11	December 29	December 29
1936	November 19	December 25	December 26
1937	October 26	December 12	December 8
1938	October 27	December 2	October 27
1939	November 24	December 11	December 7
1940	September 13	December 17	December 16
1941	October 9	November 30	December 9

However, all or even the majority of the seasonal "run" has never entered the stream at one time, i.e., during one storm or within a period of a week. On the contrary, each succeeding storm results in the entry of a fresh run of fish, until the whole season's run has entered the stream.

The entry of the fish into the stream is not dependent on their sexual maturity, for examinations made at the mouth have revealed that some of the fish are sexually immature, or "green," while others are completely sexually mature, or "ripe." It may be further pointed out that at various egg collecting stations in California, both green and ripe silver salmon have been taken in the traps.

In streams the mouths of which remain permanently open, the same pattern of migration occurs, i.e., fresh runs keep entering and ascending the stream, with the difference that the initial entry is not regulated by the opening of a bar.

The question might be raised whether any salmon would enter Waddell Creek if unseasonal heavy rains occurred in September or October. Since such rains did not occur during the course of the experiments, a direct answer was not obtained. However, an indirect or partial answer may be obtained from an examination of what occurs in streams the mouths of which are open permanently. We find that in such streams silver salmon do not enter throughout the year, but within the general confines of a season characteristic of that particular stream. For example, in the lower portion of the Eel River of Northern California the first silver salmon of the season are regularly caught each year in September, and this is probably close to the date of their initial entry into the stream. (The actual spawning of silver salmon in the Eel River takes place later, mainly in December and January.)

In Northern California the rainy season begins earlier than at Waddell Creek and the runs of silver salmon also occur earlier. For example, at Redwood Creek the first fish usually enter the stream in September and complete their spawning by the time the first fish are entering Waddell Creek (November-December).

Over their range, silver salmon spawn mostly within the period No-vember-January. In southeastern Alaska (Prince of Wales Island) silver salmon have been reported (Chamberlain, 1907) sometimes to spawn in small numbers throughout the winter, even as late as March. The latest that an unspawned adult was taken in the upstream trap at Waddell Creek is March 21st.

Most of the earlier studies on silver salmon and other anadromous salmonids on the Pacific Coast have been made in large streams. Perhaps as a result of this there has existed the impression among some workers that the different runs of fish in a stream constitute different "races." The writers do not wish to dispute the existence of different biological or morphological races within large stream systems, and in fact are inclined to believe that such races do exist, but they do wish to point out that the existence of races probably does not explain entirely the different runs of the same species during a season. There is no evidence to support the belief, and it is hardly to be expected, that different races would exist in a stream as small as Waddell Creek.

Just what is the explanation of the different runs-why the fish do not all enter the stream at one time-is not known, but the reason is probably determined by the habits and migrations of the fish in the ocean. The ocean life history of the silver salmon is still much of a mystery. We do know that the fish make very rapid growth in the ocean, that they are powerful and rapid swimmers, and that they make long journeys.

During the nine seasons of operation of the upstream trap, 1933-34 through 1941-42, 2,218 adult silver salmon were taken. The numbers of fish taken during each season, arranged by sexes and weekly periods, are shown in Table 5 and Figure 7.

TABLE 5
Waddell Creek, Silver Salmon: Adults Checked Through Upstream Trap, by Seasons and Weekly Periods

Week ending	1933-34			1934-35			1935-36			1936-37			1937-38		
	$\widehat{0}$	Q	Total	$\widehat{ }$	q	Total	$\widehat{0}$	q	Total	$\widehat{0}$	¢	Total	$\widehat{0}$	q	Total
Nov. 18	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
Nov. 25	--	--	--	1	--	1	--	--	--	--	--	--	--	--	--
Dec. 2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
Dec. 9	2	1	3	--	--	--	--	--	--	--	--	--	--	--	--
Dec. 16	114	24	138	15	5	20	--	--	--	--	--	--	23	2	25
Dec. 23	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
Dec. 30	67	43	110	12	5	17	13	2	15	15	13	28	--	--	--
Jan. 6	62	69	131	184	123	307	8	3	11	20	13	33	--	--	--
Jan. 13	--	--	--	49	84	133	50	25	75	11	7	18	--	--	--
Jan. 20	--	1	1	5	17	22	10	6	16	15	19	34	29	18	47
Jan. 27	1	--	1	6	3	9	--	--	--	--	--	--	2	1	3
Feb. 3	--	--	--	7	9	16	4	2	6	36	38	74	6	1	7
Feb. 10	17	35	52	3	12	15	--	--	--	10	17	27	1	--	1
Feb. 17	5	4	9	--	2	2	4	1	5	--	--	--	1	--	1
Feb. 24	1	--	1	2	4	6	--	--	--	--	--	--	--	--	--
Mar. 3	1	--	1	12	22	34	--	--	--	--	--	--	--	--	--
Mar. 10	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--
Mar. 17	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
Mar. 24	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
Mar. 31	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
Totals	270	177	447	296	287	583	89	39	128	107	107	214	62	22	84

TABLE 5 -- Continued
Waddell Creek, Silver Salmon: Adults Checked Through Upstream Trap, by Seasons and Weekly Periods

Week ending	1938-39			1939-40			1940-41			1941-42			Total			Average		
	$\widehat{0}$	q	Total	$\widehat{0}$	Q	Total	$\widehat{0}$	O	Total	$\widehat{0}$	¢	Total	$\widehat{0}$	¢	Total	$\widehat{0}$	Q	Total
Nov. 18	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
Nov. 25	--	--	--	--	--	--	--	--	--	--	--	--	1	--	1	+	--	+
Dec. 2	2	--	2	--	--	--	--	--	--	1	--	1	3	--	3	+	--	+
Dec. 9	8	--	8	--	--	--	--	--	--	10	3	13	20	4	24	2	+	3
Dec. 16	--	--	--	3	--	3	--	--	--	2	--	2	157	31	188	17	3	21
Dec. 23	--	--	--	--	--	--	57	11	68	21	19	40	78	30	108	9	3	12
Dec. 30	--	--	--	--	--	--	49	32	81	12	5	17	168	100	268	19	11	30
Jan. 6	6	11	17	101	101	202	10	9	19	3	5	8	394	334	728	44	37	81
Jan. 13	2	2	4	22	15	37	23	22	45	6	19	25	163	174	337	18	19	37
Jan. 20	--	--	--	--	1	1	14	20	34	--	--	--	73	82	155	8	9	17
Jan. 27	--	--	--	1	1	2	2	4	6	8	15	23	20	24	44	2	3	5
Feb. 3	18	18	36	11	7	18	2	3	5	4	8	12	88	86	174	10	10	19
Feb. 10	8	9	17	--	--	--	--	2	2	2	2	4	41	77	118	5	9	13
Feb. 17	--	--	--	--	--	--	1	1	2	--	--	--	11	8	19	1	1	2
Feb. 24	--	--	--	1	1	2	--	--	--	--	--	--	4	5	9	+	1	1
Mar. 3	--	--	--	--	--	--	--	--	--	--	--	--	13	22	35	1	2	4
Mar. 10	--	--	--	1	--	1	--	1	1	--	--	--	1	2	3	+	+	+
Mar. 17	2	--	2	--	--	--	--	--	--	--	1	1	2	1	3	+	+	+
Mar. 24	--	--	--	--	--	--	--	--	--	1	--	1	1	--	1	+	--	+
Mar. 31	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
Totals	46	40	86	140	126	266	158	105	263	70	77	147	1,238	980	2,218	138	109	247

Figure 7. Adult silver salmon checked through the upstream trap at Waddell Creek, by weekly periods.-

From the above table and graph, it will be seen that the earliest fish was taken during the week ending November 25, and the latest, during the week ending March 24. Despite this long spread, it will be noted that 33 percent of all fish were taken during the weekly period December 31-January 6, 81 percent were taken during the six weeks December 10-January 20, and 96 percent during the nine weeks December 10-February 10. It is thus evident that the run is quite concentrated from point of view of time.

At Benbow Dam on the South Fork of the Eel River and Sweasey Dam on the Mad River the runs are equally concentrated, although slightly earlier than at Waddell Creek (Figure 8). At Benbow Dam 83

Figure 8. Seasonal distribution of the silver salmon spawning- runs in Waddell Creek, South Fork of the Eel River, and Mad River.
percent of all silver salmon during six seasons passed upstream in the six weeks November 26-January 6, and at Sweasey Dam 81 percent during nine seasons passed upstream in the six weeks November 12-December 23 (Tables 6 and 7).

In other streams as well, the bulk of the upstream migration and the spawning appear to cover a fairly short period. Foerster (1944)

TABLE 6
South Fork of the Eel River (at Benbow Dam), Silver Salmon: Adults Counted Upstream Through Fishway, by Two-week Periods

Period	$\begin{aligned} & \text { a } \\ & \infty \\ & \infty \\ & \underset{\sigma}{2} \end{aligned}$	$\begin{aligned} & \stackrel{+}{1} \\ & \text { on } \end{aligned}$	$\begin{aligned} & \underset{\sim}{\dot{O}} \\ & \underset{\sim}{g} \end{aligned}$	$\underset{\sim}{\text { ¢ }}$	$\begin{gathered} \underset{\sim}{\square} \\ \underset{\sim}{\square} \end{gathered}$	$$	픙	$\begin{aligned} & \stackrel{4}{0} \\ & 0 \\ & 0 \\ & 0 \\ & \tilde{J} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Oct. 1-14	----	----	--	---	---	---	----	----
Oct. 15-28	----	----	----	----	1	----	1	----
Oct. 29-Nov. 11	----	----	386	29	3	----	418	0.6
Nov. 12-25	----	----	26	185	1.766	630	2.607	3.8
Nov. 26- Dec. 9	2,919	----	101	8,152	4,808	818	16,79	24.4
Dec. 10-23.	518	7,291	3.370	2,741	1,943	5,742	21,605	31.4
Dec. 24-Jan 6	1,983	744	7.007	1,926	4,199	3,029	18.888	27.4
Jan. 7-20	1,279	391	183	564	---	1,958	4.375	6.4
Jan. 21 -Feb. 3	460	203	----	86	2,269	789	3,807	5.5
Feb. 4-17.	206	----	----	----	48	64	318	0.5
Feb. 18-Mar. 3	----	----	----	11	----	----	11	----
Mar. 4-17.	5	----	----	----	---	----	5	----
Mar. 18-Sept. 30	----	----	----	----	----	----	----	----
Totals	7,370	8,629	11,073	13,604	15,037	13,030	68,833	----

reports that the spawning run of 1942 in the Cowichan River, British Columbia, "reached the spawning grounds in 20-30 days (one to two months in 1941) and were spawned-out in 30 to 60 days."

There has been considerable fluctuation in the size of the seasonal runs at Waddell Creek. The largest number taken in the trap was 583, during the season of 1934-35, and the smallest number 84, during the season of 1937-38. Possible reasons for these fluctuations will be discussed in the sections on survival and pathology (pages 95-104).

Age and Size of the Fish

Waddell Creek scale examinations and marked fish returns indicate that all adults return either as males in the season following downstream migration (age $1 / 1$, one growing season in ocean) or as males and females in the second season following downstream migration (age $1 / 2$, two growing seasons in ocean).

Table 8 shows the numbers of silver salmon taken in each season in the upstream trap at Waddell Creek, arranged by age-sex categories and size.

Scale examinations and returns of marked fish at Scott Creek during several seasons are in entire agreement with the above findings.

Other workers have reported that the great majority of silver salmon adults fall into the above age categories, but have noted some exceptions. For example, Marr (1943) recorded that of 885 silver salmon taken in the commercial gill net fishery of the lower Columbia River in 1914, $1 / 2$ fish comprised 83.9 percent of the total sample and $1 / 1$ fish 6.1 percent. ${ }^{8}$ Thus, the two categories represented at Waddell Creek

[^13]TABLE 7
Mad River (at Sweasey Dam), Silver Salmon: Adults Counted Upstream Through Fishway, by Two-week Periods

Period	1941-42	1942-43	1946-47	1947-48	1948-49	1949-50	1950-51	1951-52	1952-53	Total	Percentage of total run
Oct. 1-28	----	----	----	----	----	----	----	----	----	----	---
Oct. 29- Nov. 11	----	----	----	4	21	----	21	----	----	46	1.4
Nov. 12-25	4	48	18	32	94	8	83	84	6	377	11.5
Nov. 26-Dec. 9	189	62	195	72	176	274	17	110	9	1,104	33.6
Dec. 10-23	24	197	64	375	137	131	23	188	51	1,190	36.2
Dec. 24-Jan. 6	56	7	28	42	44	51	5	22	2	257	7.8
Jan. 7-20	28	54	2	5	12	48	----	6		155	4.7
Jan. 21-Feb. 3	7	10	108	----	7	--	----	----	2	134	4.1
Feb. 4-17	--	----	---	----	24	--	--	----	2	26	0.8
Feb. 18-Sept. 30	----	----	----	----	----	----	----	----	----	----	----
Totals	308	378	415	530	515	512	149	410	72	3,289	----

Waddell Creek, Silver Salmon: Adults Checked Through Upstream Trap; Length-frequency Distributions, by Seasons

Length in cm	1933-34			1934-35			1935-36			1936-37			1937-38		
	1/1	1/2		1/1	1/2		1/1	1/2		1/1	1/2		1/1	1/2	
	O	¢	q	$\widehat{0}$	$\widehat{ }$	q	ठ	$\widehat{ }$	9	$\widehat{0}$	§	9	$\widehat{ }$	$\widehat{ }$	¢
30	--	--	--	--	--	--	(3)*	--	--	--	--	--	--	--	--
31	--	--	--	--	--	--	(--	--	--	--	--	--	--	--
32	1	--	--	--	--	--	1	--	--	--	--	--	--	--	--
33	3	--	--	--	--	--	--	--	--	--	--	--	--	--	--
34	1	--	--	--	--	--	2	--	--	--	--	--	1	--	--
35	6	--	--	--	--	--	1	--	--	--	--	--	1	--	--
36	10	--	--	--	--	--	1	--	--	--	--	--	--	--	--
37	4	--	--	1	--	--	--	--	--	--	--	--	2	--	--
38	8	--	--	--	1	--	6	--	--	--	--	--	2	--	--
39	12	--	--	3	--	--	8	--	--	--	--	--	3	--	--
40	14	--	--	3	--	--	7	--	--	--	--	--	3	--	--
41	13	--	--	3	1	--	2	--	--	--	--	--	3	--	--
42	14	--	--	3	--	--	2	--	--	--	--	--	--	--	--
43	13	--	--	4	--	--	8	--	--	3	--	--	2	--	--
44	6	--	--	1	--	--	7	--	--	--	--	--	1	--	--
45	5	--	--	1	2	--	4	--	--	--	--	--	--	--	--
46	4	--	--	2	1	--	2	--	--	--	--	--	1	--	--
47	2	--	--	--	--	1	2	--	--	--	--	--	1	--	--
48	2	1	--	--	2	--	--	--	--	--	--	--	--	--	--
49	--	--	--	--	1	1	--	--	--	--	--	1	--	--	--
50	--	--	--	--	2	2	--	--	--	--	--	--	--	--	--
51	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--
52	--	--	1	--	1	1	--	--	--	--	--	--	--	--	--
53	--	3	1	--	3	2	--	3	--	--	--	--	--	--	--
54	--	2	1	--	1	2	--	--	1	--	--	--	--	--	--
55	--	--	1	--	2	6	--	1	1	--	--	--	--	--	--
56	--	2	--	--	7	5	--	--	--	--	2	,	--	--	1
57	--	2	--	--	3	6	--	--	--	--	2	1	--	1	--
58	--	6	4	--	7	3	--	--	--	--	2	4	--	--	--
59	--	2	6	--	9	9	--	--	2	--	3	0	--	1	--

60	--	6	8	--	7	14	--	1	2	--	2	7	--	1	--
61	--	3	11	--	9	17	--	2	3	--	4	9	--	4	--
62	--	9	10	--	13	24	--	1	2	--	5	4	--	--	--
63	--	8	11	--	26	36	--	1	2	--	7	7	--	2	1
64	--	13	12	--	26	17	--	2	4	--	10	8	--	4	--
65	--	7	7	--	21	36	--	2	--	--	10	13	--	3	2
66	--	12	20	--	27	29	--	3	3	--	5	10	--	6	2
67	--	10	21	--	20	26	--	2	4	--	8	4	--	2	5
68	--	10	12	--	19	25	--	3	3	--	12	11	--	4	3
69	--	8	17	--	13	13	--	1	4	--	8	6	--	1	2
70	--	10	11	--	12	7	--	2	3	--	4	7	--	4	2
71	--	9	12	--	14	2	--	3	2	--	6	3	--	3	--
72	--	9	5	--	7	3	--	1	1	--	3	2	--	2	1
73	--	8	4	--	9	--	--	--	--	--	8	3	--	3	2
74	--	9	2	--	3	--	--	3	--	--	1	--	--	--	1
75	--	2	--	--	2	--	--	--	1	--	--	1	--	1	--
76	--	--	--	--	2	--	--	--	1	--	--	--	--	--	--
77	--	1	--	--	--	--	--	--	--	--	1	--	--	--	--
78	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--
79	--	--	--	--	--	--	--	2	--	--	--	--	--	--	--
80	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--
\int^{cm}	39.8	65.7	65.2	41.2	64.0	63.2	41.0	65.8	63.9	42.5	65.8	64.3	39.6	66.1	67.2
L inches	15.7	25.9	25.7	16.2	25.2	24.9	16.1	25.9	25.2	16.7	25.9	25.3	15.6	26.0	26.5
Number	118	152	177	21	275	287	56	33	39	3	104	107	20	42	22
Percentage in each age group	26.4	34.0	39.6	3.6	47.2	49.2	43.7	25.8	30.5	1.4	48.6	50.0	23.8	50.0	26.2

TABLE 8 -- Cntinued
Waddell Creek, Silver Salmon: Adults Checked Through Upstream Trap; Length-frequency Distributions, by Seasons

Length in cm	1938-39			1939-40			1940-41			1941-42			Total		
	1/1	1/2		1/1	1/2		1/1	1/2		1/1	1/2		1/1	1/2	
	$\widehat{ }$	$\widehat{ }$	q	$\widehat{0}$	$\widehat{ }$	q	$\widehat{0}$	$\widehat{ }$	Q	\bigcirc	$\widehat{0}$	Q	$\widehat{0}$	$\widehat{0}$	q
30	--	--	--	--	--	--	--	--	--	--	--	--	(3)*	--	--
31	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
32	--	--	--	--	--	--	--	--	--	--	--	--	2	--	--
33	--	--	--	--	--	--	--	--	--	--	--	--	3	--	--
34	1	--	--	--	--	--	--	--	--	--	--	--	5	--	--
35	--	--	--	--	--	--	--	--	--	--	--	--	8	--	--
36	2	--	--	--	--	--	2	--	--	--	--	--	15	--	--
37	1	--	--	1	--	--	2	--	--	--	--	--	11	--	--
38	1	--	--	4	--	--	5	--	--	2	--	--	28	1	--
39	2	--	--	5	--	--	2	--	--	--	--	--	35	--	--
40	2	--	--	5	--	--	10	--	--	--	--	--	44	--	--
41	3	--	--	5	--	--	2	--	--	--	--	--	31	1	--
42	2	--	--	7	--	--	8	--	--	1	--	--	37	--	--
43	1	--	--	12	--	--	3	--	--	1	--	--	47	--	--
44	1	--	--	3	--	--	6	--	--	--	1	--	25	1	--
45	--	--	--	1	--	--	6	--	1	--	--	--	17	2	1
46	--	--	--	2	--	--	9	--	--	--	1	--	20	2	--
47	1	--	--	3	--	--	3	--	1	--	--	1	12	--	3
48	--	--	--	3	--	--	4	--	--	--	1	--	9	4	--
49	--	--	--	1	--	--	3	--	--	--	2	--	4	3	2
50	--	--	--	--	--	--	--	--	--	--	--	1	--	2	3
51	--	--	--	--	--	--	--	--	1	--	--	--	--	1	1
52	--	--	1	--	1	--	--	--	1	--	3	2	--	5	6
53	--	--	--	--	--	2	--	--	--	--	2	4	--	11	9
54	--	1	--	--	--	--	--	--	2	--	2	2	--	6	8
55	--	2	--	--	--	--	--	1	2	--	1	3	--	7	13
56	--	--	--	--	--	2	--	--	2	--	4	3	--	15	14
57	--	--	2	--	2	--	--	1	2	--	5	1	--	16	12
58	--	--	--	--	--	2	--	3	3	--	1	9	--	19	25

59	--	--	--	--	2	5	--	3	6	--	4	10	--	24	43
60	--	3	2	--	1	--	--	5	3	--	1	14	--	27	50
61	--	2	4	--	2	2	--	4	5	--	8	5	--	38	56
62	--	1	3	--	--	6	--	9	7	--	7	8	--	45	64
63	--	3	5	--	3	9	--	10	13	--	6	2	--	66	86
64	--	1	7	--	2	10	--	8	10	--	2	3	--	68	71
65	--	6	2	--	7	8	--	6	14	--	8	5	--	70	87
66	--	3	2	--	5	10	--	7	10	--	4	2	--	72	88
67	--	1	4	--	8	17	--	8	9	--	1	--	--	60	90
68	--	4	3	--	9	15	--	13	5	--	--	1	--	74	68
69	--	1	1	--	8	7	--	6	4	--	1	1	--	47	55
70	--	1	3	--	11	10	--	1	3	--	1	--	--	46	46
71	--	--	1	--	5	13	--	3	1	--	--	--	--	43	34
72	--	--	--	--	8	2	--	2	--	--	--	--	--	32	14
73	--	--	--	--	6	3	--	2	--	--	--	--	--	36	12
74	--	--	--	--	3	2	--	--	--	--	--	--	--	19	5
75	--	--	--	--	3	--	--	--	--	--	--	--	--	8	2
76	--	--	--	--	1	1	--	--	--	--	--	--	--	3	2
77	--	--	--	--	1	--	--	--	--	--	--	--	--	3	--
78	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--
79	--	--	--	--	--	--	--	--	--	--	--	--	--	2	--
80	--	--	--	--	--	--	--	(1) \dagger	--	--	--	--	(1) \dagger	1	--
cm	39.5	63.2	63.6	41.9	67.8	65.9	42.4	64.3	62.5	40.3	59.2	58.9	40.9	64.7	63.8
Mean length															
$\{$ inches	15.6	24.9	25.0	16.5	26.7	26.0	16.7	25.3	24.6	15.9	23.3	23.2	16.1	25.5	25.1
Number	17	29	40	52	88	126	65	93	105	4	66	77	356	882	980
Percentage in each age group	19.8	33.7	46.5	19.5	33.1	47.4	24.7	35.4	39.9	2.7	44.9	52.4	16.1	39.8	44.2

*Length for these three fish not recorded
\dagger Length for this fish not recorded
form 90 percent of Marr's samples. The other categories recorded by Marr are composed of $2 / 2$ fish (9.7 percent) and $2 / 1$ fish (0.3 percent). Pritchard (1936a, 1940), in addition to the above age categories, has reported $+/ 2,+/ 3$, $+/ 4$, and $1 / 3$ silver salmon from British Columbia. Other writers have reported occasional specimens of other age categories. To what extent the categories not represented at Waddell Creek but reported by other writers are due to actual differences rather than misinterpretations of scale reading or misidentifications of species, is not known. The fact that Marr (loc. cit.) found his $2 / 2$ fish to be of slightly smaller average size than his $1 / 2$ fish leads one to assume some skepticism, although it is possible, as Marr points out, that the older fish have a slower rate of growth than the latter. In fairness to the other investigators, it should be said that they did not have the benefit of marked fish for purposes of comparison in their scale examinations. The disagreements noted above probably are not important insofar as the fishery is concerned, since the $1 / 2$ age class undoubtedly is everywhere the dominant one in the fishery.

From Table 8 it is seen that there is a slight, but consistent, tendency for males to attain a larger size than females, and also that in general the average size attained by fish of one sex in a given season is proportionate to the average size attained by the other sex. Marr (loc. cit.) also found that males tend to be slightly larger than females.

Measurements of Scott Creek silver salmon are quite limited. Those available do not indicate that the fish from that stream differ in average size from the Waddell Creek fish. The mean length of 41 Scott Creek females taken during the 1935-36 season was 65.6 cm .; the mean length of Waddell Creek females in the same season was 63.9 cm . The mean length of 297 Scott Creek females taken during the $1937-38$ season was 67.0 cm .; the mean length of Waddell Creek females in the same season was 67.2 cm .

From Table 8 it is seen that there is but little overlap between the $1 / 1$ and $1 / 2$ age groups. A demarcation line of 49 cm . (19.3 inches) separates 99.1 percent of all fish correctly. None of the $1 / 1$ fish falls below it and only 1.1 percent of the $1 / 2$ fish fall above it. Such a demarcation line may prove of general application. Applied to Marr's Columbia River data, it would separate the one-year-ocean fish from the two-year-ocean fish with an accuracy of 99.9 percent.

Marr (1943) presents a comparative table of lengths of his Columbia River silver salmon and fish from other localities, and notes that "the reduction in mean length of each age group, from south to north, is very evident." The Waddell and Scott Creek data indicate that such a statement may not be applied to the silver salmon over the entire range of the species. There is also some evidence at hand (unpublished) to indicate that the silver salmon, king salmon, and steelhead of the Klamath River in Northern California are smaller than fish of the same species both to the north and south, and that size of fish is not correlated with size of stream.

There is no correlation between the mean length attained by the grilse (age $1 / 1$) of a given brood season and the two-year-ocean ($1 / 2$) fish of the same brood season (Appendix, Table A-1). There is also no correlation between the average size of the downstream migrants of a

TABLE 9
Waddell Creek, Silver Salmon: Spawning Runs, by Seasons and Sex-age Categories

Season	Checked through upstream trap				Jumped over dam				Run below dam				Total run										
					Number	Percentage																	
	$1 / 1 \delta^{\star}$	1/2 ${ }^{\text {® }}$	1/2 ¢	Total					$1 / 10^{2}$	1/2 ${ }^{\text {® }}$	1/2아	Total	1/1ठ	1/2 ${ }^{\text {a }}$	1/2 ¢	Total	1/1 $\widehat{\text { 人 }}$	1/2 ${ }^{\text {® }}$	1/2아	Total	$1 / 10^{\text {® }}$	1/2 ${ }^{\text {® }}$	1/2ㅇ
1933-34	118	152	177	447	7	18	25	50	12	17	20	49	137	187	222	546	25.1	34.2	40.7				
1934-35	21	275	287	583	0	7	2	9	1	20	20	41	22	302	309	633	3.5	47.7	48.8				
1935-36	56	33	39	128	0	0	0	0	29	17	20	66	85	50	59	194	43.8	25.8	30.4				
1936-37	3	104	107	214	0	0	0	0	1	49	50	100	4	153	157	314	1.3	48.7	50.0				
1937-38	20	42	22	84	0	0	0	0	14	28	15	57	34	70	37	141	24.1	49.7	26.2				
1938-39	17	29	40	86	0	0	0	0	7	11	16	34	24	40	56	120	20.0	33.3	46.7				
1939-40	52	88	126	266	0	0	0	0	10	17	24	51	62	105	150	317	19.6	33.1	47.3				
1940-41	65	93	105	263	0	0	0	0	6	9	10	25	71	102	115	288	24.7	35.4	39.9				
1941-42	4	66	77	147	0	10	2	12	3	48	50	101	7	124	129	260	2.7	47.7	49.6				
Totals	356	882	980	2,218	7	35	29	71	83	216	225	524	446	1,133	1,234	2,813	18.3*	39.5*	42.2*				

* Mean of seasonal percentages.
given brood season and the adults of the same brood season (Appendix, Tables A-1, A-14). The brood with downstream migrants of the largest average size produced both $1 / 1$ and $1 / 2$ fish of below average size. The brood that produced $1 / 2$ fish of the smallest average size resulted from downstream migrants of slightly above average size. Thus, it may be stated that the growth made during the last growing season outbalances previous growth in determining average size.

Tables 5 and 8 and Figure 7 presented the fish which were checked through the upstream trap. In addition, in all seasons a number of fish spawned below the dam and in three seasons a comparatively small number of fish succeeded in jumping over the dam at extreme flood stage. Estimates of the numbers of such fish were made and are included in Table 9, which shows the estimated total runs into Waddell Creek. ${ }^{9}$

The adults returning in any given season, falling into two age groups, are the product of two successive brood seasons (and two successive downstream migrations). In Table 10 the fish listed in Table 9 are rearranged according to the brood season in which they originated.

Sex Ratio

From Tables 9 and 10 it is seen that whether the fish taken in the upstream trap are arranged according to the spawning run or according to adults returning from a brood season, there is characteristically an excess of females over males in the $1 / 2$ group, but an excess of all males ($1 / 1$ and $1 / 2$ combined) over all females ($1 / 2$), although there is less fluctuation in the proportions of the three groups when the fish are arranged according to brood season. These data are in agreement with expected returns, assuming a $1: 1$ sex ratio among migrants entering the ocean and an equal mortality rate among males and females in the ocean, since some of the males return to spawn after only one growing season at sea, while all of the females spend two seasons at sea. ${ }^{10}$

[^14]TABLE 10
Waddell Creek, Silver Salmon: Spawning Runs, by Brood Seasons and Sex-age Categories

Brood season	Checked through upstream trap				Jumped over dam				Run below dam				Total run										
					Number	Percentage																	
	$1 / 1 \delta^{\star}$	1/2 $\widehat{ }$	1/2ㅇ	Total					$1 / 1 \delta^{\text {® }}$	1/2 ठ	1/2ㅇ	Total	$1 / 1 \delta^{\widehat{1}}$	1/2 ${ }^{\text {\% }}$	1/2ㅇ	Total	$1 / 1 \delta^{\star}$	1/2 ${ }^{\text {® }}$	1/2 $\%$	Total	$1 / 1 \delta^{\pi}$	$1 / 2$ ठ	1/2 아
1930-31	?	152	177	329	?	18	25	43	?	17	20	37	?	187	222	409							
1931-32	118	275	287	680	7	7	2	16	12	20	20	52	137	302	309	748	18.3	40.4	41.3				
1932-33	21	33	39	93	0	0	0	0	1	17	20	38	22	50	59	131	16.8	38.2	45.0				
1933-34	56	104	107	267	0	0	0	0	29	49	50	128	85	153	157	395	21.5	38.7	39.8				
1934-35	3	42	22	67	0	0	0	0	1	28	15	44	4	70	37	111	3.6	63.1	33.3				
1935-36	20	29	40	89	0	0	0	0	14	11	16	41	34	40	56	130	26.2	30.8	43.0				
1936-37	17	88	126	231	0	0	0	0	7	17	24	48	24	105	150	279	8.6	37.6	53.8				
1937-38	52	93	105	250	0	0	0	0	10	9	10	29	62	102	115	279	22.2	36.6	41.2				
1938-39	65	66	77	208	0	10	2	12	6	48	50	104	71	124	129	324	21.9	38.3	39.8				
1939-40	4	?	?	4	0	?	?	0	3	?	?	3	7	?	?	7	--	--	--				
Totals	356	882	980	2,218	7	35	29	71	83	216	225	524	446	1,133	1,234	2,813	17.4*	40.5*	42.1*				

* Mean of seasonal percentages.

TABLE 11
Waddell Creek, Scott Creek, and Benbow Dam, Silver Salmon: Comparison of Sex-age Categories by Brood Seasons

Brood season	Number of fish			Percentage 1/1 ${ }^{\text {\% }}$			Percentage 1/2 ${ }^{\text {\% }}$			Percentage 1/2 우		
	Waddell Creek	Scott Creek	Benbow Dam	Waddell Creek	Scott Creek	Benbow Dam	Waddell Creek	Scott Creek	Benbow Dam	Waddell Creek	Scott Creek	Benbow Dam
1931-32	748	-----	-----	18.3	-----	-----	40.4	-----	-----	41.3	-----	-----
1932-33	131	---	----	16.8	---	----	38.2	---	----	45.0	----	-----
1933-34	395	--	---	21.5	--	----	38.7	----	-----	39.8	----	-----
1934-35	111	-----	-----	3.6	--	---	63.1	----	----	33.3	----	----
1935-36	130	-----	--	26.2	--	---	30.8	---	---	43.0	-----	-----
1936-37	279	513	6,765	8.6	22.0	19.7	37.6	33.2	38.0	53.8	44.8	42.3
1937-38	279	681	11,434	22.2	23.1	28.0	36.6	29.1	31.0	41.2	47.8	41.1
1938-39	324	374	12,087	21.9	7.8	23.5	38.3	43.0	33.7	39.8	49.2	42.9
1939-40	-----	-----	15,531	-----	-----	28.6	-----	-----	28.4	-----	----	43.0
1940-41	-----	--	14,662	--	----	26.9	-----	-----	29.7	-----	-----	43.4
Totals	2,397	1,568	60,479	-----	-----		-----	--	-----	----	-----	-----
Averages*	300	523	12,096	17.4	17.6	25.3	40.5	35.1	32.2	42.1	47.3	42.5

* Average percentages are means of seasonal percentages.

In Table 11, for purposes of comparison, the sex-age categories of silver salmon counted at Scott Creek and at Benbow Dam on the South Fork of Eel River are also shown. It should be noted that at the latter station determinations of both sex and age category were made as the fish passed over a counting board, without handling of the fish. Determinations of age category were based on the approximate size of the fish. ${ }^{11}$ The essential agreement of the Benbow Dam and Scott Creek data with those from Waddell Creek strengthens the significance of each. The Benbow Dam data have the advantage of large numbers, while the Waddell and Scott Creek data have the advantage of individual measurements of fish.

At all three localities the total number of males resulting from any given brood season considered as a percentage of that brood season's total run is quite stable (Waddell Creek, eight seasons, 46.2 to 66.7 percent, average 57.9 percent; Benbow Dam, five seasons, 56.6 to 59.0 percent, average 57.5 percent; Scott Creek, three seasons, 50.8 to 55.2 percent, average 52.7 percent), while the ratio of the grilse to the two-year-ocean males resulting from a given brood season varies within much wider limits. It necessarily follows that the number of fish which return as two-year-ocean males is strongly influenced by the number which have returned as grilse and that the mortality rate of two-year-ocean males during their second year at sea is much the same from season to season, in other words, that the bulk of the ocean mortality occurs during the brood's first year at sea. The number of fish which return as two-year-ocean males in a given season is therefore largely dependent upon (1) mortality to the time that some of the males return as grilse, and (2) the proportion of males which return as grilse. It is lack of knowledge of the second factor that prevents an accurate prediction of the size of the run of two-year-ocean males in a given season. The reliability of our predictions then, is determined by the variation from season to season in the proportion of the brood that returns as grilse.

Changes in Sex-Age Composition During the Run

The age and sex composition of the fish is not the same throughout the run. Males predominate in the early portions of the run, while females predominate in the latter portion. Other workers have noted the predominance of males in the early portions of the runs for the Pacific salmons. This change in sex ratio may be noted in Figure 7 and Table 5.

Since the sexes and age categories are associated, it follows that changes in the representation of the age categories also occur throughout the run. These changes are shown in Table 12 and Figure 9.

Factors Influencing the Time of Upstream Migration

It has already been noted that in certain streams entry and upstream migration may necessarily be delayed by physical conditions. Studies by the writers at Waddell and Scott creeks and at Benbow Dam on the South Fork of Eel River, and by workers in other areas (e.g.,

[^15]

Figure 9. Seasonal distribution of sex-age categories in the Waddell Creek silver salmon spawning run.

Neave (1943) for Cowichan River, British Columbia) show that the first heavy upstream migrations coincide with large increases in stream flow, especially in streams which attain low summer levels.

It was seen that at Waddell Creek 96 percent of the fish were taken during the period December 10-February 10. Since this is also the time of heaviest precipitation, there is a correlation between the general period of the spawning run and the general period of rainfall. The writers believe that there is also a definite relationship between ascension of the stream by spawning fish and stream flow, but so far it has proved impossible to show this quantitatively. The relationship between ascension of the stream by spawning fish and stream flow is neither one of positive correlation nor of negative correlation. Salmon (and steelhead) ascend both on rising and falling stream levels, but cease movement during peak floods. However, the number of fish taken during any given water height is not approximately the same, but depends upon the proportion of the run that has already ascended the stream during the storm and during the season, upon preceding flows and climatic conditions, and possibly upon other factors, such as sexual ripeness of the fish and turbidity of water. For example, on more than

Waddell Creek, Silver Salmon: Seasonal Changes in Sex-age Composition of the Spawning Run; Fish Checked Through Upstream Trap, by Two-week Periods

Season	Category	Nov. 26-Dec. 9			Dec. 10-23			Dc. 24-Jan. 6			Jan. 7-20			Jan. 21-Feb. 3		
1933-34	1/1 ${ }^{\text {¢ }}$	1	---	---	60	---	---	48	--	---	---	---	---	1	---	--
	1/2 ${ }^{\text {¢ }}$	---	1	---	---	54	---	---	81	---	---	---	---	---	---	---
	1/2 ㅇ	---	---	1	---	---	24	---	---	112	---	---	1	---	---	---
1934-35	1/1 ${ }^{\text {® }}$	---	---	---	2	---	---	14	---	---	4	---	---	---	---	---
	1/2 ${ }^{\text {¢ }}$	---	1	---	---	13	---	---	182	---	---	50	---	---	13	---
	1/2아	---	---	---	---	---	5	---	---	128	---	---	101	---	---	12
1935-36	1/1 $\widehat{ }$	---	---	---	---	---	---	15	---	---	36	---	---	2	---	---
	1/2 ${ }^{\text {® }}$	---	---	---	---	---	---	---	6	---	---	24	---	---	2	---
	1/2아	---	---	---	---	---	---	---	---	5	---	---	31	---	---	2
1936-37	1/1 ${ }^{\text {人 }}$	---	---	---	---	---	---	1	---	---	1	---	---	1	---	--
	1/2 ${ }^{\text {® }}$	---	---	---	---	---	---	---	34	---	---	25	---	---	35	---
	1/2 9	---	---	---	---	---	---	---	---	26	---	---	26	---	---	38
1937-38	1/1 $\widehat{ }$	---	---	---	15	---	---	---	---	---	4	---	---	1	---	---
	1/2 ${ }^{\text {® }}$	---	---	---	---	8	---	---	---	---	---	25	---	---	7	---
	1/2 ㅇ	---	---	---	---	---	2	---	---	---	---	---	18	---	---	2
1938-39	1/1 ${ }^{\text {® }}$	8	---	---	---	---	---	5	---	---	1	---	---	2	---	---
	1/2 ${ }^{\text {® }}$	---	2	---	---	---	---	---	1	---	---	1	---	---	16	---
	1/2 ㅇ	---	---	---	---	---	---	---	---	11	---	---	2	---	---	18
1939-40	1/1 ${ }^{\text {® }}$	---	---	---	2	---	---	27	---	---	10	---	---	11	---	---
	1/2 ${ }^{\text {® }}$	---	---	---	---	1	---	---	74	---	---	12	---	---	1	---
	1/2아	---	---	---	---	---	---	---	---	101	---	---	16	---	---	8
1940-41	1/1ठ	---	---	---	31	---	---	19	---	---	11	---	---	3	---	---
	1/2 ${ }^{\text {\% }}$	---	---	---	---	26	---	---	40	---	---	26	---	---	1	---
	1/2아	---	---	---	---	---	11	---	---	41	---	---	42	---	---	7
1941-42	1/1 ${ }^{\text {¢ }}$	1	---	---	2	---	---	1	---	---	---	---	---	---	---	---
	1/2 ${ }^{\text {® }}$	---	10	---	---	21	---	---	14	---	---	6	---	---	12	---
	1/2 ¢	---	---	3	---	---	19	---	---	10	---	---	19	---	---	23
Totals	1/1 ${ }^{\text {\% }}$	10	---	---	112	---	---	130	---	---	67	---	---	21	---	---
	1/2 ${ }^{\text {® }}$	---	14	---	---	123	---	---	432	---	---	169	---	---	87	---
	1/29	---	---	4	---	---	61	---	---	434	---	---	256	---	---	110
	All fish	---	28	---	---	296	---	---	996	---	---	492	---	---	218	----
Percentage of total run of all fish	1/1 ${ }^{\text {® }}$	0.5	---	---	5.1	---	--	5.9	---	---	3.0	---	---	0.9	---	---
	1/2 ${ }^{\text {® }}$	---	0.6	---	---	5.6	---	---	19.5	---	---	7.6	---	---	3.9	---
	1/2 ㅇ	---	---	0.2	---	---	2.8	---	---	19.6	---	---	11.5	---	---	5.0
	All fish	---	1.2	---	---	13.4	---	---	45.0	---	---	22.2	---	--	9.8	---

TABLE 12 －Continued
Waddell Creek，Silver Salmon：Seasonal Changes in Sex－age Composition of the Spawning Run； Fish Checked Through Upstream Trap，by Two－week Periods

Season	Category	Feb．4－17			Feb．18－Mar． 3			Mar．4－17			Totals			Total all fish
1933－34	1／1才	7	－－－	－－－	1	－－－	－－－	－－－	－－－	－－－	118	－－－	－－－	
	1／2 ${ }^{\text {\％}}$	－－－	15	－－－	－－－	1	－－－	－－－	－－－	－－－	－－－	152	－－－	447
	1／2 ㅇ	－－－	－－－	39	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	177	
1934－35	1／1 ${ }^{\text {人 }}$	－－－	－－－	－－－	1	－－－	－－－	－－－	－－－	－－－	21	－－－	－－	
	1／2 ${ }^{\text {® }}$	－－－	3	－－－	－－－	13	－－－	－－－	－－－	－－－	－－－	275	－－－	583
	1／2 9	－－－	－－－	14	－－－	－－－	26	－－－	－－－	1	－－－	－－－	287	
1935－36	1／1 ${ }^{\text {® }}$	3	－－－	－	－－－	－－－	－－－	－－－	－－－	－－－	56	－－－	－－－	
	1／2 ${ }^{\text {® }}$	－－－	1	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	33	－－－	128
	1／2 ㅇ	－－－	－－－	1	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	39	
1936－37	1／1 ${ }^{\text {® }}$	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－	3	－－－	－－－	
	1／2 ${ }^{\text {® }}$	－－－	10	－	－－	－－－	－－－	－－－	－－－	－－－	－－－	104	－－－	214
	1／2아	－－－	－	17	－－－	－－－	－－－	－－－	－－－	－	－－	－－－	107	
1937－38	$1 / 1 \delta^{\text {® }}$	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	20	－－－	－－－	
	1／2 ${ }^{\text {¢ }}$	－－－	2	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－	42	－－－	84
	1／2아	－－－	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	－－－	22	
1938－39	1／1 ${ }^{\text {® }}$	1	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	17	－－－	－－	
	1／2 ${ }^{\text {® }}$	－－－	7	－－－	－－	－－－	－－－	－	2	－－－	－－－	29	－－－	86
	1／2 9	－－－	－－－	9	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	40	
1939－40	$1 / 1 \delta^{\text {® }}$	－－－	－－－	－－－	1	－－－	－－－	1	－－－	－－－	52	－－－	－－－	
	1／2 ${ }^{\text {® }}$	－	－－－	－－－	－	－－－	－－－	－－－	－－	－－－	－－－	88	－－－	266
	1／2ㅇ	－－－	－－－	－－－	－－－	－－－	1	－－－	－－－	－－－	－－－	－－－	126	
1940－41	1／1 ${ }^{\text {® }}$	1	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	65	－－－	－－－	
	1／2 ${ }^{\text {® }}$	－－	－－－	－	－	－－－	－－－	－－－	－－	－－－	－－－	93	－－－	263
	1／2 ㅇ	－－－	－－－	3	－－－	－－－	－－－	－－－	－－	1	－－	－－－	105	
1941－42	1／1 ${ }^{\text {® }}$	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	－－－	4	－－－	－－－	
	1／2 ${ }^{\text {® }}$	－－－	2	－－－	－－－	－－	－－－	－－－	1	－－	－－－	66	－－－	147
	1／2ㅇ	－－－	－－－	2	－－－	－－－	－－－	－－－	－－	1	－－－	－－－	77	
Totals	1／1ठ	12	－－－	－－－	3	－－－	－－－	1	－－－	－－－	356	－－－	－－－	
	1／2 ${ }^{\text {¢ }}$	－－－	40	－－－	－－－	14	－－－	－－－	3	－－－	－－－	882	－－－	2，218
	1／29	－－－	－－－	85	－－－	－－－	27	－－－	－－－	3	－－－	－－－	980	
	All fish	－－－	137	－－－	－－－	44	－－－	－－－	7	－－－	－－－	2，218	－－－	
Percentage of total run of all fish	1／1 ${ }^{\text {人 }}$	0.5	－－－	－－－	0.1	－－－	－－－	－－－	－－－	－－－	16.1	－－－	－－－	
	$1 / 2 \varnothing^{\pi}$	－－－	1.8	－－－	－－－	0.6	－－－	－－－	0.1	－－－	－－－	39.8	---	
	$1 / 2 \text { ㅇ }$	－－－	－－－	3.8	－－－	－－－	1.2	－－－	－－－	0.1	－－－	－－－	44.2	
	All fish	－－－	6.2	－－－	－－－	2.0	－－－	－－－	0.3	－－－	－－－	－－－	－－－	

one occasion a number of salmon have entered Waddell Creek during a storm or series of storms, but have "holed up" in pools in the lower portion of the stream, below the trap, as a result of sudden cessation of the storm and lowering of flow. Such fish will not move up so long as the fair weather continues, even though they be sexually ripe and begin to deteriorate in physical condition and even die. Following such a period, even a light rain and small rise in stream level will cause a large number of these fish to ascend through the trap or spawn below the trap. We may now turn to a consideration of diurnal fluctuations in migration.

Counts of silver salmon, king salmon, and steelhead at the Benbow Dam station of the California Department of Fish and Game and of silver salmon and steelhead at Waddell and Scott creeks indicate that as a rule these fishes move upstream mainly in the daytime. Studies of various workers in other areas generally are in agreement with these findings.

Neave (1943) found that silver salmon (and king salmon) at Skutz Falls, Cowichan River, B. C., migrated mainly during daylight hours, but found no correlation between diurnal fluctuations in number of migrants and water temperature or stream discharge. Within the daylight period, either one or two peaks of major activity were observed. Artificial light, as used, had no effect on night migratory movements.

Chapman (1941), studying steelhead, king salmon, and red (sockeye) salmon (Oncorhynchus nerka) passing through the fishways at Rock Island Dam on the upper Columbia River, concluded that the red salmon as a whole "showed a preference for running in the early morning, the number decreasing as the day progressed, but those going through the middle ladder acted in a directly opposite manner, running predominantly in the late afternoon." He found that the king salmon and steelhead ran heavily through the middle of the day. Chapman states that he "was never able to arrive at a conclusion as to the factors influencing the movements of the fish through the ladder (probably multiple with complex inter-relationships). ..." (Night counts were not made at Rock Island Dam.)

Neave (1943) and others have noted the occasional occurrence of periods of relative inactivity in upstream movement of various salmonids within the daylight hours. No correlations between such fluctuations in movement during the daytime and environmental factors have been demonstrated. Such fluctuations have been noted at Benbow Dam for silver salmon, king salmon, and steelhead and at Scott and Waddell creeks for silver salmon and steelhead, but to date it has not been possible to form definite conclusions regarding the factors creating them. As Chapman (loc. cit.) pointed out, they are "probably multiple with complex inter-relationships." Ripeness of fish, size of run at the immediate locality, and water and climatic conditions may all play a part in determining the pattern of the fluctuations under discussion. It may be noted that particularly at Scott Creek two daily peaks of migration among the steelhead have been noted by the writers on successive days, without any marked changes in stream discharge, turbidity of water, or general weather conditions (other than light and temperature).

Changes in Body Form and Coloration Associated With Maturation

The changes in body form and coloration which are associated with maturation in the different species of the Pacific salmons are well known and have been described elsewhere (e.g., Chamberlain, 1907). Consequently, only a brief resume will be presented at this time.

The changes which take place vary with species, sex, and size, and also with individual fish. In the males, the changes in form are characterized by the elongation of the jaws, the growth of canine-like teeth, and the increase in depth of body by the ridging of the back. (The latter character has given rise to the term "razor-back.") These changes are most pronounced in the larger fish. (They are seen also in the steelhead, but usually to a lesser extent.) (Juvenile salmon which mature prior to entry into salt water show no evident change in bones or teeth.)

In the male silver salmon, the upper jaw elongates and often becomes quite hooked. Individuals in which this process has been extensive are often known as "hook-bills" or "dog salmon." Sometimes the hooking and knobbing are so great as to prevent closure of the mouth. The lower jaw also elongates, but more often becomes knobbed than hooked. The jaws of the female elongate only slightly and rarely become hooked. With a little experience, these differences between males and females enable the observer to determine the sex of the fish at a glance. ${ }^{12}$

In the sea, all species of the Pacific salmons are quite silvery. In fresh water, the changes in body coloration soon take place. These vary with the species. The larger male silver salmon often acquire a red on the sides which is sometimes quite bright. The grilse and females are usually not nearly so brilliantly colored. The females most often assume a brassy greenish color.

The scales, which are loosely attached in individuals in salt water and in recent arrivals from the sea, become firmly imbedded with the approach of spawning, particularly in the males.

Spawning Beds

Silver salmon ascend practically all accessible streams within their range flowing into the Pacific Ocean, from the largest to the very smallest. This statement is borne out by the observations of other writers. For example, Chamberlain (1907) wrote in regard to choice of spawning streams by silver salmon in southeastern Alaska:
"The coho is probably less particular (in comparison with the other Pacific salmons) in its requirements. The fry were found, without exception, in every stream and brook examined; even a tiny seepage rill entering Naha Bay which would become dry with the first week of fair summer weather contained its little school of coho fry."

Females choose the redd sites, as is the case with other species of salmon and trout. Examination of many redds shows that the site selected is typically near the head of a riffle (which is also the lower end

[^16]of a pool) composed of medium and small gravel. Usually the site is close to the point where the smooth surface water "breaks" into the riffle.

No differences could be found between the individual sites chosen by silver salmon and steelhead at Waddell Creek. Occasionally fish of the two species spawned at the same time on the same riffle, while in other instances fish of one species spawned in the exact spot used by earlier spawners of the other species. If the runs are considered as a whole, the silver salmon consistently spawn lower in Waddell Creek than do the steelhead. The spawning beds of the lower portion of the stream are composed of gravel not so coarse as that found in the upper stream, but whether or not this is the factor that causes the silver salmon to spawn lower down than the steelhead is not known.

The silver salmon do not ascend streams for as great distances as do the king salmon, red salmon, or steelhead, usually not proceeding upstream in large numbers more than 150 miles even in the larger rivers. This characteristic has been noted by others writers, e.g., Chamberlain (1907), who said: ". . . long journeys do not find favor with it. Wallowa (northeastern Oregon) and Baker (northern Washington, tributary to the Skagit River) lakes seem to be about the limit to which it travels."

The nature of the redd site insures a good supply of oxygen for the eggs, since in streams a considerable portion of the water flowing through a swift riffle flows below the surface. The circulation of the water through the gravel no doubt also is of considerable aid to the fry in making their way to the surface.

Silver salmon often spawn in very shallow water, but so choose their redds that they are rarely exposed by naturally falling stream levels, in either Waddell Creek or other California streams.

Spawning

Insofar as the writers know, there is no published account of the spawning of silver salmon, but in its general features it is similar to that of other species of salmon and of trout. A generalized account is here presented.

The female may select and abandon several trial sites. Having chosen a satisfactory site, she begins digging. One or more males may accompany the female, but the males do not participate in the digging. Usually one male becomes the mate; the other males, although sometimes persistent in approaching the female, seem to sense this and usually yield to the dominant male when he makes a rush at them. Probably more often than not the mate is a larger fish than the "accessory" attendant males, but even if smaller, his "right" to the female is usually recognized. The fighting and digging often result in a great deal of commotion, especially when several males are in attendance. Occasionally a male, usually a grilse, becomes hurt so badly in the fighting that he dies without spawning.

While the female is digging the nest, the mate assumes a position slightly behind (downstream) and to one side of her. At frequent intervals this male approaches the side of the female closely and the two fish quiver, together or separately. This quivering has often been
mistaken for the emission of the sexual products, but the behavior accompanying the latter action is quite different. Fish of both sexes face upstream during the spawning activities.

In digging the nest the female turns partly on her side and with powerful and rapid movements of the tail disturbs the bottom materials, which are then carried a short distance downstream by the current. As this process is repeated the nest takes form and finally results in an oval or roundish pit or depression, at least as deep and as long as the fish.

The writers have not witnessed the actual deposition of the sexual products, but it is probably very similar to that of the steelhead, described in the comparable section of this paper (pages 144-148). Since the site of the redd, the construction of the pit, and the behavior of the spawning fish are so similar in silver salmon and steelhead, it may be confidently expected that the efficiency of fertilization and covering of eggs will also be much alike.

For many years the view was generally held that natural reproduction of salmonids is a rather ineffective process, but various studies contradict this opinion.

Probably at least 97 percent of the eggs spawned lodge in the pit and are properly buried. Apparently both the eggs and milt are held in the pit by current eddies below the normal level of the stream bed. This view has been advanced for the spawning of various salmonids by Peart (1920) and others. In the spawning of steelhead witnessed by P. R. Needham, A. C. Taft, and Leo Shapovalov and recorded by Needham and Taft (1934) and in the observations of Greeley (1932) on Eastern Brook Trout (Salvelinus fontinalis), Brown Trout (Salmo trutta), and "rainbow trout" very few eggs were swept out of the pit. Hobbs (1937), in his studies in New Zealand, concluded that at least 97.5 percent of the brown trout eggs lodged in the redds at the time of spawning. His data did not admit of the quantitative expression of the non-lodgment loss in the case of king salmon and "rainbow trout", but his observations suggest that, as was the case with brown trout, the great majority of the eggs produced by them lodged in the places prepared for them by the parent fish, unless interfered with.

On the basis of observations on numbers of silver salmon redds, it is known that the female may dig several pits to complete spawning. The pits are arranged progressively upstream, in chronological order. Probably normally a few hundred eggs are deposited in each pit.

To complete spawning may take a week or more. The length of time probably depends upon the ripeness of the fish, water and atmospheric conditions (especially temperature and volume of water), and the extent to which the mating fish are interrupted by intruders (human beings, stream-side mammals, birds, and other fish).

No quantitative estimate can be made of the amount of damage done to redds by subsequent spawners, which may be steelhead or other silver salmon. It is probable that although the losses from this cause may be severe in individual nests, the percentage loss for all eggs deposited in the stream is not large. Superimposition probably causes more damage to silver salmon than to steelhead redds, since most of the steelhead in California streams spawn after the salmon.

Egg-eating species of fishes present on salmonid spawning grounds often contain eggs in their stomachs. In Waddell Creek such fish are stream steelhead and silver salmon and sculpins (Cottus). Such eggs are probably occasional ones shed by fish on their way upstream or in the course of nest digging, disturbed by superimposition of nests on nests prepared by previous fish, or swept out of the spawning pits before they were covered. Hobbs (1937) records brown trout and king salmon eggs in the stomachs of brown trout, and king salmon eggs in the stomachs of rainbow trout, and is also of the opinion that such eggs are occasional ones made available in some of the ways cited above. Greeley (1932) expressed a similar view. The rapid burial of eggs precludes any but an insignificant proportion of eggs being eaten.

All silver salmon, both males and females, die after first spawning. Degeneration of the gonads and certain other physiological changes take place, even before the death of the fish. The occurrence of such changes in a stream such as Waddell Creek, where many of the fish spawn within two miles of the stream mouth, shows conclusively that death is not caused by the rigors of a long journey, but results from independent physiological changes.

Egg Production

The calculation of numbers of eggs produced by Waddell Creek silver salmon is based on the numbers produced by Scott Creek silver salmon, since collection of eggs from Waddell fish would have destroyed the experimental plan. There is no evidence to indicate that the Scott Creek salmon produce a different average number of eggs for a given size of fish from Waddell salmon.

Correlation of Number of Eggs With Size of Fish

The relationship between the length of the fish and the number of eggs produced is shown in Figure 10. This relationship was determined from 29 actual counts of eggs plus 36 measurements of the amount (volume) of eggs and the size (volume) of individual eggs from fish of known lengths. ${ }^{1313}$

Measurements of the eggs were carried out according to a method originated by Taft. This, in essence, consists of dividing the actual total volume of eggs from one fish by the average measured volume per egg for that fish. In practice, the eggs from one fish are placed in a graduated glass cylinder, with sufficient water to cover them, and a reading is taken of the volume occupied by the total egg mass. The volume of individual eggs is obtained by taking the average of a series of eggs (usually 10 at Scott Creek) measured in a burette. The measured volume occupied by the total egg mass is then multiplied by a predetermined factor (F) which reduces it to the actual volume of the eggs. The actual volume is then divided by the volume per egg, which gives the calculated number of eggs produced by that fish.

[^17]

Figure 10. Egg production of Scott Creek silver salmon.
F , the reduction factor, or volume factor, as it will be called henceforth in this paper, is calculated according to the following procedure: (1) the volume of the total egg mass and the volume per egg for one fish are measured in the manner outlined, (2) an actual count of the number of eggs is made, (3) the counted number of eggs is multiplied by the volume per egg to give the actual volume occupied by the eggs, (4) the actual volume occupied by the eggs is divided by the graduate reading (volume of total egg mass) to give the volume factor (F). The calculation of the volume factor may be represented by the following formula:

Counted number of eggs $(\mathrm{N}) \mathrm{x}$ volume of individual egg $(\mathrm{v})=$ Actual volume of eggs (V)

Then: $\quad \frac{\text { Actual volume of eggs }(\mathrm{V})}{\text { Measured volume of eggs }(\mathrm{M})}=\quad \begin{gathered}\text { Volume factor, or portion of measured } \\ \text { egg volume occupied by eggs }(\mathrm{F})\end{gathered}$
In calculating the volume factor for Scott Creek silver salmon, actual counts of eggs and measurements of total volume from two fish were used. For each of the two fish selected, the volume in c.c. of individual eggs was obtained by averaging the volume of 50 eggs measured in lots of 10 in a burette. Total volume of eggs was measured in water in a 1,000 c.c. glass graduate. From these values a volume factor of 0.680 was obtained. The data used in obtaining F are shown in Table A-2 of the Appendix. The frequency distribution of quantity of eggs (in c.c.) obtained from Scott Creek silver salmon is given in Table A-3 .of the Appendix. ${ }^{14}$

Using the volume factor of 0.680 , the calculated number of eggs was obtained for each of the 36 fish for which egg volumes had been measured. To it was added the number of eggs remaining in the fish to obtain the total number of eggs.

The total number of eggs contained in the above 36 fish and in the 29 for which actual total egg counts had been made was plotted in 200-egg intervals against fish length in $1-\mathrm{cm}$. intervals and a regression line was fitted to the points. This line was fitted by the method of least squares and, since the relationship is curvilinear, the regression line was determined on a logarithmic scale and later transposed to a linear scale. This regression line is not as accurate as one determined from the original paired variates, but is close enough to the true one to be used here, considering all possible sources of error. Its equation is Number of Eggs $=0.01153 \mathrm{X}$ Length ${ }^{2.9403}$. The correlation ratio, Y , for the relationship between eggs produced and fish length is 0.682 .

Other workers have found a correlation between number of eggs and size of fish for various species of salmonids, including other species of Pacific salmons. For example, Foerster and Pritchard (1941) found a positive significant correlation between the number of eggs contained in the ovaries and both length and weight of individuals in the red salmon (Oncorhynchus nerka) and the pink salmon (0. gorbuscha). Weights of the Scott Creek silver salmon were not obtained.

As Foerster and Pritchard (loc. cit.) have pointed out for the red salmon and pink salmon, the existence of a definite positive correlation between size of females and egg content suggests two important implications, namely, (1) ". . . any fishing effort which tends to remove the larger fish will proportionately reduce the extent of the egg deposition

[^18]of the spawning escapement and militate against the normal conservation of the species" and (2) ". . . due caution must be observed in using data pertaining to egg content to indicate racial differences between populations ... in different rivers."

Published studies of egg production by silver salmon are quite limited. Foerster (1944), summarizing studies in two small streams tributary to the Cowichan River in British Columbia, reported that 88 females in Oliver Creek presumably deposited 199,500 eggs (an average of 2,267) and that 28 in Beadnell Creek deposited 78,100 (average 2,789).

Percentage of Eggs Deposited

The average total number of eggs produced was discussed in the preceding section. To calculate the total number of eggs deposited in Waddell Creek in each season it was necessary to know the average number of eggs left in the fish after spawning.

The silver salmon that spawn do so quite completely. Actual counts of eggs remaining were recorded for only five fish, as follows: 20, 35, 47, 100, 100 (average 60). However, a number of others were found to have spawned quite completely, the average number of eggs remaining in the fish being well under 100 and probably under 50. It is likely that the number of eggs left in the fish after natural spawning bears little or no relation to the size of the fish (and consequently the number of eggs produced).

The small number of eggs remaining after natural spawning is in agreement with the findings of other workers for various species of salmon and trout. Hobbs (1937) found an average retention of eight eggs per female (range 0 to 53 for 22 fish) in the case of king salmon and 6.7 eggs per female (14 fish) in the case of brown trout. Foerster (1929) found that over 75 percent of 57 dead red salmon examined at Cultus Lake, British Columbia, contained 20 or fewer eggs. (Only three of these salmon, or 5 percent of the total, were found unspawned. Several others had apparently died before completing spawning.)

On the basis of these various observations, it was decided not to subtract any number in calculating the eggs deposited by Waddell Creek silver salmon which are believed to have completed spawning, but to use the total egg production figures obtained for Scott Creek silver salmon of the same lengths and expressed by the regression line in Figure 10. However, allowance was made for fish which died without completing spawning in each season. The figures previously cited are for eggs remaining in fish that had completed spawning. In most streams a certain (usually small) percentage of fish dies without completing spawning. Such fish die from (a) disease, (b) injuries caused by predators, fishermen, fighting, and stream obstacles, and (c) old age, and the numbers dying from such causes depend upon local conditions. The number of eggs remaining after completion of spawning is largely independent of local conditions.

Percentage of Eggs Fertilized

Although quantitative data for Waddell Creek silver salmon are not available, there is every indication that the percentage of eggs fertilized is very high and rather constant.

Extensive spawning work done by personnel of the Department of Fish and Game has shown that the percentage of fertilization of silver salmon eggs can be quite high under the close to ideal conditions existing in artificial fertilization. But the only data available to show what happens in Waddell Creek and other coastal streams under natural conditions are the extensive investigations of Hobbs (1937) in New Zealand, the observations of other workers, and general observations (not strictly quantitative) on the emergence of fish from the gravel in Waddell Creek.

It is true that the observations of other workers have been made on other species of salmonids, but the conclusions reached by them fit in so well with the observations of the writers that it appears legitimate to apply them in the present studies, especially since the spawning of the various salmons and trouts follows essentially the same pattern and local conditions usually play a more important role than the factors peculiar to the species involved.

Hobbs found that his material, taken as a whole, indicated a uniformly high efficiency of fertilization in the eggs of all three species which he observed, king salmon, brown trout, and "rainbow trout": over 99 percent. In 32 brown trout redds in 10 different streams the average fertility was 99.17 percent, with a range of from 96.73 to 100 percent.

Hazzard (1932) examined an average sample of 201 eggs in the eyed stage from each of 21 eastern brook trout nests in New York streams. He found that 27 to 98.5 percent, with an average of 79.8 , of the eggs contained embryos. In all but one nest more than 69 percent of the eggs were found to be alive.

The observations of the writers and the various seasonal observers consistently indicated a tremendous emergence from the gravel in most seasons; during the few weeks following peak emergence the shallows of the stream seemed alive with fry, which of course could not occur if a high percentage of the eggs had not been fertilized.

Embryology and Hatching of Eggs

The embryology of the silver salmon is in general similar to that of the other Pacific salmons and of trout. The length of time for the eggs to develop to various stages and to hatch is in general dependent upon average temperature of the water, but for a given temperature the average hatching time may vary several days between egg lots taken from different fish and even between eggs taken from the same fish.

The number of days required for silver salmon eggs to hatch varies from about 38 at an average temperature of 51.3 degrees F. to about 48 at an average temperature of 48.0 degrees F . At the temperatures prevailing in Waddell Creek, the usual hatching time is from 35 to 50 days.

Chemical conditions (oxygen, pH , etc.) have some effect on the rate of development of salmon and trout eggs, but probably do not play a significant role within the limits found in Waddell Creek and in the great majority of other coastal streams. Cheyne (1941) found that chum salmon eggs developed at approximately the same rate and pro-
duced healthy fry in waters with dissolved oxygen levels lying between 3.55 and 7.84 p.p.m., although the eggs held at the highest oxygen level produced the largest fry.

Most experiments dealing with the rate of development of salmon and trout eggs have been conducted with uncovered eggs placed in hatchery baskets or incubators. Shapovalov (1937) showed that steelhead eggs in gravel hatch at approximately the same time as those in hatchery baskets.

The percentage of silver salmon eggs which hatch probably varies widely under natural conditions, and in Waddell Creek and other coastal streams free from mining is likely dependent principally upon the amount and character of silting caused by floods occurring between fertilization and hatching. Such silting smothers the eggs, i.e., deprives them of the oxygen necessary for development. Mining silt has a similar effect.

The adverse effect of silting on the development of silver salmon eggs is indicated by the experiments of Shapovalov and Berrian (1940) and Shaw and Maga (1943). The latter authors conclude that "mine silt deposited on gravel spawning beds during either the early or later stages of incubation results in negligible yields of fry and is therefore a serious menace to natural propagation." Hobbs (1937) found that in New Zealand streams the mortality of salmon and trout eggs was greatest in redds containing the largest proportion of fine materials (under 0.03 inch in diameter). Harrison (1923) cites a series of experiments with the eggs of red salmon to determine which of a number of kinds of bottom material was most suitable for the artificial planting of eggs. They show that the finer the material is the heavier is the loss.

Under normal hatchery conditions the hatch is between 80 and 90 percent of silver salmon eggs taken.

Hobbs (1937, 1940) conducted an extensive series of investigations on the natural reproduction of salmonids in New Zealand streams. A large proportion of his studies was concerned with the extent of losses occurring at different stages while the eggs and larval fish were in the gravel.

Hobbs (1937) found that in one stream, Winding Creek, a hatch of over 97 percent of king salmon eggs lodged in redds sampled was indicated in 1933. For brown trout he found that in Black Creek, where losses (of unmeasured extent) occur through the disturbance of earlier redds by later spawners, a hatch in undisturbed redds or portions of redds of over 95 percent of eggs lodged was indicated. In the Selwyn River, where it was not known if later spawners disturbed the contents of early redds, in undisturbed redds or portions of redds a hatch of over 97 percent of brown trout eggs was indicated. In a third stream (Slovens Creek), however, in which redds were not disturbed by subsequent spawners, a loss of something over 25 percent of the eggs of brown trout lodged was indicated. For the streams examined, Hobbs concluded that heavy losses of fertilized eggs are the outcome of adverse environmental conditions and not of inherent weakness, that the extent of losses of fertilized eggs in undisturbed redds depends primarily on the amount of very fine material in the redds during the development of eggs before eyeing, that losses, of unmeasured extent, of the eggs of brown trout occur through the superimposition of redds of later
spawners, that all floods tend to be harmful in that they increase the deposition of fine material in redds, and that although floods rarely effect substantial modification of the contours of redds, they may cause losses considerable enough to account for the partial failure of a year class when they do so.

In further studies, based on 529 samples consisting of 422,841 specimens from natural redds of brown trout and "rainbow trout" in nine New Zealand river systems, Hobbs (1940) estimated survival to time of hatching among eggs of both brown trout and "rainbow" trout to have been approximately as follows: 96.80, 95.36, 94.50, 93.92, 93.15, $90.64,88.62,87.14$, and 70.71 percent, giving an average of 90.1 percent. In commenting on these figures, an editorial in The Salmon and Trout Magazine, No. 101, January, 1941, states: "This last district, however, must be exceptional, as the next highest [loss] is only 12.86 percent, and if this particularly bad one is omitted the average loss is less than 7.5 percent." However, the unusually heavy losses appear to be characteristic of that particular river system, since in 18 of 28 samples dead eggs exceeded 10 percent, and in 10 of the 18 were in excess of 20 percent, so probably should be included in arriving at an average. The problem of the treatment of exceptional cases is one that often confronts the biologist, and one that cannot always be solved by statistical analysis. In the case under discussion, for example, Hobbs stated that the heavy losses "reflect unsatisfactory features of the spawning medium." These features consist of the presence of clay and swamp detritus in the gravel in excessive quantities, and the inimical conditions were aggravated by the massing of redds, so that material disturbed by late spawners had frequently settled in redds immediately below. Any investigator, in attempting to apply some average from data obtained by another investigator to his own studies, must decide whether or not the unusual cases of the other investigator are also unusual in his data, or entirely absent, or characteristic. Thus, if spawning grounds in some area are uniformly of high quality, we have some justification for using the figure of 7.5 percent as probable prehatching loss; if poor spawning areas occur in the approximate ratio of $1: 8$, we should expect to be more nearly correct if we use the figure of 9.1; while if the spawning grounds are uniformly poor we should probably use the pre-hatching loss figure of 29 percent.

Some criticism has been made of Hobbs' method of calculating losses in the gravel, which consists of digging up the natural redds and determining the proportional numbers of dead and live eggs and larvae in different stages. Some workers believe that Hobbs' survival figures may be too high, because of irrecoverable eggs (eggs not recovered because of decomposition, crushing in digging up the redds, or through oversight in digging up the redds). It is true that in egg burial experiments with known numbers of eggs, in which dead eggs and larvae have been dug up, there has been an unaccounted for loss. Carl (1940), in an experiment directed toward determining the possibility of the production of differences in eye diameter by incubation in gravel and in open hatchery troughs, planted 2,000 silver salmon eggs from several females in gravel (taken from an area normally used for spawning) to a depth
of 6 to 8 inches in a hatchery trough screened at both ends and obtained a survival of 53.7 percent, with 160 eggs (8 percent) unaccounted for. The same number of control eggs in a standard hatchery basket yielded a hatch of 87.9 percent. Carl states: "The high losses were probably the result of the extra handling during the intermingling of the eggs of different fish and during the subsequent counting." And, in regard to the unaccounted for eggs, "A similar disintegration in nature may explain in part the high rates of efficiency obtained by basing the estimated loss in eggs in the redd only upon the number of 'blank' eggs found in the gravel. "If in the same experiment a calculation had been based on the number of fry produced as compared with the number of dead eggs recovered, the survival figure obtained would have been 58.5 percent, a difference of only 4.8 percent from the true figure. With the higher survival figures obtained by Hobbs (about 90 percent in his 1940 paper), the percentage difference would also be somewhat higher. Assuming a total deposition of 2,000 eggs and an unaccounted for loss of 8 percent, or 160 eggs, the calculated survival would be 1,656 eggs (90 percent of $2,000-160=1,840$) and the number of dead eggs found would be 184 (10 percent of $2,000-160$ $-1,840$). The true loss would then be $184+160-344$, or 17 percent, a difference of only 7 percent.

In experiments described by Shaw and Maga (1943) both the mortality and unaccounted for loss were much higher than in the experiment of Carl (loc. cit.). In these experiments 21 lots of 500 silver salmon eggs each (altogether from 17 females) were buried in gravel to a depth of 3 or 4 inches. Since mining silt was artificially introduced into some of the lots, only the seven gravel control lots will be considered at this time. From Table 13 it is seen that the average survival to time of emergence was 16.2 percent, with a maximum of 25.4 percent, that the average recovery of dead eggs and fry from the gravel was

TABLE 13
Silver Salmon: Yield and Recoveries of Fry and Eggs From Gravel in Hatchery Troughs

Nest*	Yield of fry		Fry and eggs recovered from gravel			Fry and eggs unrecovered from gravel	
	Number of fry	Percentage yield	Number of fry	Number of eggs	Percentage fry and eggs	Number	Percentage
1	30	6.0	36	4	8.0	430	86.0
2	8	1.6	3	4	1.4	485	97.0
3	64	12.8	5	9	2.8	422	84.4
4	127	25.4	24	1	5.0	348	69.6
5	106	21.2	12	11	4.6	371	74.2
6	111	222	7	14	4.2	368	73.6
7	120	24.0	35	3	7.6	342	68.4
Totals	566		122	46		2,766	
Averages	81	16.2	17	7	4.8	395	79.0

[^19]4.8 percent, and that the average unaccounted for loss was 79.0 percent. As Shaw and Maga (loc. cit.) point out, while the eggs and fry were in the gravel "several storms brought in natural sediment which tended to settle in the upper nests of the trough." And: "Visual observation indicated that most of this sediment . . . settled on the first three nests while the last four were relatively free from silt." The authors go on to say "The higher and fairly constant yield of live fry from the last four nests is therefore representative of development without appreciable silting, while the lower values from nests 1-3 represent yield of fry for gravel beds that were subject to natural silting." In regard to the survival to emergence, the present writers agree that the differences between the first three and the last four nests reflect relative differences in the amount of silting, but it also seems quite possible that there was sufficient silting in the case of the last four nests to make it a factor of some consequence in the yield.

An experiment on the survival of silver salmon eggs in gravel conducted by Shapovalov and Berrian (1940) resulted in the low emergence of 10.2 percent, which was attributed to silting from severe storms. In the control, 65.9 percent of the eggs hatched and 48.2 percent survived to the time that the experimental fish had finished emerging from the gravel.

In justification of the figures obtained by Hobbs: (1) He considered the possibilities of dead eggs and fry having decomposed to stages which would not permit of their recovery by the methods employed (1937, pages 32-33), and carried out tests on the rate of decomposition of freshly killed eggs artificially buried in the gravel at various temperatures. Hobbs concluded (1940, page 43) : "Generally, data available do not suggest that failure to take decomposition of dead ova into account will cause errors comparable in extent to any resulting from the exigencies of sampling." (2) Many of Hobbs' samples were collected at early stages of development, while in the burial experiments cited by Carl (1940) and Shaw and Maga (1943) the dead eggs and fry were not dug up until the live fry had finished emerging from the gravel. The time between burial and removal of eggs was not recorded by Carl, but it was 98 days in the experiments cited by Shaw and Maga. From the viewpoint of the time element alone, then, one would expect an unaccounted for loss to be much less in the case of Hobbs.

In view of the low survival figures obtained in the different egg burial experiments, compared to Hobbs' figures, one might be led to ask, "What accounts for the difference, if not an unaccounted for loss?" In reply, the following facts might be pointed out. (1) In at least two of the experiments cited (Shapovalov and Berrian, 1940; Shaw and Maga, 1943) varying quantities of silt were brought into the water by storms. Conditions in this respect in the experiments of Carl (1940) are not known. (2) It seems likely that the same amount of silt carried in water in a hatchery trough would settle in greater quantities and cause greater mortality than in natural stream water, which would have a higher velocity. (3) Losses in experiments may be increased by (a) handling of the eggs in counting and burial, (b) introduction of Saprolegnia (fungus) and its greater development than would occur under natural conditions, (c) improper reproduction of natural conditions
(kind and size of gravel, depth and manner of burial, flow of water through the gravel). In regard to fungussing, Hobbs (1937) says that "Saprolegnia appeared to be the only important factor in the reduction of dead ova from a recoverable to an irrecoverable state" and that it was clear in the case of trout redds "that the cleaner the redd was the more rapid was the infection of the dead ova with fungus."

Less complete studies made by other workers do not disagree materially with the findings of Hobbs. For example, White (1930) obtained a hatch of 77 percent (342 of 452) eastern brook trout eggs dug from a redd on Prince Edward Island immediately after spawning. The losses included eggs that died from injuries received when they were removed from the gravel. In another test naturally fertilized eggs placed on a screen filled with gravel and buried in a redd yielded a hatch of 66 percent.

In conclusion, it appears to the present writers that if Hobbs' survival figures are too high because of unaccounted for loss, the error is probably not more than 10 percent of the total; in other words, if this error exists, Hobbs' 1940 previously cited average of 90 percent may actually be between 80 and 90 percent, which would still make natural reproduction under normal conditions quite an efficient process.

The losses computed by Hobbs (loc. cit.) necessarily did not include those that occurred through removal of eggs from the redds, which is caused principally by floods and superimposition. Losses resulting from these two factors will vary tremendously from stream to stream and from season to season. Hobbs concludes that the general tenor of such information as is available regarding the extent of losses caused by direct flood action "is to suggest that in many streams the chances of flood loss are very remote, while in others, while losses occur, they do so only at irregular intervals." In Waddell Creek, serious losses probably occur only in the case of exceptional floods. Hobbs found super-imposition to be general in the streams which he studied, but was unable to measure the extent of losses resulting from displacement of eggs. In Waddell Creek, utilization of areas used by earlier spawners has been noted on various occasions, but no quantitative estimate of the amount of loss can be made, although it is not believed to form a large percentage of all the eggs deposited.

Emergence From the Gravel

Silting, which has been pointed out in the preceding section as the principal factor determining the survival rate from deposition and fertilization of eggs to hatching, is also probably the principal factor determining the survival rate from hatching to emergence from the gravel.

In various experiments with burial of silver salmon eggs in gravel, it has been impossible to segregate survival from time of burial to hatching from survival from hatching to emergence, but the following percentage survivals to time of emergence have been obtained: Harrison (1923) 75; Carl (1940) 53.7; Shapovalov and Berrian (1940) 10.2 (heavy silting); Shaw and Maga (1943) 16.2 average (some silting), 1.16 average (artificially introduced mining silt).

From the above figures it is evident that the percentage emerging may vary widely and that it probably depends upon the amount and
character of silting. In the presence of silting the heaviest losses probably occur in pre-hatching stages. Shaw and Maga (1943) found that the artificial introduction of mining silt only during the time that the fish had hatched but were still in the gravel results in less severe losses (13.4 percent survival) than when the silt is introduced at earlier stages. Hobbs (1940) found it to be generally true for the various species of salmonids which he studied that the loss between hatching and time of emergence was extremely light, exceeding 1 percent in only one river system.

In the various experiments cited the water in the hatchery troughs had a considerably lower velocity than would water in a natural stream laden with an equal amount of silt and so it may be that under natural conditions the percentage of emergence is rarely as low as was the case in some of the experiments.

Foerster (1944), summarizing studies in two small streams tributary to the Cowichan River in British Columbia, reported that the records of percentage efficiency of natural propagation in terms of counted fry were: Oliver Creek, 14.4, 11.8, 30.4, 26.0, and 25.6 percent during five years, and Beadnell Creek, 40.0, 30.1, and 16.3 percent during three years.

Again, there is no quantitative basis for estimating the average percentage of silver salmon emerging from the gravel in Waddell Creek, but the writers believe that under favorable conditions (principally absence of heavy silting) it is high, probably between 65 and 85 percent of the eggs deposited. There is, of course, no stage in hatchery operations directly comparable to the period from time of hatching to time of emergence under natural conditions, but under hatchery conditions the losses during the equivalent period of time normally are light, so that hatchery survival to time that silver salmon finish emerging from the gravel under natural conditions is still between 80 and 90 percent of the eggs taken.

The experiments conducted by Shapovalov and Berrian (1940) and Shaw and Maga (1943) indicate that the silver salmon fry start emerging from the gravel two to three weeks after hatching and require in addition two to seven weeks to complete emergence, with peak emergence occurring within three weeks of hatching. This is probably what happens under normal conditions in California coastal streams. Shallow burial, loose gravel, absence of silt, and high temperatures may all be expected to speed emergence, while the opposite conditions may be expected to retard it.

Under normal conditions the fry rarely emerge from the gravel before the yolk sac is absorbed. Shallow burial results in premature emergence, a fact noted by Babcock (1911). The time of peak emergence from the gravel approximately coincides with the beginning of feeding in the hatcheries.

Because of the normal long period of emergence, the first fish to emerge have usually put on considerable growth by the time the last fish emerge, despite the fact that the eggs were deposited at the same time.

In the experiments cited by Shapovalov and Berrian (1940) apparently most of the fish emerged at night. It is probable that a similar emergence in nature provides the young fish considerable protection from enemies.

Stream Life Prior to Seaward Migration (General Features)

At Waddell Creek the only quantitative data regarding numbers of fish were obtained at times of migration through the trap, so the following account will necessarily be based on general observations.

As the young fish emerge from the gravel they seek out and take up residence in the shallow gravel areas, especially at the sides of the stream. At first they tend to congregate in schools, but as time passes and the fish grow these schools break up and the fish spread up and down the stream. Individuals tend to take up niches, and to drive out other fish of approximately the same size from their selected "territories." As in the case of the adults at spawning time, individuals seem to recognize the "right" of possession, and it is not uncommon to see a fish that has taken up residence in a particular spot dart at and drive away a larger individual of the same age class without much opposition from the intruder.

The fry in the shallows feed avidly and grow rapidly (Table 14). They rise to nearly every small object drifting downstream or falling into the water, selecting those that are suitable and rejecting those that are not wanted. Following the rise, they return to the original position.

It is obvious from general observations that following the peak of emergence there is a marked decline in the numbers of fry in the stream. It will be seen from the following section that very few fish of the season migrate to sea, so the losses must occur in the stream.

Possible causes of losses at Waddell Creek are the following: (1) predators, (2) drying stream channels, and (3) disease. ${ }^{15}$ The proportionate losses from these different causes during the first growing season are not known, but through a process of elimination one is led to the conclusion that predatory fishes make the greatest inroads. Other predators on fish of such small size are limited in Waddell Creek and most other California streams to garter snakes and the Dipper. These are not present in sufficient numbers to be the principal cause of loss at this stage. Many, if not most, of the fish taken by garter snakes are those from drying portions of the stream. The fry persist in hugging the shallows even when such areas are likely to go dry because of dropping stream levels. In some California streams, especially in their lower portions, appreciable losses occur in drying side pools and even main stream channels, but in Waddell Creek such losses are not of major proportions. Disease is the third possible cause of losses at this stage. Normally disease among salmon and trout in natural surroundings is not prevalent, It is possible that in 1933-34 furunculosis took a certain toll, but disease is not believed to be a principal cause of loss of fry in Waddell Creek.

As the fish grow, they gradually move into deeper water and eat coarser food. Around July or August they move into the deeper pools,

[^20]TABLE 14
Waddell Creek, Silver Salmon: Growth During First Year of Life, by Two-week Periods

Source	Item	$\xrightarrow{ \pm}$	景		$\begin{gathered} \stackrel{\rightharpoonup}{1} \\ \stackrel{y}{2} \\ \underset{y}{c} \\ \underset{y}{c} \end{gathered}$	$\begin{gathered} \\ \stackrel{y}{n} \\ \vdots \\ \vdots \\ \text { N } \\ \text { N } \\ \text { I } \end{gathered}$	n \vdots \vdots		\bar{z} ∞ \vdots \vdots		$\begin{aligned} & \infty \\ & n \\ & n \\ & n \\ & \stackrel{\infty}{3} \end{aligned}$		n \cdots N \vdots 0 0 n	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{1}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \dot{\sim} \end{aligned}$	-	ner			$\begin{aligned} & o \\ & \dot{0} \\ & 0 \\ & 0 \\ & \dot{0} \\ & \text { N} \\ & \dot{0} \\ & \dot{z} \end{aligned}$	N	Dec 24-Jan. 6			$\begin{aligned} & \stackrel{I}{j} \\ & \dot{j} \\ & \dot{0} \\ & \dot{1} \end{aligned}$	$\begin{aligned} & m \\ & \dot{\#} \\ & \dot{N} \\ & 1 \\ & \infty \\ & \dot{0} \\ & \dot{0} \\ & \dot{L} \end{aligned}$	$\begin{aligned} & \stackrel{\imath}{4} \\ & \dot{4} \\ & \dot{W} \\ & \dot{y} \end{aligned}$	$\begin{aligned} & \bar{\sim} \\ & \stackrel{1}{\infty} \\ & \stackrel{y}{\tilde{m}} \end{aligned}$
Downstream migrants	Number Mean Length (mm.)	$\begin{aligned} & 10 \\ & 35 \end{aligned}$	12 38	2 39	$\begin{aligned} & 12 \\ & 51 \end{aligned}$	6 45	13 56	25 58	16 59	2 58	$\begin{gathered} 2 \\ 65 \end{gathered}$	$\begin{gathered} 2 \\ 78 \end{gathered}$	---	1 64	$\begin{gathered} 1 \\ 62 \end{gathered}$			421 79	87 80	$\begin{gathered} 2 \\ 74 \end{gathered}$	34 80	31 82	8 81	12 86	4 93	20 89	31 101
Seined in stream	Number Mean length (mm.)	8 33	---						3 70	---	--- ---	110 64	33 67	---	---	--- ---	---	---	---	4 82		---	---	---	---	---	---
Upstream migrants	Number Mean length (mm.)	--- $-=-$													---		$\begin{gathered} 1 \\ 101 \end{gathered}$		24 95	--- ---	1 93	8 103	1 100	5 97	--	1 111	---

TABLE 15
Waddell Creek, Silver Salmon: Juveniles Checked Through Downstream Trap, by
Seasons and Weekly Periods

Period	$\begin{gathered} 1933- \\ 34 \end{gathered}$	$\begin{gathered} 1934- \\ 35 \end{gathered}$	$\begin{gathered} 1935- \\ 36 \end{gathered}$	$\begin{gathered} 1936- \\ 37 \end{gathered}$	$\begin{gathered} 1937- \\ 38 \end{gathered}$	$\begin{gathered} 1938- \\ 39 \end{gathered}$	$\begin{gathered} 1939- \\ 40 \end{gathered}$	$\begin{gathered} 1940- \\ 41 \end{gathered}$	$\begin{gathered} 1941- \\ 42 \end{gathered}$	$\begin{aligned} & \text { 㐫 } \\ & \text { 페 } \\ & 3 \end{aligned}$	
Oct. 1-7		--	--	--	--	--	--	--	--	--	--
Oct. 8-14		4	1	--	--	--	--	--	--	5	1
Oct. 15-21		2	--	--	--	--	--	--	--	2	+
Oct. 22-28	T	--	--	--	--	--	--	--	--	--	--
Oct. 29-Nov. 4	O	--	--	--	--	--	--	--	--	--	--
Nov. 5-11	\%	1	--	--	--	--	--	--	--	1	+
Nov. 12-18		10	39	--	--	--	4	--	--	53	7
Nov. 19-25		--	378	--	--	--	--	--	--	378	47
Nov. 26-Dec. 2		--	81	--	--	--	--	--	--	81	10
Dec. 3-9	--	--	6	--	--	--	--	--	--	6	1
Dec. 10-16	1	--	--	--	--	--	--	--	--	1	+
Dec. 17-23	--	--	--	--	--	--	1	--	--	1	+
Dec. 24-30	--	1	5	2	--	--	--	--	2	10	1
Dec. 31-Jan. 6	--	--	17	2	--	--	5	--		24	3
Jan. 7-13	--	2	8	2	--	--	--	--	--	12	1
Jan. 14-20	--	--	17	2	--	--	--	--	--	19	2
Jan. 21-27	--	--	8	--	--	--	--	--	--	8	1
Jan. 28 - Feb. 3	--	--	--	--	--	--	--	--	--	--	--
Feb. 4-10	2	--	--	3	--	--	1	--	--	6	1
Feb. 11-17	--		1	3	1	--	1	--	--	6	1
Feb. 18-24	--		--	1	--	--	--	--	--	1	+
Feb. 25-Mar 3	--	2	1	--	--	--	--	--	--	3	+
Mar. 4-10	--	1	4	--	--	--	2	--	--	7	1
Mar. 11-17	4	--	8	--	--	--	1	--	--	13	1
Mar. 18-24	3	--	2	--	--	--	6	--	--	11	1
Mar. 25-31	15	1	1	--	--	--	3	--	--	20	2
Apr. 1-7	52	21	--	1	1	6	--	--	--	81	9
Apr. 8-14	239	6	2	--	1	26	2	--	2	278	31
Apr. 15-21	606	49	16	24	5	143	51	2	1	897	99
Apr. 22-28	910	200	120	16	4	316	102	2	1	1,671	186
Apr. 29-May 5	909	755	1,086	142	19	163	72	15	49	3,210	357
May 6-12	415	881	1,327	329	104	157	300	60	149	3,722	414
May 13-19	143	555	1,278	307	679	24	262	33	161	3,442	382
May 20-26	61	624	343	132	781	9	425	29	139	2,543	283
May 27-June 2	27	271	109	87	261	1	366	6	32	1,160	129
June 3-9	39	131	39	8	48	2	113	1	112	493	55
June 10-16	--	21	11	4	5	2	18	--	32	93	10
June 17-23	--	13	1	2	16	--	4	2	8	46	5
June 24-30	--	8	2	--	1	--	--	2	6	19	2
July 1-7	1	5	--	--	--	--	1	--	5	12	1
July 8-14	--	6	--	--	--	2	--	--	5	13	1
July 15-21	--	--	--	--	--	--	--	--	4	4	+
July 22-28	1	--	--	--	--	--	--	--	2	3	+
July 29-Aug. 4	--	--	--	--	--	--	--	--	--	--	--
Aug. 5-11	--	--	--	--	--	--	--	--	--	--	$+$
Aug. 12-18	--	--	--	--	--	1	--	--	1	2	+
Aug. 19-25	--	--	--	--	--	--	--	--	--	--	--
Aug. 26-Sept 1	--	2	--	--	--	--	--	--	--	2	+
Sept. 2-8	--	--	--	--	--	--	--	--	--	--	--
Sept. 9-15	1	--	--	--	--	--	--	--	--	1	+
Sept. 16-22	1	--	--	--	--	--	--	--	--	1	+
Sept. 23-30	--	1	--	--	--	--	--	--	--	1	+
Totals	3,430	3,573	4,911	1,067	1,926	852	1,740	152	711	18,36	--

often those with overhanging logs. It appears that about this time the fish cease feeding or at least greatly diminish it, since the growth rate slows down. Movement of the fish into the holes and cessation of feeding and growth are associated with the period of maximum stream temperatures and minimum flow. It is of interest that silver salmon in hatchery ponds, in which the water volume is constant, also take a greatly diminished amount of food beginning about July. This indicates that stream temperatures may be the influencing factor in the cessation of feeding in late summer. In this connection it may be pointed out that rate of increase or relative increase in temperatures, as well as absolute temperatures reached, may determine the time and extent of cessation of feeding.

During the period of heavy rainfall and lowest temperatures, December through February, feeding continues to be light and growth negligible, according to measurements and scale reading. The stream is often at flood stage and turbid during this period. It is therefore difficult to make observations in the stream, but judging by counts of fish taken in the traps at the dam and such general observations as have been possible, it appears that the fish are not swept downstream ${ }^{16}$ and do not move downstream voluntarily in large numbers.

Following the period of maximum precipitation the fish start making extremely rapid growth (March). Rising temperatures at this time of year, coupled with an abundance of aquatic food organisms, likely influence the fish to resume heavy feeding. The resumption of feeding and growth is reflected in the rapid increase in average size of fish, and consequently in the structure of the scales.

Toward the end of March or sometime in April, approximately a year following their emergence from the gravel, the fish begin to migrate to the ocean.

Data to be presented in a subsequent section (page 101) indicate that there is an inverse correlation between average amount of growth made to time of migration and the number of migrants ($=$ total stream population of age 1 fish).

Seaward Migration of Juveniles

During the nine seasons of operation of the trap ${ }^{17}, 18,362$ juvenile silver salmon were checked on their downstream migration. The number taken during each weekly period in each season is shown in Table 15.

Table 16 shows the sizes of the juvenile silver salmon migrating downstream, grouped by 5 mm . intervals and two-week periods for the nine seasons combined. The same data for the individual seasons are given in Tables A-4 to A-12 of the Appendix. The length of these fish from tip of snout to fork of caudal fin was recorded in mm., measurement being made to the next highest mm. ${ }^{18}$

[^21]TABLE 16

Length in mm ．	$\begin{aligned} & I \\ & \stackrel{I}{\square} \end{aligned}$			$\begin{aligned} & \text { N} \\ & \underset{\sim}{1} \\ & \underset{\sim}{3} \end{aligned}$						$\begin{aligned} & \underset{子}{f} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		$\begin{aligned} & \hat{F} \\ & \dot{J} \\ & \stackrel{y}{n} \end{aligned}$		$\begin{aligned} & \frac{I}{1} \\ & \frac{\vdots}{4} \end{aligned}$					$\begin{aligned} & \text { N} \\ & \stackrel{1}{0} \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { 亲 } \\ & \underset{\sim}{C} \\ & 0 \\ & \vdots \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\vdots}{\infty} \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$	$\begin{aligned} & \text { tib } \\ & \text { 立 } \\ & \text { di } \\ & \text { ה } \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{i} \\ & i n \\ & \frac{b j}{4} \end{aligned}$		$\begin{aligned} & \stackrel{n}{\lambda} \\ & \stackrel{\rightharpoonup}{\ddot{0}} \end{aligned}$	¢ ¢ ¢ ¢	$\stackrel{\text { ²0 }}{6}$
	＊4	＊2		${ }^{*} 6$																＊1					＊1		＊14
21－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
30	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	－－	－－	－－	－－	－－	－－	－－	－－	1
35	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	5	1	－－	－－	2	－－	－－	－－	－－	－－	－－	－－	－－	8
40	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	5	10	2	1	－－	2	－－	－－	－－	－－	－－	－－	－－	20
45	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	－－	2	－－	1	－－	－－	－－	－－	－－	－－	－－	4
50	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	2	－－	1	5	1	－－		AGE＋		－－	9
55	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	3	2	1	6	5	1		AGE＋		－－	18
60	－－	－－	－－	1	－－	－－	－－	2	－－	－－	－－	－－	－－	－－	－－	－－	4	－－	4	5	5	－－	－－	－－	－－	－－	21
65	1	－－	－－	4	1	－－	2	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	1	4	3	1	2	－－	－－	1	21
70	－－	－－	－－	33	5	－－	4	1	－－	－－	－－	－－	－－	－－	－－	－－	－－	－	1	1	1	－－	－－	－－	－－	－－	46
75	－－	－－	－－	94	18	1	6	4	2	2	－－	－－	1	－－	－－	1	－－	－－	1		1	－－	－－	1	－－	－－	134
80	－－	－－	－－	125	26	1	8	2	2	2	1	2	3	1	2	－－	－－	－－	1	2	－－	－－	－－	－－	－－	－－	178
85	－－	－－	－－	98	20	－－	6	12	1	1	1	3	3	5	4	5	4	4	－－	－－	－－	－－	－－	1	－－	－－	168
90	－－	－－	－－	44	10	－－	3	5	3	3	－－	7	3	6	9	20	29	7	3	1	－－	－－	－－	－－	－－	1	154
95	－－	－－	－－	18	3	－－	2	5	－－	3	－－	6	3	5	43	105	114	43	9	－－	－－	－－	－－	－－	－－	－－	359
100	－－	－－	－－	3	1	－－	3	－－	－－	－－	－－	2	2	16	136	328	373	126	25	1	－－	－－	－－	－－	－－	－－	1，016
105	－－	－－	－－	1	2	－－	－－	－－	－－	1	1	－－	4	25	306	757	765	248	30	1	－－	－－	－－	－－	－－	－－	2，141
110	－－	－－	－－	－－	1	－－	－－	－－	－－	－－	1	－－	2	45	489	1，371	1，163	334	20	－－	－－	－－				－－	3，426
115	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	2	57	548	1，562	1，277	361	16	1	－－	－－		AGE 1		－－	3，824
120	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	6	87	453	1，372	1，190	255	10	－－	－－	－－	－－	－－	－－	－－	3，373
125	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	65	293	781	613	152	4	1	1	－－	－－	－－	－－	－－	1，910
130	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	20	131	388	298	54	6	－－	－－	－－	－－	－－	－－	－－	898
135	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	5	83	159	105	16	1	－－	－－	－－	－－	－－	－－	－－	369
140	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	5	30	51	20	4	1	－－	－－	－－	－－	－－	－－	－－	112
145	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	5	21	18	13	3	－－	－－	－－	－－	－－	－－	－－	－－	60
150	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	6	6	5	－－	－－	－－	－－	－－	－－	－－	－－	－－	18
155	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	4	3	－－	1	－－	－－	－－	－－	－－	－－	－－	9
160	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	1	1	1	1	－－	－－	－－	－－	－－	－－	－－	－－	5
165	－－	－－	$\stackrel{-}{-}$	$\stackrel{-}{+}$	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	－－	$\stackrel{--}{\dagger 39}$	－－	－－	－－	$\stackrel{-}{-1}$	－－	－－	－－	－－	$\begin{gathered} 1 \\ \dagger 45 \end{gathered}$
$\frac{\mathrm{nc}}{} \mathrm{Age}+$	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	10	12	2	12	6	13	26	16	2	2	2	1	2	106
\％Age 1	5	2	1	431	87	2	34	31	${ }^{8}$	12	4	20	31	349	2，556	6，930	5，973	1，647	126	5	1	1	－－	－－	－－	－－	18，256

[^22]Scale samples were taken from the great majority of the fish during the first six seasons of operation, i.e., 1933-34 through 1938-39. Although time permitted reading of only a small portion of them, it is evident from Table 16 that all of the fish fall into two groups, representing a very few fish of the season and a large number of age 1 fish. Examination of scale samples of the largest fish taken and also of fish taken at abnormal migration periods confirms this view. Of the 18,362 fish taken in the downstream trap, 18,256 were age 1 fish and only 106 age + fish.

All scales of adult silver salmon taken at Waddell Creek show the fish to have migrated to the ocean at age 1. From this and general observations we know that the juveniles go to sea in the same season in which they migrate downstream. It is therefore proper to speak of the downstream migration as a seaward migration. Whether the very few age + fish occurring in the migration remain in fresh water until the following season or go to sea and perish is not known, but their numbers are so small that it is a matter of little consequence. Therefore, this section of the paper will deal only with the age 1 migrants.

An examination of Table 16 reveals that there is a distinct increase in length of the fish from the time that they are taken during the fall and winter as atypical migrants to the time of the beginning of the spring migration. Scale reading shows that the great majority of the fish in the spring migration have started growth of the new season, even in the early part of the migration. This fact indicates that the difference in size between the abnormally early migrants and those of the regular spring migration represents growth taking place in the year class as a whole. The early start of the growing season at Waddell Creek holds good for the steelhead as well (pages 160-163). Mean lengths of age + and age 1 seaward migrant silver salmon by twoweek periods for each season are given in Tables A-13 and A-14 of the Appendix.

The question now arises to what extent the migration through the trap is representative of the total downstream migration (i.e., migration through the trap plus the uncounted migration over the dam and migration of fish produced below the dam), as regards time of migration.

FIGURE 11. Juvenile silver salmon and stream steelhead checked through the downstream trap at Waddell (Creek, by weekly periods, with mean daily stream temperature and flow, 1933-34 season.

Figure 12. Juvenile silver salmon and stream steelhead checked through the downstream trap at Waddell Creek, by weekly periods, with mean daily stream temperature and flow, 1934-35 season

FIGURE 13. Juvenile silver salmon and stream steelhead checked through the downstream trap at Waddell Creek, by weekly periods, with mean daily stream temperature and flow, 1935-36 season.

Figure 14. Juvenile silver salmon and stream steelhead checked through the downstream trap at Waddell Creek, by weekly periods, with

> mean daily stream temperature and flow, 1936-37 season.

FIGURE 15. Juvenile silver salmon and stream steelhead checked through the downstream trap at Waddell Creek, by weekly periods, with mean daily stream temperature and flow, 1937-38 season.

FIGURE 16. Juvenile silver salmon and stream steelhead checked through the downstream trap at Waddell Creek, by weekly periods, with mean daily stream temperature and flow, 1938-39 season.

FIGURE 18. Juvenile silver salmon and stream steelhead checked through the downstream trap at Waddell Creek, by weekly periods, with mean daily stream temperature and flow, 1940-41 season.

Figure 20. Waddell Creek in flood, about one-half mile above the dam. Photograph by Paul R. Needham.
Nearly all of the downstream migrants passing through the trap were taken during April and May, when there was generally about three times as much water flowing over the dam as through the trap (Figures 11-19). Thus one would expect that about three-quarters of the downstream migrants went over the dam (and escaped marking). The numbers of unmarked and marked returning adults indicate that in normal seasons somewhat more than two-thirds of the downstream migrants went over the dam.

There is no way of knowing if many fish migrated downstream over the dam during the period of heavy rainfall (December through March) when the stream was often at flood stage and turbid (Figure 20), but general observations at Waddell and Scott creeks and data obtained from other streams strongly indicate that there is little downstream migration of silver salmon during this period. Part-season counts made at the California Department of Fish and Game's Benbow Dam Station show that the migration there takes place at approximately the same time of year as in Waddell Creek. Studies conducted in 1935 by Taft in a diversion ditch from Beaver Creek, a tributary of the Klamath River 160 miles above the mouth, indicate that a downstream migration of age 1 silver salmon also takes place there during approximately the same period. Catches made in a trap at the head of Naha Bay, Revillagigedo Island, southeastern Alaska, in 1903 and 1904 (Chamberlain, 1907) indicated a heavy migration of silver salmon yearlings into salt water in May. ${ }^{19}$

[^23]Probably the general period of migration is shown quite accurately in Figures 11-19, but it is to be expected that proportionately larger numbers than are shown on the graphs migrate downstream in the early stages of the migration, when more water is passing over the dam. As the flow decreases and the proportion of water passing through the trap increases, probably the proportion of fish passing through the trap also increases.

Variations from the basic pattern as regards time of migration are infrequent. The great majority of juvenile silver salmon migrate downstream within a very limited portion of the season, over 95 percent coming during the nine-week period April 8-June 9. In all seasons the peak of the migration is reached not earlier than the week of April 22-28 and not later than the week of May 20-26.

Factors Influencing the Time of Migration and Size at Migration

In discussing possible factors influencing the time of migration and the size of migrants it will simplify our analysis to assume that we have a homogeneous population of potential downstream migrants, i.e., that racial characteristics or inherent factors such as inherent growth rate are not playing a part. In fact, there is no evidence to indicate that different "races" of silver salmon are present in Waddell Creek.

Environmental factors which may influence both the time of migration and the size of the fish are (a) flow (relative or absolute), (b) temperature, (c) chemical factors (e.g., oxygen), (d) light, and (e) food.

Time of migration may also be influenced by size of fish, while the size of the fish, conversely, may depend upon the time of migration. Most of the environmental factors are related to both time of migration and size of fish and also to each other.

Any of the factors mentioned may be an influencing factor (the one which as such impels the fish to migrate) or simply an incidental factor, correlated with the time of migration but not influencing it. For example, temperature and flow are correlated with each other, but it may be that only one is an influencing factor and the other merely an incidental factor. Actually, it is likely that more than one factor exercises an influence during the migration period. One factor may be governing or dominating at one time, and another at another time.

Also, it should be noted that the factors mentioned are not of equal magnitude in all portions of the stream at the same time. For example, in Waddell Creek and in other California streams in general, proceeding upstream we find progressively lower temperatures and a progressively smaller but more constant flow.

In regard to size of fish and the factors influencing it, the discussion will deal with the size distribution within a season, rather than with the size fluctuations occurring from season to season in comparable fish.

From Table 15 we see that the migration as a whole occurs later or earlier in some seasons than in others. An examination of Figures 11-19 reveals that the "early" seasons (notably 1933-34 and 1938-39) are those with generally low stream levels during the migration period for
the same dates on which in late seasons (notably 1934-35, 1937-38, 193940. and 1940-41) stream levels were generally high. The effects of the absolute stream levels on the time of migration are probably modified by rate of drop in stream level, sudden spring freshets, etc. It may be noted that there is a similar association between spring water levels and time of migration among the steelhead (Figures 11-19).

It will also be seen from an examination of Table 16 that there is a gradual decrease in the average size of the age 1 fish migrating in the spring. (The same phenomenon occurs among the steelhead of a given age class; see page 179.) What actually happens is not known, but the same result could be achieved by (1) the larger fish from all portions of the stream migrating first, (2) the fish from the lower portions of the stream (on the whole, larger than the fish from the upper portions, because of more favorable growing conditions) migrating first, or (3) the fish from all portions of the stream starting migration at the same time. For the Atlantic Salmon (Salmo salar) British investigators (e.g., Went, 1942) believe that what they call the law of "growth for age" at migration is generally operative: that the quick growers migrate first, but that the later migrants are always a little bigger when they go to sea than the quicker growers which migrated earlier. It is not evident that such a law operates in the case of the Waddell Creek silver salmon (or steelhead), since the later migrants are usually smaller than the earlier migrants.

It should also be noted that speed of migration may influence the size composition of migrants past a fixed point. For example, if fish from the same point in the upper reaches of a stream start their migration at different times, as they reach a certain size, but those which migrate later travel at a greater speed than those migrating earlier, the later migrants will be smaller when they reach a fixed point than were the earlier migrants, providing that the same growth rate has prevailed during the time. No evidence is at hand to indicate that speed of migration increases within a season in the case of juvenile salmon, but various authors have pointed out that in large rivers adult salmonids which enter late in the season ascend at a faster rate than do those entering early. Speed probably plays a minor role in Waddell Creek and other short streams, but may be of importance in the longer ones.

In some seasons at Waddell Creek a gradual increase in average size of downstream migrants precedes the typical gradual decrease, which has already been discussed. The initial increase in size is probably due to a rapid growth rate outbalancing the conditions which create a decrease.

The various possible factors influencing time of migration and size at migration have been discussed at length in order to emphasize the point that even when the downstream migration takes place in a small stream and involves a single age class, various fluctuations may be expected. Although supporting data are incomplete, it may now be useful to develop the following hypothetical picture of the downstream migration as regards time of migration and size of fish, and to use this picture until such time as portions of it may be proved erroneous.

The fish are influenced in starting their downstream migration by both size and environmental factors. Even if an individual has reached
the size at which the group migration begins, that individual tends not to migrate downstream unless the proper environmental factors have also been reached. Conversely, the fish as a group tend not to start their migration, even if the proper environmental factors have been reached, unless the proper size has also been reached. Now, as the approximate proper size and general, more or less fixed environmental conditions (probably principally light) are reached the fish start migrating downstream, with the migration somewhat retarded or advanced by local, fluctuating environmental conditions, principally flow and temperatures. Lower flow and higher temperatures advance the time of migration. The larger fish from all portions of the stream start migrating first. If size is an influencing factor, this happens because these fish have reached the approximate "migration size." If environmental factors dominate, this happens because the larger fish in each pool are the first to be affected by the diminishing volume. Also, proportionately more fish from the lower portions of the stream, with the more favorable growing conditions, have reached the approximate migration size, and so are more heavily represented in the early part of the migration than those from the upper portions. Decreasing average size at a fixed point, such as the dam, results both because the larger fish from all portions of the stream migrate first and because the fish from the lower portions of the stream migrate first. Fluctuations in growing conditions both before and after the start of migration further vary the pattern of the size composition of the migrants through the period of migration, in proportion to their magnitude. Despite variations caused by seasonal conditions, within any season 95 percent of the migrants passed the dam during the nine-week period April 8 to June 9 at age 1 and at an average size of from 103.11 to 116.61 mm .

The significance of the time of migration in regard to management will be discussed on pages 266-267.

Characteristics of the Migration

The migrating fish move downstream in schools. The size limits of these schools have not been determined, but those seen were composed of some 10 to 50 individuals. It is possible that their size is influenced by the size of the stream and the total population of migrants. It is likely that individuals of the same general size school together.

Quantitative observations were not made in regard to diurnal distribution of the migration. General observations indicate that most fish move downstream in the night or twilight, although some may move down during the day.

In approaching irregularities in the stream, such as falls or barriers, that break up the regular pattern of flow, the schools "play around," often spurting upstream from the falls several times before being carried over them as a group.

Sufficient numbers of downstream migrants have not been sexed to determine quantitatively the representation of sexes, but the sex ratio among the returning adults indicates that approximately a $1: 1$ sex ratio exists among the downstream migrants.

General color notes were taken for a number of the 1933-34 season migrants. They indicate that the parr marks were prominent in the
earliest migrants of the spring migration (March). As the season progressed, the fish became more "silvery," with parr marks barely visible. Forty-three fish taken April 4-7, inclusive, ranging in length from 102 to 128 mm ., were recorded as being "silvery but with parr marks visible".

Sea Life

The extremely rapid growth made in the sea, as compared with that made in fresh water, is well known and has been directly observed at Waddell Creek by measurements of juveniles descending to the sea and of fish of the same year classes returning to spawn in the following and in the second seasons. Since the seaward migration consists almost entirely of one age class and since the periods covered by both the seaward and spawning migrations are fairly compact, each being concentrated in two months, it is possible to obtain an accurate picture of the growth made (Figure 21).

Little is known regarding the movements of silver salmon in the sea. Only a very few marked Waddell Creek fish have been reported caught at sea, by either commercial fishermen or sports anglers. Marked salmon from Waddell Creek have been caught off Fort Bragg, 200 miles to the north (Taft, 1937). A single marked salmon from Waddell Creek was taken by a sports angler at the mouth of the San Lorenzo River, 20 miles to the south. It is evident from these records that all fish do not simply remain near the mouth of the stream from which

Figure 21. Growth of Waddell Creek silver salmon.
they migrated, but may travel considerable distances. To what extent fish as adults return to that stream or stray to other streams will be discussed in the following section of this paper.

Although it has been seen that silver salmon travel considerable distances along the coast, this does not mean that they travel equal distances directly away from the coast. Along the California coast the continental shelf extends approximately 100 miles from the shoreline, and there is some evidence to indicate that all of the anadromous salmonids remain within its limits.

Probably the young salmon, on first migrating to the sea, remain fairly close to the shoreline. Very little is known regarding how soon and to what extent they begin to spread out, but after a few months they begin to be taken at various points at sea, sometimes in large numbers away from the mouth of any stream possessing a run of consequence.

Considerable evidence gathered by various agencies indicates that the migrations of the various Pacific salmons take place in the form of mass movements. As one example, let us consider Monterey Bay, where for many years there has existed a considerable fishery for both king salmon and silver salmon. At times the ratio between these species changes rapidly and in orderly progression within a limited area, indicating the influx of one species and the departure of the other.

Also on the basis of the similar pattern of ocean growth reflected in the scales of king salmon marked and liberated in the Klamath River as a single lot but taken at widely scattered points in the ocean at different times, Snyder (1924) inferred that "king salmon after entering the ocean may remain together in the same locality or migrate in the same school for one or more years, possibly throughout life." It is not improbable that silver salmon exhibit similar behavior.

Little is known of the extent to which silver salmon from different streams mix while at sea. Marked king salmon from both the Klamath and the Sacramento river systems, hundreds of miles apart, have been caught off Fort Bragg, and also in Monterey Bay (Snyder 1921b, 1923, and 1924). It is fairly certain that masses of silver salmon from different streams visit some of the same areas at sea.

Basing his statements largely on collections of the albatross in Alaskan waters in various years, Chamberlain (1907) has the following to say regarding silver salmon upon entrance into salt water:
"From the above data it is seen that the cohos remain for some months about the shores near the streams whence they issue. They may be found about the mouths of the streams in brackish water perhaps soon after their descent of the stream. It may be they remain about the streams for a time to accustom themselves to the salt water, but this is not evident in case of the fry. The sea-run examples are readily distinguished by the silvery appearance and usually by the greater depth of body which follows habitual distension of the stomach. In some cases, while near in shore, insects appear to continue a staple article of diet, as in the fresh water. The cohos feed less on Crustacea than the sockeyes, perhaps inhabiting slighter depths; correlated to this is the abundance of small fishes found in their stomachs-sticklebacks in brackish water and herring and sand launces in more open regions.
"From the catches at Naha and Yes bays it would seem that the cohos continue to school after reaching salt water. The results of the seine hauls indicate that the different species of salmon school together, or at least in the same waters."

Regarding the approach of silver salmon to land, on their way to the spawning grounds, Chamberlain (1907) states:
"The presence of salmon can be noted only by their habit of leaping from the water as they approach the land. It is often possible by this means not only to recognize the presence of a school, but also to distinguish the species. In jumping, salmon do not leave the water with their ventral surface downward, as do flying-fishes. They always jump sidewise with one side at an acute angle to the water surface. . . . Cohos usually leave the water entirely, falling back on the caudal peduncle held rigid with the fin directed upward. The tail may then drag through the water a short distance till the fish falls on its side and disappears."

Homing and Straying

Considerable discussion exists in the literature regarding "homing" among anadromous members of the salmon family-its existence, significance, and causes. It is the opinion of the present writers that evidence obtained through marking experiments carried out by scientific workers in this and other countries has established as a fact the existence of such homing. Briefly, young salmonids which descend from fresh water to the sea return to their "parent stream" for spawning purposes. (Young fish artificially hatched and liberated return to the stream in which they were liberated, not to the stream to which their parents returned or in which they were hatched.) For a review of the subject of homing in trout and salmon and the important literature concerning it, the reader is referred to a paper by Shapovalov (1941b).

Taft and Shapovalov (1938) presented preliminary data for the extent of homing and straying among silver salmon between Waddell Creek and Scott Creek, $43 / 4$ miles apart. Table 17 shows the complete figures for the six seasons of marking (1933-34 through 1938-39) and the seven seasons for which returns were possible (1934-35 through 1940-41). ${ }^{20}$

Fish listed as returning include only those taken at the traps in each stream, to obtain as nearly comparable a basis as possible. Males and females have been grouped together in the table, since no significant sexual differentiation has been revealed in the straying fish as compared with those of the same year class returning to their parent stream. It should be kept in mind that the fish marked and liberated in Scott Creek were hatchery-reared.

From Table 17 it is seen that during the entire period 314^{21} (85.1 percent) of the fish marked at Waddell Creek returned there and 55 (14.9 percent) strayed to Scott Creek. Of those marked at Scott Creek, 41 (73.2 percent) returned there and 15 (26.8 percent) strayed to Waddell Creek. The percentage of straying is considerably larger than

[^24]92 FISH BULLETIN NO. 98

TABLE 17
Waddell and Scott Creeks: Homing and Straying of Marked Silver Salmon

Place and		Returned to Waddell Creek							Returned to Scott Creek						
		1934-35	1935-36	1936-37	1937-38	1938-39	1939-40	1940-41	1934-35	1935-36	1936-37	1937-38	1938-39	1939-40	1940-41
Waddell Creek															
1933-34	Ad-RP	7	20 (83\%)						Poor	4 (17\%)					
1934-35	Ad-LP		15 (79\%)	96(78\%)					record	4 (21\%)	27 (22\%)				
1935-36	Both P			0	26 (74\%)				during		0	9 (26\%)			
1936-37	Ad-RP				9 (90\%)	48 (86\%)			1934-35			1 (10\%)	8 (14\%)		
1937-38	Ad-LP					10 (91\%)	90 (99\%)						1 (9\%)	1 (1\%)	
1938-39															
Scott Creek															
1933-34															
1934-35															
1935-36									Poor						
1936-37	Both V					0	0		Record				0	1 (100\%)	
do	Both P					0	0		During				0	0	
do	Ad-LV					0	3 (100\%)	0	1934-35				0	0	$1 \dagger$ (100\%)
1937-38	Ad-RV					0	1(12\%)		season				4 (100\%)	7 (88\%)	
1938-39	Ad-Both V						6(32\%)	5*(25\%)						13 (68\%)	15 (75\%)

* One additional doubtful return, marked Both V only.
\dagger Possibly the RV fin was missed in marking and the fish was from the Scott Creek lot marked Ad-Both V in 1938-39.
that among steelhead, as will be seen from the comparable section for the latter species (page 197). Whether or not this characteristic prevails throughout the range of the species is not known.

A further inspection of Table 17 indicates that there is a fairly close correspondence as to the rate of straying among the fish of a given brood season (and mark) returning during the course of two seasons, i.e., as age $1 / 1$ males (grilse) in the first season following marking and as age $1 / 2$ males and females in the second season following marking. It is also seen that this correspondence is closer than that between age $1 / 1$ males and $1 / 2$ males and females of two successive brood seasons and markings returning in the same season. Thus, it appears that the rate of straying from a given stream is fairly constant for a given year class, but may vary considerably from year class to year class, and consequently from the total run entering in one season to the total run entering in another season.

From the above data and discussion it appears likely that the rate of straying from Waddell Creek to Scott Creek and vice versa may vary to some extent with each year class. If this is the case the various calculated survivals which are based partly on unmarked fish of unknown origin are affected. In the section on "Survival" (page 97) it will be seen that the year class at Waddell Creek which resulted in the most straying to Scott Creek also resulted in the lowest survival at Waddell Creek (brood season 193435), while the two year classes that resulted in the least straying to Scott Creek also resulted in the two highest survivals at Waddell Creek (brood seasons 1935-36 and 1936-37). However, since data on straying of marked fish both from Waddell Creek to Scott Creek and from Scott Creek to Waddell Creek are not available for the whole period of the experiments, it was decided that for the purpose of the present studies it was most satisfactory to assume that the rate of straying between the two streams was the same

Even if the rate of straying between the two streams is the same, differences in the numbers of strays contributed by each stream would result from different numbers of returning adults of a given year class produced by each stream. An attempt at calculation of the size and composition of the total runs into Scott Creek in different seasons was made, but the data seemed inadequate to the extent that calculations based on them might result in greater errors than calculations based on the assumption of equal straying.

It is not considered probable that streams other than Scott Creek have contributed sufficient strays to alter the survival figures appreciably. The San Lorenzo River, 13.5 miles to the south of Scott Creek, possesses a run of silver salmon, but no marked Waddell or Scott Creek fish have been taken at the egg collecting station on that stream, ${ }^{22}$ shown in Figure 3. Neither have any marked silver salmon from Waddell or Scott creeks been taken by the numerous San Lorenzo River anglers, except for one female of the 1936-37 year class (marked Ad-LP at Waddell Creek) taken "at the mouth" on December 1, 1939. Since it is not known whether this fish was taken inside the mouth of the San Lorenzo River or outside the mouth, it cannot be treated as a stray.

[^25]Other marked Waddell silver salmon have been reported caught by anglers in the surf or offshore along the Santa Cruz County coast, usually in November. For example, a fish of the 1933-34 year class (marked Ad-LP at Waddell Creek) was taken in the surf at the mouth of Soquel Creek in November, 1936, and "quite a few" were reported being caught in that vicinity at the same time. Without further evidence, these fish cannot be treated as strays.

Between Scott Creek and the San Lorenzo River are several small streams, namely, San Vicente, Liddell, Respini, Laguna, Coja, Baldwin, and Medler creeks; these streams support few, if any, salmon. No marked fish have been reported from any of these streams, although no facilities to secure returns were in operation and any reports would have resulted from chance catches made by anglers.

To the north of Waddell are three small streams, Finny, Año Nuevo, and Whitehouse creeks, which probably do not have salmon runs. Gazos Creek, $63 / 4$ miles north of Waddell, and Pescadero Creek, 14.5 miles north, both have salmon runs, but again, no marked Waddell fish have been reported from these two localities, where no special facilities to secure returns were in operation.

In the preceding discussion we saw that apparently the rate of straying is fairly constant for fish returning in different seasons but resulting from a single year class. From this it appears that by the time adults first start returning (as $1 / 1$ males) the amount of straying that will result has already been determined and is more dependent upon conditions existing up to that time than on conditions existing at the time of entry into the streams for spawning. Until contradictory evidence is presented, it appears satisfactory to set up the hypothesis that conditions existing at the time of the migration to the ocean determine the amount of straying that will take place one and two seasons later. What these conditions are, it has not been found possible to state definitely on the basis of the data which are available and have been analyzed, but it appears worthwhile to call attention to certain possibilities.
(1) There is a tendency toward a positive correlation between size of downstream migration and rate of straying. (2) There is a tendency toward a negative correlation between average size of fish at downstream migration and rate of straying. In other words, the greater the number of downstream migrants and the smaller the size of downstream migrants, the greater is the amount of straying. Possible explanations for these correlations may be advanced. One is that an unusually large number of downstream migrants attracts predators out of proportion to the average, with the result that the fish entering the ocean are rapidly scattered or in some other way affected so they do not return to their home stream in average numbers. Another is that unfavorable growing conditions (resulting in small size of fish) in some way affect the fish so they do not return to their home stream in average numbers. It must be emphasized that the significance of these tendencies has not been established; it would be of interest and profitable to carry out marking experiments planned to test the indicated tendencies.

It was pointed out in the previous section that upon descending to the ocean the young fish do not simply remain near the mouth of the
stream of liberation, but may wander great distances. In answer to the view that such fish are "lost" and will not return to the parent stream, and that only fish which remain under the influence of water from the parent stream will return to it, it is pointed out that the mouths of most California silver salmon streams are closed by sand bars during the summer months and that in some cases the lower courses of the streams are entirely dry, so that no fresh water reaches the ocean.

One other phase of homing remains to be considered, and that is the extent to which fish returning to the parent stream return to the same portion of the stream. For Waddell Creek, an attempt to determine this matter was made on the basis of the distribution of marked and unmarked adults within the stream. The problem was made difficult by the fact that only fish which had completed spawning could be used with certainty, with the result that the numbers available for comparison in any one season were too small to obtain conclusive evidence. In view of this and the fact that some spent marked fish were found below the dam, for the purposes of the present studies the proportion of marked to unmarked fish has been considered to be the same above and below the dam.

Survival

Since nearly all of the silver salmon migrate downstream at age 1 and go to sea in the same season, and since they spawn only once, it is relatively simple to calculate survival to maturity at Waddell Creek either from eggs produced (over-all survival) or from downstream migration (secondary survival).

Over-all survival, without a breakdown into survival at intervening stages, is shown in Table 18. It is seen that the survival varies from 0.02 to 0.30 percent for the six seasons for which complete returns were possible, with a mean of 0.13 percent. ${ }^{23}$

TABLE 18
Waddell Creek, Silver Salmon: Over-all Survival

Season	Spawning female	Total egg production	Returned as adults				Percentage survival
			$1 / 1 \delta^{\star}$	1/2 ${ }^{\text {o }}$	1/2 +	Total	
1933-34	222	560,690	85	153	157	395	0.07
1934-35	309	725,014	4	70	37	111	0.02
1935-36	59	141,233	34	40	56	130	0.09
1936-37	157	377,352	24	105	150	279	0.07
1937-38	37	91,728	62	102	115	279	0.30
1938-39	56	130,074	71	124	129	324	0.25
Totals	840	2,026,091	280	594	644	1,518	0.07
Mean *							0.13

* Mean of seasonal percentages.

23
In Table 18 and subsequent tables dealing with survival of both silver salmon and steelhead, calculations have been made of (1) the total percentage of survival, and (2) the mean of seasonal percentages of survivals. The former is based on total numbers for all seasons, with the survivors under discussion considered as a percentage of the fish or eggs from which they originated. In each instance only the mean percentage of survival is noted in the text. This figure is probably the more significant one, the assumption being that the seasonal percentage survivals are representative for the individual seasons.

One of the striking features to be noted in Table 18 is the inverse correlation between the total egg production and the survival percentage. The fact that the same phenomenon is encountered for steelhead (pages 204205 and Table 58) indicates strongly that the correlation is not due to chance but is real.

In Table 18, the numbers of spawning females are the estimated total numbers in Waddell Creek in each season, including those checked upstream through the trap, the dam jumpers, and those spawning below the dam. It was necessary to include all three groups for the reason that in calculating survival from eggs deposited it was impossible to recognize the fish produced by one group from those produced by another group. Survival may also be calculated on the basis of marked fish, and this is done on pages $97-$ 101, but such survival dates from time of downstream migration (i.e., time of marking) and not from time of egg production.

In calculating the number of eggs deposited by each spawning run, the number of eggs produced by each fish was calculated on the basis of the egg number-fish length relationship previously established (pages 59-62) and shown in Figure 10. The lengths of all fish checked upstream were, of course, known. Egg production estimates for fish jumping upstream over the dam and for those spawning below the dam were based on fish lengths when known. For the remaining fish they were based on the average egg production for fish checked upstream through the trap. This is shown in Table 19.

For purposes of estimating survival, fish straying from other streams to Waddell Creek were included, i.e., it was assumed that the straying of surviving fish to and from Waddell Creek had been equal.

TABLE 19

Season	Females checked through upstream trap		Females jumped over dam		Total egg production above dam	Females spawning below dam		Total Waddell Creek egg production
	Number	Egg production	Number	Egg production		Number	Egg production	
1933-34	177	449,675	25	61,675	511,350	20	49,340	560,690
1934-35	287	675,492	2	4,502	679,994	20	45,020	725,014
1935-36	39	94,053	0	--	94,053	20	47,180	141,233
1936-37	107	259,350	0	--	259,350	50	118,002	377,352
1937-38	22	51,243	0	--	51,243	15	40,485	91,728
1938-39	40	95,271	0	--	95,271	16	34,803	130,074
1939-40	126	334,353	0	--	334,353	24	61,968	396,321
1940-41	105	236,406	0	--	236,406	10	21,480	257,886
1941-42	77	147,945	2	3,714	151,659	50	92,850	244,509
Total	980	2,343,788	29	69,891	2,413,679	225	511,128	2,924,807
Seasonal means	109	260,421	3	7,766	268,187	25	56,792	324,979

The previous discussion of survival and the accompanying tables have included both marked and unmarked fish. Now considering survival among marked fish, we are able to increase our insight into the processes that take place, since possible errors resulting from straying are eliminated.

Survival of Marked Waddell Creek Silver Salmon

Table 20 shows the number of downstream juveniles marked (as age 1 fish) in each season, and the number of these marked fish that returned to the trap as adults. Marked Scott Creek strays, fish marked in Waddell Creek in 1931-32, and all unmarked fish have been excluded, since none of them is comparable to those marked on a downstream migration.

From Table 20 it is seen that the percentage of survival from time of downstream migration varies from 0.6 to 5.4 , with a mean of 2.3. It must be noted that these figures are based only on marked adults returning to the trap, and that some additional marked adults returned to the stream but spawned below the dam. It is of interest that there is a tendency toward an inverse correlation between the number marked and the percentage of returning adults, with the lowest survival rate resulting from the greatest number marked and the highest survival rate resulting from the smallest number marked. The significance of this phenomenon will be discussed later in this section.

A comparison of Table 20 with Table 76 for the steelhead indicates basic similarities as regards survival. The average return to the trap from the number marked at the same age (1) is much the same for both species (2.3 percent for silver salmon and 2.4 percent for steelhead). There is also a rough correlation between the season of marking and the survival, when salmon and steelhead of the same age (1) are compared. However, survival does not appear to be correlated with the mark given, as such. The same mark used on silver salmon in different seasons (Ad-RP) resulted in both a survival much above average and one much below average.

In the preceding pages we have determined the survivals from eggs deposited to returning adults for the stream as a whole and from downstream migrants to adults returning to the trap for marked fish. In order also to determine the survival from eggs deposited to downstream migrants (primary survival) it is necessary to know the total number of downstream migrants, including those that went over the dam uncounted and those that were produced below the dam. The total number of downstream migrants was calculated by applying the ratio of marked to unmarked fish among the adults of a given brood year (returning during the course of two seasons) to the marked downstream migrants of the same brood year. ${ }^{24}$ The total downstream migrants were then expressed as a percentage of the eggs deposited for each brood year.

Table 21 shows the ratio of marked to unmarked adults among the age $1 / 1$ and $1 / 2$ fish, respectively, resulting from each brood season and the division according to this ratio of the fish of the same life history categories estimated to have spawned below the dam.

24 "Unmarked" fish include marked strays from Scott Creek.

TABLE 20
Waddell Creek, Silver Salmon: Secondary Survival of Marked Fish

Brood season	$\begin{aligned} & \text { Season } \\ & \text { of } \\ & \text { marking } \end{aligned}$	Mark	Number of juveniles marked	Marked fish returning to trap as adults									Per-centage survival
				First season			Second season			Total			
				ठ	ㅇ	\% + +	δ	¢	$0^{2}+$ +	δ	ㅇ	$\delta^{1}+$ ¢	
1932-33	1933-34	Ad-RP	3,202	7	--	7	11	9	20	18	9	27	0.8
1933-34	1934-35	Ad-LP	3,481	15	--	15	52	44	96	67	44	111	3.2
1934-35	1935-36	Both P	4,392	0	--	0	20	6	26	20	6	26	0.6
1935-36	1936-37	Ad-RP	1,059	9	--	9	19	29	48	28	29	57	5.4
1936-37	1937-38	Ad-LP	1,895	10	--	10	40	50	90	50	50	100	5.3
Totals			14,029	41	--	41	142	138	280	183	138	321	3.1

TABLE 21
Waddell Creek, Silver Salmon: Entire Spawning Runs From Five Brood Seasons, Ratio of Marked to Unmarked Fish *

Brood season	1/1 ${ }^{\text {\% }}$						1/2 ${ }^{1}+$ +						All returning adults		
	Checked through upstream trap			Run below dam			Checked through upstream trap			Run below dam					
	Marked	$\begin{gathered} \text { Un- } \\ \text { marked } \end{gathered}$	Ratio	Total	Marked	$\begin{gathered} \text { Un- } \\ \text { marked } \end{gathered}$	Marked	Unmarked	Ratio	Total	Marked	$\begin{gathered} \text { Un- } \\ \text { marked } \end{gathered}$	Marked	$\begin{aligned} & \text { Un- } \\ & \text { marked } \end{aligned}$	Total
1932-33	7	14	33.3:66.7	1	0	1	20	52	27.8:72.2	37	10	27	37	94	131
1933-34	15	41	26.8:73.2	29	8	21	96	115	45.5:54.5	99	45	54	164	231	395
1934-35	0	3	0:3	1	0	1	26	38	40.6:59.4	43	17	26	43	68	111
1935-36	9	11	45.0:55.0	14	6	8	48	21	69.6:30.4	27	19	8	82	48	130
1936-37	10	7	58.8:41.2	7	4	3	90	124	42.1: 57.9	41	17	24	121	158	279
Totals	41	76	--------	52	18	34	280	350	---------	247	108	139	447	599	1,046

* No salmon from these five brood seasons jumped over the dam.

TABLE 22

Waddell Creek, Silver Salmon: Primary, Secondary, and Over-all Survival

		Returning adults				Downstream migrants		Percentage survival		
Brood season	Total egg production	Total	Marked	Unmarked		Marked	Estimated total	$\begin{gathered} \text { Primary } \\ \text { (Eggs to down- } \\ \text { stream } \\ \text { migrants) } \end{gathered}$	Secondary (Downstream migrants to adults)	Over-all (Eggs to adults)
1933-34	560,690	395	164	231	1:1.41	3,481	8,389	1.50	4.71	0.07
1934-35	725,014	111	43	68	1:1.58	4,392	11,331	1.56	0.98	0.02
1935-36	141,233	130	82	48	1:0.59	1,059	1,684	1.19	7.72	0.09
1936-37	377,352	279	121	158	1:1.31	1,895	4,377	1.16	6.37	0.07
Totals	1,804,289	915	410	505	1:1.23	10,827	25,781	1.43	3.55	0.05
Seasonal means	451,072	229	103	126	1:1.22	2,707	6,445	1.35	4.95	0.06

From Table 22 it is seen that for the four brood seasons (1933-34 through 1936-37) for which figures are possible the percentage of survival from eggs deposited to downstream migrants is fairly constant, varying from 1.16 to 1.56 , with a mean of 1.35 . These figures indicate that within the limits of conditions encountered during the above four seasons the number of downstream migrants is approximately proportional to the number of eggs deposited.

From Table 22 it is also seen that the estimated percentage of survival from downstream migrants to returning adults for the stream as a whole varied markedly, from 0.98 to 7.72 , with a mean of 4.95 . It will be noted that there is an inverse correlation between the number of downstream migrants and the percentage of return as adults. If this inverse correlation is generally representative and not due to chance conditions occurring during the seasons under discussion, it appears that the most plausible explanation for the phenomenon is that the greater the concentration of fish, the more likely are predators to be attracted to them, and the proportionately greater are the inroads made on the fish. The tendency toward an inverse correlation between the number of fish marked and number surviving (page 97) probably resulted only because the number of fish marked also was roughly proportional to the number of fish in the total downstream migration.

From data presented in the section on "Homing and Straying" (page 93) it was seen that it appears likely that the rate of straying from Waddell Creek to Scott Creek and vice versa may vary to some extent with each year class. If this is the case the various calculated survivals which are based partly on unmarked fish of unknown origin are affected. The year class at Waddell Creek which resulted in the most straying to Scott Creek also resulted in the lowest survival at Waddell Creek (brood season 1934-35), while the two year classes which resulted in the least straying to Scott Creek also resulted in the two highest survivals at Waddell Creek (brood seasons 1935-36 and 1936-37). Calculated survivals are probably also affected to some extent by differences in numbers of strays contributed by each stream resulting from different numbers of returning adults of a given year class produced by each stream, irrespective of rate of straying.

One other interesting fact may be derived from Table 22. A comparison of the total numbers of downstream migrants with the average size of downstream migrants (Appendix, Table A-14) indicates that an inverse correlation exists between the two.

Pathology

Diseases

As a rule disease is not prevalent among trout and salmon in their natural environment. Occasionally epidemics occur, often in the presence of unusual environmental conditions, such as abnormally high water temperatures. Under such conditions one or more disease organisms, most frequently protozoa or bacteria, which probably have been present in small numbers, may flourish and cause considerable mortality.

High temperatures and adverse chemical conditions may in themselves cause loss of vitality and mortality, but strictly speaking are not
diseases, and generally speaking do not occur in the natural environment of trout and salmon. Such conditions are more apt to occur in impounded and polluted waters.

In hatcheries and rearing ponds, in which the fish are concentrated to a far greater extent than in their natural environment, diseases are much more common.

At Waddell Creek there has been no known loss of silver salmon because of high temperatures or lack of oxygen, and very little evidence of disease causing mortality.

A disease believed to be furunculosis caused some mortality among unspawned steelhead at Waddell Creek during the course of the experiments (see pages 239-241). However, practically all of the silver salmon females are believed to have succeeded in spawning more or less completely before dying, so if this disease has been present among the adults it has not materially affected deposition of eggs.

The extent of losses from this disease among the juvenile salmon is not known exactly, but observations on the downstream migrants in the tanks have revealed very little evidence of this disease, and observations on the stream have not shown large numbers dead at any time.

In 1933-34 abnormally large numbers of dead fish, including juvenile silver salmon, adult and stream steelhead, sculpins, and sticklebacks, were found in the trap and in the stream both above and below the dam. Some of the salmonids had red spots on the body, particularly at the bases of the fins, and were believed to be infected with furunculosis. However, many of the salmonids and nearly all of the sculpins and sticklebacks found dead showed no external signs of disease or injury, so it is very difficult to assess even the proportionate mortality from different causes. There is also no way of determining the total number that died, since we do not know what percentage of the fish that died in the stream was found. It is of interest that during the same season abnormally large numbers of other animals, mostly rodents (rats, gophers, etc.) were found dead in the streams. The relation to the dead fish is not known. In any case, however, it seems evident that some condition in the stream, either a disease organism or organisms or some condition of the water, caused abnormal mortality among the juvenile silver salmon and other fishes.

During the 1933-34 season the trap itself was apparently a source of mortality. In that season 171 dead juvenile silver salmon were removed from the trap and an additional 67 dead marked juveniles were found below the dam. Most of these were probably killed or injured by the buffeting they received in the trap. Yearling silver salmon were found to be helpless in turbulent water in which steelhead of the same size could easily maintain themselves. When this was discovered the downstream trap was modified to reduce turbulence. In the succeeding eight years only 60 juvenile silver salmon were found dead in the trap.

Fungus (Saprolegnia parasitica) is present in all or practically all trout and salmon streams; it is a secondary infection which gains a foothold on breaks in the skin caused by mechanical injury or disease. It is very common in the form of white patches on spawning and spent adult Pacific salmon. Under normal conditions it does not cause much damage to salmonids in their natural environment.

As a rule many of the downstream migrant yearlings possess from a few to many cysts under the skin on the sides of the body, but otherwise appear to be in good condition. These cysts, which appear in the form of black spots, are formed by encysted strigeid larvae (Trematoda).

Freshwater copepods are found attached to some of the downstream migrants, but apparently cause no serious damage. Apparently these copepods are specific, being found much less frequently on the salmon than on the steelhead migrating downstream at the same time. The species found in Waddell Creek has been identified as Salmincola californiensis Dana by Charles B. Wilson. In the juvenile fish it is found most commonly attached to the bases of the fins, especially the pectorals and dorsal. Usually not more than one or two are found on a fish. Circumstantial evidence is strong that these copepods die in salt water, since they were not found on any adult silver salmon (or steelhead) returning from the ocean.

Marine copepods ("sea lice") occur on adult fish entering the stream, but have never been found on any of the fish by the time that they have reached the dam. Three marine copepods taken from a silver salmon stranded on the beach in attempting to enter Waddell Creek were identified by Charles B. Wilson as Lepeophtheirus salmonis Kroyer. Apparently this species had not previously been recorded from silver salmon, but since it has been found on various species of salmonids (Wilson, 1908), its occurrence on silver salmon is not surprising.

At least one other species of marine copepod (Argulus pugettensis Dana) has been recorded from silver salmon (Wilson, loc. cit.).

Lampreys, which sometimes cause damage when they attach themselves to fish, do not occur in Waddell Creek.

During the 1933-34 season the field observer, F. II. Simmer, recorded two downstream migrants lacking pigment, as follows:

April 19, 102 mm ., "lacking pigment, whitish".
April 23, 115 mm. , "partly albino (whitish)".
No other such records appear among the field notes.
On occasion downstream migrants with one or both opercles turned under have been taken. In 1933-34, during the period April 29-June 2, the following such fish were recorded: right opercle turned under, 8 ; left opercle, 5; both opercles, 2. During this period 1,535 yearlings were handled, but it is not known whether or not all of them were examined for this feature. The cause of this abnormality is not known. In hatcheries opercles that do not fully cover the gills result from a variety of causes, usually associated with the diet of the fish.

Fish that were blind or partially blind in one or both eyes, as evidenced by opaqueness of the eye, were fairly common among the adults but were met with only rarely among the juveniles. Consideration is here given only to fish in which no mechanical injury to the eye was apparent. The writers believe that such opaqueness often, if not usually, is the result of fish scraping the eye after it has entered fresh water, e.g., in leaping falls, passing through \log jams, spawning, or being handled in nets at traps. This condition has been noted frequently at various egg collecting stations, especially when the fish had been handled in dip nets made of seine material with prominent knots.

The records at Waddell Creek indicate that the diseases encountered, including the external parasites, have not been associated with size of fish, within a year class.

Teratology

Deformities are rare among salmon and trout in their natural environment, and this general rule has held good at Waddell Creek. Of particular interest are abnormalities of the fins, because of their relation to marking programs.

Although abnormal or naturally missing fins were watched for in all seasons among the downstream migrants, it is possible that a few were missed. An especially careful watch was kept during the 1934-35 season and the record for the 3,532 yearling migrants is as follows: Left pectoral fin naturally missing (scar present), three fish; adipose very small, three fish; "practically no adipose fin," one fish. The fact that a scar was present in the case of the missing pectoral fins indicates that the fins were lost through injury or disease. Occasionally salmonids with fins missing from birth are encountered in nature. On several occasions the writers have encountered salmonids with the adipose fin completely absent, and on one occasion one of them (Shapovalov) examined an adult king salmon with both ventral fins and the supporting bone structure (pelvic girdle) completely missing. Migrants with a part of the caudal fin missing or with deformed fin rays have also been taken on rare occasions.

The record for 1934-35 and the discussion of the preceding paragraph show that although missing fins are not common, they do occur and may influence the apparent returns of a marking program if only one fin is clipped. Such naturally missing fins are not to be expected to interfere with a program in which mass returns for a given locality are expected, but may prove a serious hindrance in those cases in which reliance is placed upon small returns, as in the cases of straying or individual fish taken at sea. In any case, the extra labor involved in marking two separate fins is well worth while in terms of reliability of results.

The frequency with which a given fin is missing may vary with the population under consideration, and also from season to season. In one case the writers encountered approximately 17 fish with three ventral fins out of a lot of approximately 10,000 trout being marked. Almost certainly these abnormal fish were the product of a single female. In the same way, a number of fish with similar abnormalities may be produced in nature by a single female. Probably the fin most commonly completely absent from birth is the adipose, but the fins most commonly missing as a result of injury are the pectorals or ventrals. Among hatchery fish the fins most commonly missing or deformed are the pectorals or ventrals, due to biting by other fish, and the dorsal, due to disease (fin rot or Gyrodactylus). Almost no fish with fins missing because of these diseases were encountered at Waddell Creek, except in adults straying from Scott Creek.

The occurrence of missing and deformed fins among adult fish is perhaps somewhat greater than among juveniles, principally due to injuries to these fins that have taken place at sea.

Deformities of the body, like abnormalities in the fins, are rare among salmonids in their natural environment. Occasionally silver salmon with twisted snouts or deformed upper or lower jaws have been taken both among the juveniles and the adults. Even more rarely so-called "S" fish, with a curvature of the spine, have been taken among the juveniles and adults. Similarly, rare specimens of "stubby" fish, i.e., fish which are abnormally short for their depth and age, have been taken. The various deformities listed are much more common among hatchery fish, but such fish rarely survive to return as sea-run spawners.

Food
It is evident from the accumulating literature on the food of young salmonids that there is considerable variation in the food of a given species, depending upon locality, time of year, size of fish, and the relative abundance of the various food items. The greater the variations in these factors, the greater is the variation in food likely to be, but especially in trout there is sometimes even a marked variation in the food of individuals of the same size taken at the same time and in the same place.

In California, the streams inhabited by silver salmon are generally similar, and so the food of the young fish is probably similar at a given time of year and for the same size of fish. It is not unlikely that in most California streams the food of the young silver salmon is similar to that of steelhead of the same size.

Almost nothing is known of the food of juvenile silver salmon at Waddell Creek on the basis of stomach examinations. The only stomach examined was that of a juvenile upstream female 100 mm . long, taken on January 30, 1935; this stomach contained only "a little debris."

In the section on "Predators" (page 253) it will be seen that Pritchard (1936b) had found that during the seaward migration of various species of Pacific salmon in the spring of the year at McClinton Creek, British Columbia, yearling silver salmon had consumed large quantities of pink salmon fry, and small numbers of chum salmon fry and silver salmon fry and fingerlings. In the same section it will also be noted that in California silver salmon probably do not consume large numbers of steelhead and silver salmon because of the fact that the latter two species emerge from the gravel after the seaward migration of the yearling silver salmon, but that they may eat larger numbers of king salmon, which generally hatch earlier and many of which migrate as fry.

Chamberlain (1907) reported that in Alaska silver salmon fish of the season, taken from May through July (lengths 33 to 43 mm .), had fed mainly on insects. Larger fish, taken in night hauls in August and September, had eaten most terrestrial insects, and also aquatic insect larvae (principally Caddisflies), snails, and sticklebacks, with a scattering of miscellaneous items. The data for the August-September fish have been gathered into Table 23.

Chamberlain adds: "The yearling cohos taken in the Naha were found to eat the young salmon fry whenever taken with them in the nets. That they sometimes were able to prey upon them in a natural state was evidenced by the presence of digested fry in some examples that were seined in Roosevelt Lagoon in May."

TABLE 23
Alaska, Silver Salmon: Foods of Young Fish

Class Of Food	Percentage of fish eating class of food listed		
	Aug. $22-15$ fish, avg. length $95 \mathrm{~mm} .$, range $63-122 \mathrm{~mm}$.	Aug. $24-55$ fish, avg. length 85.6 mm ., range $53-$ 130 mm.	Sept. $10-88$ fish, avg. length 83 mm., range $51-120$ mm.
Winged insects (flies, ants, etc.)	66	91	44
Beetles	13	42	20
Caddisfly larvae	13	5	44
Other larvae	13	--	7
Snails	26	7	5
Sticklebacks	13	74	2
Mites, eggs, etc.	--	14	11

The general feeding habits and growth of silver salmon at Waddell Creek have already been described in the section on "Stream Life Prior to Seaward Migration (General Features)" (pages 70-73).

Bradley (1908) recorded the tube-dwelling amphipod, Corophium salmonis, from many stomachs of young silver salmon 71 to 79 mm . in length taken at Karluk Beach and in the estuary of Karluk River, Alaska, June 8 and July 24, 1903. A closely related species, C. spinicorne, is one of the most abundant organisms in Waddell Creek lagoon.

Chamberlain records that young silver salmon taken with a hook in brackish water at the Klawak cannery wharf contained insects and a few beach crustaceans.

In regard to the food of small silver salmon in salt water, Chamberlain has the following to say:
"The young coho in salt water is more easily observed than the other species. It readily takes the hook, and apparently is less timid than the others in approaching surface and shore. In 1904, 45 were taken at the Loring cannery wharf August 2. They averaged 190 mm . (158-226). On July 10 at the same place about 30 were taken. No measurements were made except of the largest, which was 138 mm . On August 2, 1905, a scattered school came about the albatross while anchored at the extreme head of Yes Bay; 26, averaging 202 mm . (152-237), were taken with a hook over the ship's side. Only a few, 6 or 8 , would appear at once, and they took the hook baited with bits of meat, etc., very shyly in the perfectly clear water. Most of the stomachs contained offal from the ship's messes; 5 contained fishes up to 65 mm . in length, all that could be identified being sand launces; 2 contained young sticklebacks, one of them 10 individuals; 2 had isopods, and only 3 had taken insects from the surface. Another example taken later, a male of 265 mm ., contained 4 small herring.
"At Karluk young cohos are occasionally taken in the cannery seines; two, 180 mm . long, preserved from the catch of June 8 , contained 2 species of amphipods and one a young cottoid; one, 158 mm ., preserved from the seine July 3, was an empty female; July 24, another, 175 mm . long, contained Ammodytes. As will be seen, these records indicate the presence of very few young cohos about Karluk Beach.
"The general collections of the albatross afford the following data:
"A number of cohos were taken at Karta Bay with larger sockeyes and smaller dog salmon on June 26, 1897. Of the specimens preserved 8 males average about 80 mm . (56-100), and 14 females average nearly 100 mm . (80-140). They were feeding mainly on insects and crustacea.
"At Thorne Bay, July 5, of a number of small cohos together with a few dog salmon, seined probably at the mouth of the river, 24 males averaged about 55 mm . and 50 females about 56 mm ., the high average of the latter being due to the presence of a few slightly larger individuals (extremes, males 45-65 mm., females $45-78 \mathrm{~mm}$.). The stomachs examined contained insects for the most part; a few had small crustaceans and 2 had flatfishes.
"At Port Alexander, July 3, 1903, many young cohos were taken in the seine; 4 males and 2 females were preserved; average about 150 mm . They were feeding on young herring and sand launces, also larval crabs and amphipods.
"Of the specimens saved from Uganuk, June 5, 1903, 5 are males, averaging 138 mm ., and 8 females, 130 mm . All but 3, which were empty, were feeding on young herring, each containing from 1 to 5 individuals. . .
"At Unalaska 6 examples, taken July 23, 1888, average 148 mm ., contained insects, crustaceans, grubs, and in one case a small fish like a salmon fry. One humpback fingerling was in this lot.
"Twelve examples, taken at Sumner Harbor July 2, 1896, averaged about 60 mm . and were feeding on insects and Crustacea. They were in company with the smaller sockeyes. ..."

Pritchard and Tester (1944), in a study directed toward shedding light on possible conflict between salmon and herring fisheries, presented an account of the food of silver salmon along the coast of British Columbia and summarized the results of some studies for other areas. The investigations probably give an indication of the types of food eaten elsewhere at sea, although the authors emphasize that there was a marked variation between areas and years in the kind and quantity of the organisms forming the major food items during the three years of their studies. Examinations of 257 silver salmon stomachs indicated the food of this species to be similar to that of king salmon in that herring and sand lances were the two most important items, but the silver salmon appeared to feed somewhat more extensively on other fish and invertebrates than the king salmon. The silver salmon also had a greater range of diet than the king salmon, since more types of food organisms were found in the smaller number of stomachs examined. The authors believe it to be probable that there was no active selection of the kind of food eaten by either species and that both fed on whatever food of suitable size was present in sufficient quantity to repay them for the effort. Certain types of organisms, namely, herring, sand lance, amphipods, euphasiids (red feed), and crab larvae, were found in all three years; others, namely, sardines, anchovies, capelin, rockfish, black cod, and isopods, were found in two of the three years; still others, namely, silver salmon, lanternfish, Pacific saury, hake, whiting, sculpin, squid, goose barnacles, and jellyfish, were found in one year only. The authors believe that "this variation is doubtless related, in
part at least, to variation in the number of stomachs examined in each of the three years, ..."

Chapman (1936) found the food of 400 silver salmon from the Neah Bay, Washington, region to consist of euphasiids, sardines, and herring, in the order named, to the practical exclusion of all other organisms. Both in numbers and weight the euphasiids were the most important single item of food. Black cod and squid were only incidental. Twenty-five stomachs were empty.

In the same paper, Chapman notes that the data on 85 silver salmon from Westport differed considerably from those for Neah Bay: (1) a much higher percentage of the stomachs was empty (Westport 39 percent, Neah Bay 6 percent), (2) euphasiids were completely absent, and (3) sardines were of greater importance in comparison with herring than they were at Neah Bay. The Neah Bay fish were purse-seine-caught fish, while the Westport fish were caught by troll.

Chamberlain (1907) lists the food of only four adult silver salmon taken at sea in Alaskan waters. Two individuals seen at Karta Bay the first of August were filled with sand lances; another contained a herring. A female taken at Quadra early in August was filled with crab larvae.

Apparently, seasonal studies of the food of silver salmon in the sea have not yet been conducted.

Summing up, it appears that young silver salmon in fresh water live very largely upon insects, both aquatic and terrestrial, that smaller individuals in salt water depend heavily upon marine invertebrates, and that the larger fish in salt water are chiefly piscivorous.

LIFE HISTORY OF THE STEELHEAD

Spawning Migration

As with the silver salmon, the discussion of the life history of the steelhead is begun with the adults that are about to enter the stream for spawning purposes.

Time and Size of the Spawning Migration

Both over its range as a whole and in individual streams, the spawning season of the steelhead extends over a much longer period of time than does that of the silver salmon. In general, the bulk of the fish enter the streams and spawn in the winter and spring, but it is probable that in the larger rivers, such as the Sacramento, Eel, Klamath, and Columbia, some steelhead enter from the sea in all or nearly all months.

Roughly, steelhead may be divided into those of the spring run (fish in general entering and migrating upstream on dropping stream levels, while quite green, and spawning in the following season) and those of the fall run (fish in general entering on rising stream levels, with sexual products in various stages of development, but spawning within the same season). With local variations, the spring-run fish enter the streams in April and May and reach the pools in which they "summer over" in June and July. Such fish generally do not feed in fresh water, but remain fat and in good condition until they spawn, usually in November and December. Spring-run steelhead do not occur in most California streams, ascending probably only those that are snow-fed and possess deep pools. Fall-run fish may enter from salt water
throughout the year, from August (early fish) through July (late fish), but spawn within about four months of their entry. The late-running fish generally spawn within a month or so.

Several specific instances of the occurrence of spring-run steelhead in California may be cited. In 1938 the attention of one of the writers (Shapovalov) was called to the presence of "summer salmon" in the Middle Fork of Eel River. These fish were found to constitute a true spring run of steelhead, entering the main Eel River probably mostly in May and migrating upstream (Shapovalov, 1939b). They usually make their appearance in the Middle Fork in July, and ascend to the section from its confluence with Black Butte River to Asa Bean Falls. Here they rest in deep pools, gradually "ripening" until the following October, November, or December, when they spawn. Like the fall-run steelhead, they do not feed in fresh water, with possible rare exceptions, but remain in good condition throughout the summer. At times they refuse to strike at a lure, while at other times they avidly seize a spinner or grasshopper. The fish often run from 7 to 12 pounds in weight.

The only other portion of the Eel River in which their presence is known to the writers is the section of the Van Duzen River known as Eaton Roughs, above Bridgeville. Here they are reported to be already present when the water levels drop and the water clears enough to see into these "salmon holes"; this is probably usually in June. Runs that are probably comparable ascend certain of the snow-fed tributaries of the Klamath River. For example, steelhead of average size, which were green and would not spawn until the following winter, were ascending Elk Creek, tributary to the Klamath 100 miles above its mouth, on June 3, 1934 (Taft and Shapovalov, 1935, page 66).

In the comparable section on silver salmon it was pointed out that Waddell Creek and most other California streams are closed by sand bars at their mouths during a portion of the annual dry season, as a result of which the entry of the first fish of the spawning run is dependent upon the breaking of the bar with the start of the rainy season. The same consideration, of course, applies to the steelhead.

As with the silver salmon, at Waddell Creek (and Scott Creek) some steelhead have entered the stream with the first opening of the bar, whenever that has occurred, as shown in Table 24. This implies that

TABLE 24
Waddell Creek, Steelhead: Time of Initial Capture in Trap, in Relation to Opening of the Bar

Year	First opening of bar	First steelhead taken in trap	Permanent opening of bar
1933	October 31	December 14	December 28
1934	November 18	November 21	December 13
1935	October 11	December 29	December 29
1936	November 19	December 30	December 26
1937	October 26	December 12	December 8
1938	October 27	December 2	October 27
1939	November 24	December 11	December 7
1940	September 13	October 27	December 16
1941	October 9	October 31	December 9

the fish are "waiting" very near the mouth of the stream for the bar to open, or make a rapid journey to the mouth of the stream with the approaching storm.

Again as in the case of the silver salmon, only a portion of the seasonal "run" enters Waddell Creek with the first storm and with each succeeding storm. In the case of the steelhead, however, a smaller proportion of the total run enters the stream with the first storms, especially if these occur early, and the run stretches out past the salmon spawning season.

The entry of the fish into the stream is not determined entirely by their sexual maturity, for examinations made at the very mouth have revealed that some of the fish are sexually immature, or "green," while others are completely sexually mature, or "ripe." There is a greater tendency for the early steelhead, in comparison with the silver salmon, to be green. Such a situation is to be expected in view of the fact that although the spawning seasons of the two species overlap, the bulk of the steelhead spawning takes place later than that of the silver salmon in Waddell Creek and most other California streams.

The increasing earliness of the runs and the spawning season with progression to the north, which was noted for the silver salmon, is not apparent in the steelhead. It is true that some steelhead enter the streams of northern California earlier than do any of those running into Waddell Creek and its neighbors, but even in those streams the spawning season takes place about the same time as in the southern streams. Although steelhead enter the mouth of the Eel River in considerable numbers as early as August, they do not ascend the South Fork until about the time of the Waddell Creek and Mad River runs

FIGURE 22. Seasonal distribution of the steelhead runs in Waddell Creek, South Fork of the Eel River, and Mad River.
(Figure 22). Table 25 shows the runs in the South Fork of the Eel River by two-week periods for six seasons, and Table 26 shows the Mad River runs for nine seasons.

As in the case of the silver salmon, the writers have wondered if any steelhead would enter Waddell Creek if unseasonal rains occurred in

TABLE 25
South Fork of Eel River, SteeIhead: Adults Counted Upstream Through Fishway at Benbow Dam, by Two-week Periods

Period	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\Omega} \\ & \underset{\Omega}{2} \end{aligned}$	¢ $\stackrel{1}{2}$ $\stackrel{1}{2}$	7 	$\underset{\text { \% }}{\substack{\text { \% }}}$	令 y d	J \% g	\%	
Oct. 1-14	-----	-----	-----	-----	-----	-----	----	-----
Oct. 15-28	-----	-----	1	-----	3	-----	4	+
Oct. 29-Nov. 11	3	---	17	9	9	-----	38	+
Nov. 12-25	-----	-----	2	19	139	26	186	0.2
Nov. 26-Dec. 9	691	----	16	76	694	43	1,520	1.4
Dec. 10-23	208	784	47	62	1,394	215	2,710	2.4
Dec. 24-Jan. 6	507	1,126	5,123	1,515	3,484	1,690	13,445	12.0
Jan. 7-20	3,414	1,202	4,498	4,491	221	4,622	18,448	16.5
Jan. 21-Feb. 3	1,479	5,526	2,799	2,130	7,517	4,165	23,616	21.2
Feb. 4-17	2,901	1,572	2,708	985	5,525	3,892	17,583	15.7
Feb. 18-Mar. 3	424	1,765	1,147	1,820	2,047	2,103	9,306	8.3
Mar. 4-17	2,390	1,141	872	3,775	2,900	4,251	15,329	13.7
Mar. 18-31	746	645	809	1,643	649	1,339	5,831	5.2
Apr. 1-14	188	609	194	771	436	1,099	3,297	3.3
Apr. 15-28	42	33	44	36	14	-----	169	0.2
Apr. 29-May 12	2	73	21	24	---	-----	120	0.1
May 13-26	-----	-----	10	-----	----	-----	10	+
May 27-Sept. 30	-----	-----	-----	-----	-----	-----	-----	---
Totals	12,995	14,476	18,308	17,356	25,032	23,445	111,612	---

TABLE 26
Mad River, Steelhead: Adults Counted Upstream Through Fishway at Sweasey Dam, by Two-week Periods

Period	$\begin{aligned} & 1941- \\ & 42 \end{aligned}$	$\begin{aligned} & 1942- \\ & 43 \end{aligned}$	$\begin{aligned} & 1946- \\ & 47 \end{aligned}$	$\begin{aligned} & 1947- \\ & 48 \end{aligned}$	$\begin{aligned} & 1948- \\ & 49 \end{aligned}$	$\begin{aligned} & 1949- \\ & 50 \end{aligned}$	$\begin{aligned} & 1950- \\ & 51 \end{aligned}$	$\begin{aligned} & 1951- \\ & 52 \end{aligned}$	$\begin{aligned} & 1952- \\ & 53 \end{aligned}$	Total	
Oct. 1-28	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	---
Oct. 29-Nov. 11	-----	6	-----	-----	6	1	50	1	-----	64	0.1
Nov. 12-25	4	376	15	22	30	10	78	83	3	621	1.4
Nov. 26-Dec. 9	180	120	475	----	7	64	47	58	4	955	2.2
Dec. 10-23	30	276	86	----	129	21	403	79	229	1,253	2.9
Dec. 24-Jan. 6	25	31	6	289	31	15	268	67	50	782	1.8
Jan. 7-20	116	279	6	524	-----	9	109	8	62	1,113	2.6
Jan. 21-Feb. 3	523	205	908	81	1	54	52	413	1,565	3,802	8.9
Feb. 4-17	246	2,140	1,171	417	329	1,108	675	306	215	6,607	15.4
Feb. 18-Mar. 3	267	1,242	983	1,534	738	1,359	65	949	362	7,499	17.5
Mar. 4-17	765	995	732	363	830	287	1,186	648	2,078	7,884	18.4
Mar. 18-31	1,075	910	525	249	322	640	1,097	1,186	259	6,263	14.6
Apr. 1-14	1,180	60	108	103	678	287	317	1,531	526	4,790	11.1
Apr. 15-28	172	-----	95	-----	38	219	281	222	257	1,284	3.0
Apr. 29-May 12	--	-----	-----	-----	-----	-----	3	33	----	36	0.1
May 13-Sept, 30	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	---
Totals	4,583	6,640	5,110	3,582	3,139	4,074	4,631	5,584	5,610	42,953	---

September. Since such rains have not occurred during the course of the experiments, a direct answer has not been obtained.

The occurrence of different runs or "waves" of migrating fish brings up the question of "races." It is possible that different biological or morphological races exist within large stream systems, but the occurrence of fresh runs with each succeeding storm in Waddell Creek and other small streams indicates that different runs during a season are not necessarily the result of different races. There is no evidence to indicate that different races exist in Waddell Creek and one would hardly expect

Figure 24. Slippery Falls, barrier to upstream migrants, on the West Branch of Waddell Creek.
Photograph by Paul R. Needham.
different sea-run races to occur in a stream so small and in which the entry of the fish was restricted to a portion of the season.

Just what is the explanation of the different runs-why the fish do not enter the stream at one time-is not known, but the reason is probably tied up with the habits and migrations of the fish in the ocean. The life history of the steelhead at sea is even more of a mystery than that of the silver salmon. Some of those facts that we do know will be presented in the section on "Sea Life" (pages 191-197).

During the nine seasons of operation of the upstream trap, 1933-34 through 1941-42, 3,888 adult steelhead were taken. The numbers of fish taken during each season, arranged by sexes and weekly periods, are shown in Table 27 and Figure 23.

From the above table and graph, it will be seen that the earliest fish was taken during the week ending October 28, and the latest fish

TABLE 27
Waddell Creek, Steelhead: Adults Checked Through Upstream Trap, by Seasons and Weekly

Period	Periods									1936-37		
	1933-34			1934-35			1935-36					
	ठ	¢ +	Total	δ	¢	Total	\bigcirc	+	Total	$\widehat{3}$	q	Total
Oct. 1-7	--	--	--	--	--	--	--	--	--	--	--	--
Oct. 8-14	--	--	--	--	--	--	--	--	--	--	--	--
Oct. 15-21	--	--	--	--	--	--	--	--	--	--	--	--
Oct. 22-28	--	--	--	--	--	--	--	--	--	--	--	--
Oct. 29-Nov. 4	--	--	--	--	--	--	--	--	--	--	--	--
Nov. 5-11	--	--	--	--	--	--	--	--	--	--	--	--
Nov. 12-18	--	--	--	--	--	--	--	--	--	--	--	--
Nov. 19-25	--	--	--	6	--	6	--	--	--	--	--	--
Nov. 26-Dec. 2	--	--	--	1	--	1	--	--	--	--	--	--
Dec. 3-9	--	--	--	--	--	--	--	--	--	--	--	--
Dec. 10-16	3	2	5	7	3	10	--	--	--	--	--	--
Dec. 17-23	1	--	1	1	--	1	--	--	--	--	--	--
Dec. 24-30	13	3	16	4	--	4	6	--	6	--	1	1
Dec. 31-Jan. 6	27	16	43	64	27	91	11	6	17	2	2	4
Jan. 7-13	--	2	2	35	27	62	31	16	47	4	3	7
Jan. 14-20	--	2	2	10	16	26	19	13	32	2	3	5
Jan. 21-27	2	1	3	21	16	37	1	1	2	--	--	--
Jan. 28-Feb. 3	--	--	--	3	6	9	21	21	42	25	16	41
Feb. 4-10	36	32	68	15	18	33	--	1	1	23	20	43
Feb. 11-17	22	33	55	2	1	3	20	23	43	19	18	37
Feb. 18-24	32	55	87	2	3	5	8	7	15	14	7	21
Feb. 25-Mar. 3	6	18	24	30	49	79	20	39	59	34	37	71
Mar. 4-10	3	11	14	13	28	41	11	33	44	39	44	83
Mar. 11-17	12	21	33	12	16	28	11	21	32	36	44	80
Mar. 18-24	4	8	12	6	6	12	8	16	24	2	1	3
Mar. 25-31		3	3	16	28	44	8	8	16	8	20	28
Apr. 1-7	1	3	4	9	17	26	11	22	33	5	4	9
Apr. 8-14	1	3	4	4	8	12	14	14	28	6	12	18
Apr. 15-21		8	8	3	1	4	2	2	4	5	5	10
Apr. 22-28	1	2	3	1	3	4	--	4	4	2	4	6
Apr. 29-May 5	1	--	1	--	1	1	--	--	--	2	2	4
May 6-12	1	--	1	--	--	--	--	--	--	--	--	--
May 13-19	--	--	--	--	--	--	--	--	--	--	--	--
May 20-26	--	--	--	--	--	--	--	1	1	--	--	--
May 27-June 2	--	--	--	--	--	--	--	--	--	--	--	--
June 3-9	--	--	--	--	--	--	--	--	--	--	--	--
June 10-16	--	--	--	--	--	--	--	--	--	--	--	--
June 17-23	--	--	--	--	--	--	--	--	--	--	1	1
June 24-30	--	--	--	--	--	--	--	--	--	--	--	--
July 1-7	--	--	--	--	--	--	--	--	--	--	--	--
July 8-14	--	--	--	--	--	--	--	--	--	--	--	--
July 15-21	--	--	--	--	--	--	--	--	--	--	1	1
July 22-28	--	--	--	--	--	--	--	--	--	--	--	--
July 29-Aug. 4	--	--	--	--	--	--	--	--	--	--	--	--
Aug. 5-11	--	--	--	--	--	--	--	--	--	--	--	--
Aug. 12-18	--	--	--	--	--	--	--	--	--	--	--	--
Aug. 19-25	--	--	--	--	--	--	--	--	--	--	--	--
Aug. 26-Sept. 1	--	--	--	--	--	--	--	--	--	--	--	--
Sept. 2-8	--	--	--	--	--	--	--	--	--	--	--	--
Sept 9-15	--	--	--	--	--	--	--	--	--	--	--	--
Sept 16-22	--	--	--	--	--	--	--	--	--	--	--	--
Sept. 23-30	--	--	--	--	--	--	--	--	--	--	--	--
Totals	166	223	389	265	274	539	202	248	450	228	245	473

TABLE 27 - Continued
Waddell Creek, Steelhead: Adults Checked Through Upstream Trap, by Seasons and Weekly Periods

Period	1937-38			1938-39			1939-40			1940-1941		
	\bigcirc	아	Total	δ	+	Total	δ°	아	Total	0^{2}	+	Total
Oct. 1-7	--	--	--	--	--	--	--	--	--	--	--	--
Oct. 8-14	--	--	--	--	--	--	--	--	--	--	--	--
Oct. 15-21	--	--	--	--	--	--	--	--	--	--	--	--
Oct. 22-28	--	--	--	--	--	--	--	--	--	1	--	1
Oct. 29-Nov. 4	--	--	--	--	--	--	--	--	--	--	--	--
Nov. 5-11	--	--	--	--	--	--	--	--	--	1	--	1
Nov. 12-18	--	--	--	--	--	--	--	--	--	--	--	--
Nov. 19-25	--	--	--	--	--	--	--	--	--	--	--	--
Nov. 26-Dec. 2	--	--	--	1	--	1	--	--	--	--	--	--
Dec. 3-9	--	--	--	3	2	5	--	--	--	--	--	--
Dec. 10-16	18	6	24	--	--	--	3	1	4	--	--	--
Dec. 17-23	2	--	2	--	2	2	--	--	--	47	22	69
Dec. 24-30	1	--	1	--	--	--	--	1	1	62	42	104
Dec. 31-Jan. 6	1	2	3	18	5	23	79	46	125	25	27	52
Jan. 7-13	--	--	--	10	9	19	24	12	36	34	28	62
Jan. 14-20	20	11	31	--	--	--	4	3	7	14	9	23
Jan. 21-27	19	19	38	--	2	2	22	14	36	4	3	7
Jan. 28-Feb. 3	22	23	45	24	5	29	27	29	56	10	14	24
Feb. 4-10	3	7	10	43	48	91	3	4	7	4	11	15
Feb. 11-17	2	8	10	15	24	39	4	5	9	--	3	3
Feb. 18-24	32	38	70	--	--	--	18	35	53	1	9	10
Feb. 25-Mar. 3	18	28	46	1	--	1	2	9	11	--	5	5
Mar. 4-10	4	8	12	22	22	44	6	10	16	--	2	2
Mar. 11-17	1	8	9	58	90	148	12	21	33	1	4	5
Mar. 18-24	7	10	17	1	4	5	4	23	27	1	1	2
Mar. 25-31	4	6	10	2	11	13	5	7	12	--	4	4
Apr. 1-7	3	12	15	5	8	10	--	--	--	--	--	--
Apr. 8-14	5	11	16	4	8	12	--	5	5	--	1	1
Apr. 15-21	2	5	7	2	5	7	--	1	1	--	--	--
Apr. 22-28	1	3	4	1	--	1	--	1	1	--	--	--
Apr. 29-May 5	--	2	2	--	1	1	1	--	1	--	--	--
May 6-12	--	1	1	--	--	--	--	--	--	--	--	--
May 13-19	--	--	--	1	--	1	--	1	1	--	--	--
May 20-26	--	--	--	1	--	1	--	--	--	--	--	--
May 27-June 2	--	--	--	--	--	--	--	--	--	--	--	--
June 3-9	--	--	--	--	--	--	--	--	--	--	--	--
June 10-16	--	--	--	--	--	--	--	--	--	--	--	--
June 17-23	--	--	--	--	--	--	--	--	--	--	--	--
June 24-30	--	--	--	--	--	--	--	--	--	--	--	--
July 1-7	--	--	--	--	--	--	--	--	--	--	--	--
July 8-14	--	--	--	--	--	--	--	--	--	--	--	--
July 15-21	--	--	--	--	--	--	--	--	--	--	--	--
July 22-28	--	--	--	--	--	--	--	--	--	--	--	--
July 29-Aug. 4	--	--	--	--	--	--	--	--	--	--	--	--
Aug. 5-11	--	--	--	--	--	--	--	--	--	--	--	--
Aug. 12-18	--	--	--	--	--	--	--	--	--	--	--	--
Aug. 19-25	--	--	--	--	--	--	--	--	--	--	--	--
Aug. 26-Sept. 1	--	--	--	--	--	--	--	--	--	--	--	--
Sept. 2-8	--	--	--	--	--	--	--	--	--	--	--	--
Sept. 9-15	--	--	--	--	--	--	--	--	--	--	--	--
Sept. 16-22	--	--	--	--	--	--	--	--	--	--	--	--
Sept. 23-30	--	--	--	--	--	--	--	--	--	--	--	--
Totals	165	208	373	212	243	455	214	228	442	205	185	390

TABLE 27 - Continued
Waddell Creek, Steelhead: Adults Checked Through Upstream Trap, by Seasons and Weekly Periods

Period	1941-42			Total			Average		
	ठ	¢	Total	ठ	¢	Total	$\widehat{0}$	q	Total
Oct. 1-7	--	--	--	--	--	--	--	--	--
Oct. 8-14	--	--	--	--	--	--	--	--	--
Oct. 15-21	--	--	--	--	--	--	--	--	--
Oct. 22-28	--	--	--	1	--	1	+	--	+
Oct. 29-Nov. 4	3	--	3	3	--	3	+	--	+
Nov. 5-11	--	--	--	1	--	1	+	--	+
Nov. 12-18	2	--	2	2	--	2	+	--	+
Nov. 19-25	--	--	--	6	--	6	1	--	1
Nov. 26-Dec. 2	1	--	1	3	--	3	+	--	+
Dec. 3-9	6	2	8	9	4	13	1	+	1
Dec. 10-16	3	--	3	34	12	46	4	1	5
Dec. 17-23	24	4	28	75	28	103	8	3	11
Dec. 24-30	5	3	8	91	50	141	10	6	16
Dec. 31-Jan. 6	5	--	5	232	131	363	26	15	40
Jan. 7-13	28	23	51	166	120	286	18	13	32
Jan. 14-20	--	2	2	69	59	128	8	7	14
Jan. 21-27	1	7	8	70	63	133	8	7	15
Jan. 28-Feb. 3	1	2	3	133	116	249	15	13	28
Feb. 4-10	2	--	2	129	141	270	14	16	30
Feb. 11-17	9	8	17	93	123	216	10	14	24
Feb. 18-24	18	20	38	125	174	299	14	19	33
Feb. 25-Mar. 3	2	1	3	113	186	299	13	21	33
Mar. 4-10	14	23	37	112	181	293	12	20	33
Mar. 11-17	21	62	83	164	287	451	18	32	50
Mar. 18-24	3	12	15	36	81	117	4	9	13
Mar. 25-31	2	3	5	45	90	135	5	10	15
Apr. 1-7	9	28	37	43	91	134	5	10	15
Apr. 8-14	2	12	13	36	73	109	4	8	12
Apr. 15-21	2	1	3	16	28	44	2	3	5
Apr. 22-28	1	---	1	7	17	24	1	2	3
Apr. 29-May 5	1	---	1	5	6	11	1	1	1
May 6-12	--	--	--	1	1	2	+	+	+
May 13-19	--	--	--	1	1	2	+	+	+
May 20-26	--	--	--	1	1	2	+	+	+
May 27-June 2	--	--	--	--	--	--	--	--	--
June 3-9	--	--	--	--	--	--	--	--	--
June 10-16	--	--	--	--	--	--	--	--	--
June 17-23	--	--	--	--	1	1	--	+	+
June 24-30	--	--	--	--	--	--	--	--	--
July 1-7	--	--	--	--	--	--	--	--	--
July 8-14	--	--	--	--	--	--	--	--	--
July 15-21	--	--	--	--	1	1	--	+	+
July 22-28	--	--	--	--	--	--	--	--	--
July 29-Aug 4	--	--	--	--	--	--	--	--	--
Aug. 5-11	--	--	--	--	--	--	--	--	--
Aug. 12-18	--	--	--	--	--	--	--	--	--
Aug. 19-25	--	--	--	--	--	--	--	--	--
Aug. 26-Sept. 1	--	--	--	--	--	--	--	--	--
Sept. 2-8	--	--	--	--	--	--	--	--	--
Sept. 9-15	--	--	--	--	--	--	--	--	--
Sept. 16-22	--	--	--	--	--	--	--	--	--
Sept. 23-30	--	--	--	--	--	--	--	--	--
Totals	165	212	377	1,822	2,066	3,888	202	230	432

was taken during the week ending July 21. Despite this long spread, 3,864 (96 percent) of all fish were taken during the 22 weeks December 3-May 5. Within any of these 22 weeks steelhead may be expected in most California steelhead streams, depending upon seasonal weather and water conditions. It will be noted from the nine-year averages for Waddell Creek that there are two peaks, occurring during the weeks ending January 6 and March 17, respectively. The occurrence of these two peaks so far apart is not a matter of chance, but is the result of the tendency of fish of different sex-life history categories to run at different times of the season.

It is of interest that 38.7 percent of all fish have been taken after February 28, the usual closing date of the winter steelhead season in California. At Benbow Dam 24.2 percent have been taken after the end of February, and at Sweasey Dam, 53.1 percent. The significance of these facts will be discussed in the section on "Recommendations for Management" (pages 267268).

From Table 27 and Figure 23 it will also be seen that there has not been nearly so much fluctuation in the size of the seasonal runs as in the case of the silver salmon. The reason for the lesser fluctuation, and possible causes of the fluctuations which do occur, will be discussed in the sections on "Survival" and "Pathology" (pages 204-243). The largest number taken in the trap was 539 (265 males, 274 females), during the season of 1934-35, and the smallest number 373 (165 males, 208 females), during the season of 1937-38. (These are the same seasons in which the largest and smallest numbers of salmon were taken in the trap.)

Age and Size of the Fish

Steelhead of many life history categories make up the runs in Waddell Creek. Unlike silver salmon, steelhead migrate to sea at various ages and over a long period within a season, spend varying amounts of time in the ocean and return over a fairly long period within a season, are capable of spawning more than once, sometimes spawn before their first journey to sea, and may even remain in fresh water for their entire lives. This combination of possible life histories makes steelhead scale reading laborious and subject to some error.

The writers believe, however, that the great majority of the scale readings are unquestionably accurate. At Waddell Creek interpretation of the scales was facilitated by the fact that (1) an entire population was being studied over a considerable period of time, (2) fish length and time of migration were known, (3) returning marked and tagged fish with known ocean histories were available in large numbers for comparison, and (4) all scale readings were made by the same person (Shapovalov), with occasional corroborative readings by others.

Scales from all adult steelhead taken in the upstream trap were examined. The assignment to life history category was considered definitely correct for 86 percent of these fish, and probably correct, but somewhat doubtful, for 8 percent. For 2 percent, stream history was unknown (although ocean history could be calculated) because all scales had regenerated centers, and for 4 percent, stream history was
doubtful (with a possible error of one year). All of the doubtful fish were assigned to the various possible groups in the same proportions as the fish of more certain history.

The present discussion of age and size at maturity will be confined to searun fish. Also, any spawnings prior to initial migration to sea will be disregarded, since such spawnings are often very difficult to recognize in scale examinations. In other words, fish listed as "first spawners" are those spawning for the first time after one or more seasons at sea, irrespective of possible spawnings prior to initial migration to sea. Fish that have spawned prior to their initial migration to sea are believed to be in the great minority, and confined largely to the comparatively few fish that go to sea for the first time after three or four years in fresh water.

In Table 28 the adult steelhead taken in the upstream trap in each season have been divided according to number of spawnings, life history category, and sex. A number of interesting points are revealed by a study of this table.
First, we see that 82.8 percent (range 70.0-96.1 percent) of all adults had entered the stream for their first spawning. Although first spawners are in the great majority, repeat spawners are sufficiently numerous (17.2 percent) to be given serious consideration in a study of the biology of the species and in a management program. As is to be expected, among the repeat spawners the representation of each group declines as the number of spawnings increases. There is a sharp decline in numbers from second spawners (15.0 percent) to third spawners (2.1 percent). Fish spawning for the fourth time form a negligible proportion of the run (0.1 percent), and none spawning more than a fourth time was encountered. However, at Scott Creek two fish spawning for the fifth time (both females, season 1931-32) have been recorded. These fish add two additional life history categories to the 32 shown in Table $28: 1 / 4 \mathrm{~S} .1$ and $2 / 4 \mathrm{~S} .1$.
It is believed that this general picture in regard to composition of the runs is representative of California steelhead streams where more or less natural conditions exist. It is evident that unfavorable factors (physical conditions hampering return of fish to the ocean, holding of fish in tanks at spawning stations, and fishing) tend to diminish the number of repeat spawners. This phase of the subject will be discussed in greater detail in the section on "Recommendations for Management."

A further examination of Table 28 shows that, despite the great number of life history categories, on the average only four of them are of sufficient importance to exceed 5 percent of the run, as follows: $2 / 1$ (29.8 percent), $2 / 2$ (26.5 percent), $3 / 1$ (10.5 percent), and $2 / 1 \mathrm{~S} .1$ (8.1 percent). Together, these four categories form 75 percent of the run.

Obviously, all second spawners are derived from first spawners, all third spawners from second spawners, and all fourth spawners from third spawners. An examination of the table shows that the life history categories represented most heavily among each group of the repeat spawners are derived from categories most strongly represented among the preceding group. This is strikingly shown in Table 29.

TABLE 28
Waddell Creek, Steelhead: Adults Checked Through Upstream Trap, by Sex and Life History Category (Percentages)

TABLE 28 - Continued
Waddell Creek, Steelhead: Adults Checked Through Upstream Trap, by Sex and Life History Category (Percentages)

Season	Sex	Fish spawning for second time									
		$\begin{aligned} & 1 / 1 \\ & \mathrm{~S} .1 \end{aligned}$	$\begin{aligned} & 1 / 1 \\ & \mathrm{~S} .1 \end{aligned}$	$\begin{aligned} & 2 / 1 \\ & \mathrm{~S} .1 \end{aligned}$	$\begin{aligned} & 3 / 1 \\ & \mathrm{~S} .1 \end{aligned}$	$\begin{aligned} & 4 / 1 \\ & \mathrm{~S} .1 \end{aligned}$	$\begin{gathered} 1 / 1.1 \\ \mathrm{~S} .1 \end{gathered}$	$\begin{gathered} 2 / 1.1 \\ \text { S. } 1 \end{gathered}$	$\begin{gathered} 3 / 1.1 \\ \text { S. } 1 \end{gathered}$	$\begin{gathered} 4 / 1.1 \\ \mathrm{~S} .1 \end{gathered}$	$\begin{aligned} & 2 / 1 \\ & \mathrm{~S} .2 \end{aligned}$
1933-34	δ^{\top}	--	--	5.9	0.5	--	--	0.3	--	--	--
	아	0.3	--	3.3	--	--	0.3	3.1	0.3	--	--
	Total	0.3	--	9.3	0.5	--	0.3	3.3	0.3	--	--
1934-35	δ	0.4	--	0.6	0.2	--	--	--	--	--	0.2
	¢	--	--	--	0.4	--	--	2.0	--	--	--
	Total	0.4	--	0.6	0.6	--	--	2.0	--	--	0.2
1935-36	δ	--	--	6.9	1.8	--	--	0.4	--	--	--
	¢	--	--	2.0	4.0	0.4	--	3.3	--	--	--
	Total	--	--	8.9	5.8	0.4	--	3.8	--	--	--
1936-37	δ	--	0.2	4.7	0.8	0.2	--	--	--	--	0.6
	+	--	--	2.1	0.8	--	0.2	2.7	1.5	--	--
	Total	--	0.2	6.8	1.7	0.2	0.2	2.7	1.5	--	0.6
1937-38	$\begin{aligned} & \delta \\ & \text { ¢ } \end{aligned}$	0.5 --	--	5.9 5.6	$\begin{aligned} & 3.5 \\ & 4.3 \end{aligned}$	--	$\begin{aligned} & 0.3 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 4.6 \end{aligned}$	$\begin{gathered} -- \\ 0.3 \end{gathered}$	--	--
	Total	0.5	--	11.5	7.8	1.3	1.1	5.1	0.3	--	--
1938-39	$\widehat{0}$	--	--	4.2	0.7	--	--	0.4	--	--	--
	+	--	--	4.4	0.4	--	--	2.9	1.5	0.2	--
	Total	--	--	8.6	1.1	--	--	3.3	1.5	0.2	--
1939-40	δ	0.5	--	1.8	--	--	0.2	0.2	--	--	--
	+	0.2	--	2.9	--	--	--	0.7	--	--	--
	Total	0.7	--	4.8	--	--	0.2	0.9	--	--	--
1940-41	\bigcirc	1.3	--	5.6	0.3	--	--	--	--	--	--
	+	1.5	--	6.2	1.3	--	2.1	1.3	--	--	--
	Total	2.8	--	11.8	1.5	--	2.1	1.3	--	--	--
1941-42	δ	1.6	--	5.8	0.3	--	--	0.3	--	--	--
	+	0.5	--	5.0	0.5	--	1.6	5.8	0.5	--	--
	Total	2.1	---	10.9	0.8	--	1.6	6.1	0.5	--	--
Averages *	δ	0.4	+	4.4	0.8	+	0.1	0.2	--	--	0.1
	+	0.3		3.3	1.3	0.2	0.5	2.8	0.5	+	--
	Total	0.7	+	7.7	2.1	0.2	0.5	3.1	0.5	+	0.1
Averages \dagger	$\hat{\delta}$	0.5	$+$	4.6	0.9	+	0.1	0.2	--	--	0.1
	q	0.3	--	3.5	1.3	0.2	0.6	3.2	0.5	+	--
	Total	0.8	$+$	8.1	2.2	0.2	0.6	3.4	0.5	$+$	0.1
Totals	ठ	17	1	172	33	1	2	9	--	--	4
	¢	10	--	129	49	7	19	111	1	1	--
	Total	27	1	301	82	8	21	120	8	1	4
Grand totals	$\begin{gathered} \hline \delta^{2} \\ \text { ¢ } \\ \text { Total } \end{gathered}$	239 (6.2%) 344 (8.8%) 583 (15.0%)					All second spawners				

TABLE 28 - Continued
Waddell Creek, Steelhead: Adults Checked Through Upstream Trap, by Sex and Life History Category (Percentages)

TABLE 28 - Continued
Waddell Creek, Steelhead: Adults Checked Through Upstream Trap, by Sex and Life History Category (Percentages)

* Means of totals.
\dagger Means of seasonal percentages.

From Table 29 it will be seen that the representation of the different life history categories among the second spawners is not directly proportional to the representation of the life history categories from which they were derived among the first spawners. For example, among the first spawners the $2 / 2$ fish are represented almost as strongly (26.5 percent) as the $2 / 1$ fish (29.8 percent), while among the second spawners the $2 / 1.1 \mathrm{~S} .1$ fish, derived from the former, form only 3.4 percent of all fish, while the $2 / 1 \mathrm{~S} .1$ and $2 / 1 \mathrm{~S} .2$ fish, derived from the

TABLE 29
Waddell Creek, Steelhead: Derivation of Repeat Spawners From Previous Groups

TABLE 30

Season	$\begin{gathered} \text { Total } \\ \text { age } \end{gathered}$	Fish spawning for first time						Fish spawning for second time						Fish spawning for third time						Fish spawning for fourth time						Total
		2	3	4	5	6	7	2	3	4	5	6	7	2	3	4	5	6	7	2	3	4	5	6	7	
1933-34	ठ	15	61	58	4	---	---	---	---	23	3	---	---	---	---	2	---	---	---	---	---	---	---	---	---	166
	¢	3	40	132	12	---	---	---	1	14	12	1	----	---	---	---	2	3		---	---	---	---	---	1	223
	total	18	101	190	16	---	---	---	1	37	15	1	----	---	---	2	2	3	2	---	---	---	---	---	1	389
1934-35	${ }^{1}$	5	121	115	17	---	---	---	2	3	2	---	---	---	---	---	---	---	---	---	---	---	---	---	---	265
	¢ 9	4	76	160	20	---	---	---	---	---	13	---	---	---	---	---	---	---	---	---	---	---	---	1	---	274
	total	9	197	275	37	---	---	---	2	3	15	---	---	---	---	---	---	---	---	---	---	---	---	1	---	539
1935-36	${ }^{3}$	7	76	67	11	---	---	---	---	31	10	---	---	---	---	---	---	---	---	---	---	---	---	---	--	202
	아	5	40	119	36	2	---	---	---	9	33	2	---	---	---	---	---	2	---	---	---	---	---	---	---	248
	total	12	116	186	47	2	---	---	---	40	43	2	---	---	---	---	---	2	---	---	---	---	---	---	---	450
1936-37		---	63	113	16	---	---	---	1	22	7	1	---	---	---	---	4	1	---	---	---	---	---	---	---	228
	i	3	60	116	22	---	---	---	---	11	17	7	---	---	---	---	3	5	1	---	---	---	---	---	---	245
	total	3	123	229	38	---	---	---	1	33	24	8	---	---	---	---	7	6	1	---	---	---	---	---	--	473
1937-38	δ^{3}	---	50	55	18	1	---	---	2	23	15	---	---	---	---	---	1	---	---	---	---	---	---	---	---	165
	아	3	56	50	23	5	---	---	---	24	33	6	---	---	---	1	3	1	2	---	---	---	1	---	---	208
		3	106	105	41	6	---	---	2	47	48	6	---	---	---	1	4	1	2	---	---	---	1	---	---	373
1938-39	\%	6	102	72	4	2	---	---	---	19	5	---	---	---	---	---	2	---	---	---	---	---	---	---	---	212
	¢	2	85	88	11	---	---	---	---	20	15	7	1	---	---	---	9	4	---	---	---	---	---	1	--	243
	total	8	187	160	15	2	---	---	---	39	20	7	1	---	---	---	11	4	---	---	---	---	---	1	--	455
1939-40	\%	33	134	32	3	---	---	---	2	9	1	---	---	---	---	---	---	---	---	---	---	---	---	---	---	214
	¢	18	108	79	2	---	---	---	1	13	3	---	---	---	---	---	3	1	---	-	---	---	---	---	--	228
						---	---	---	3		4	---	---	---	---	---	3	1	---	---	---	---	---	---	---	442
1940-41	\%	27	116	33	---	1	---	---	5	22	1	---	---	---	---	---	---	---	---	---	---	---	---	---	---	205
	¢	9	58	62	6	---	---	---	6	32	10	---	---	---	---	---	2	---	---	---	---	---	---	---	---	185
		36	174	95	6	1	---	---	11	54	11	---	---	---	---	---	2	---	---	---	---	---	---	---	---	390
1941-42	ठ	34	54	37	3	---	---	---	6	22	2	---	---	---	---	---	6	1	---	---	---	---	---	---	---	165
	+ 9	9	33	79	17	---	1	---	2	25	24	2	---	---	---	1	9	7	2	---	---	---	---	1	---	212
		43	87	116	20	---	1	---	8	47	26	2	---	---	---	1	15	8	2	---	---	---	---	1	----	377
Totals	\%	127		582		4	---	---	18	174	46	1		---	---	2	13	2		---	---	---	---	---	---	1,822
	아	56	556	885	149	7	1	---	10	148	160	25	1	---	---	2	31	23	7	---	,	-	1	3	1	2,066
	total	183	1,333	1,467	225	11	1	---	28	322	206	26	1	---	---	4	44	25	7	---	---	---	1	3	1	3,888
Totals in percentages	\%	3.3	20.0	15.0	2.0	0.1	---	---	0.5	4.5	1.2	+	---	---	---	0.1	0.3	0.1	---	---	---	---	---	---	---	---
	¢	1.4	14.3	22.8	3.8	0.2	+	---	0.3	3.8	4.1	0.6	+	---	---	0.1	0.8	0.6	0.2	---	---	---	+	0.1	+	---
	total	4.7	34.4	37.9	5.8	0.3	+	---	0.7	8.3	5.3	0.7	+	---	----	0.1	1.1	0.6	0.2	---	---	---	+	0.1	+	---

$2 / 1$ group, form 8.2 percent of all fish. Therefore, it appears that survival beyond first spawning is a function of total age, as well as of number of spawnings.

In Table 30 the fish discussed previously are grouped according to total age.

It is believed that the general composition of the runs in Waddell Creek is representative of the composition of the runs in many other Pacific Coast streams under natural conditions. Comparisons are almost impossible to make, however, because the few published or otherwise available data are either (1) not representative of the entire runs for the localities in question or (2) not taken from localities in which normal conditions prevail. Even numerically adequate samples of the run in a given locality are apt not to be representative of the composition of the run, for the reason that the composition of the run changes markedly during a season, as will be shown on pages 141-142. Abnormal conditions are apt to alter the normal composition of a run in the following and other ways: (1) traps at egg taking stations often permit the escape of steelhead of small size; (2) the longer holding of males at egg taking stations is apt to diminish the percentage of repeat spawners among the males of the run; (3) the selection of parts of the run at an egg taking station for stripping of eggs is apt to diminish the number of repeat spawners among the fish selected for stripping, which are apt to represent certain life history categories more strongly than others; (4) a heavy fishery is apt to draw on certain life history categories more strongly than on others. An attempt at comparison with other localities is further complicated by the fact that some published material has combined first spawners with repeat spawners. As we have seen from the preceding tables, the sex ratios within the life history categories and total age groups and the proportions of the total run formed by the various life history categories and total age groups must be considered separately for first spawners and the various repeat spawners.

An analysis of the complete run at Scott Creek during the 1932-33 season is available, but it is doubtful that this run is representative of normal conditions, as evidenced by the fact that the males formed only 26 percent of the total run, while females formed 74 percent of the run. Of the total run of 377 fish, 59 percent had entered to spawn for the first time, 36 percent for the second time, 4 percent for the third time, and 1 percent for the fourth time. Although the proportion of repeat spawners was greater than the average for Waddell Creek, it may be pointed out that in individual seasons the various groups of repeat spawners at Waddell Creek have approached or exceeded those from Scott Creek cited above. In 193738 the second spawners formed 27.6 percent of the run at Waddell Creek, while in 1941-42 the third spawners formed 7.2 percent of the run there.

Pautzke and Meigs (1940) reported that of a sample of 99 sea-run Puget Sound steelhead, only five fish (5.1 percent) had spawned previously. ${ }^{25}$ Of these, two fish (2.0 percent), one male and one female, were spawning for the second time and three fish (3.0 percent), all females, were spawning for the third time. Total ages of the 99 fish were as follows: three years, 13 percent; four years, 60 percent; five years, 23 percent; six years, 4 percent. At Waddell Creek, the total ages of the

Two other fish, both males, had spawned prior to initial entry into salt water

TABLE 31
Waddell Creek, Steelhead: Adults Checked Through Upstream Trap, by Spawning Experience and Total Age (Summary)

Spawning experience	Total age						Totals
	2	3	4	5	6	7	
1st spawners	183	1,333	1,467	225	11	1	3,220
2nd spawners		28	322	206	26	1	583
3rd spawners			4	44	25	7	80
4th spawners				1	3	1	5
Totals	183	1,361	1,793	476	65	10	3,888
Percentages	4.7	35.0	46.1	12.2	1.7	0.3	100.0

3,888 fish checked through the upstream trap have been as follows: two years, 4.7 percent; three years, 35.0 percent; four years, 46.1 percent; five years, 12.2 percent; six years, 1.7 percent; seven years, 0.3 percent. These figures are presented in tabular form in Table 31.

In summing up the results from the available data, we may state that for steelhead runs the following facts exist: (1) at least 59 percent of the fish (at Waddell, at least 70 percent) are spawning for the first time (excluding fish that have spawned prior to initial entry into salt water) ;
(2) fish spawning for a second time may form an important contribution, constituting as high as 36 percent of the total run; (3) fish spawning for the third time form a very minor part of the total run; (4) fish spawning for the fourth and fifth times form a negligible portion of the run; (5) fish of a total age of over six years form a negligible portion of the run; (6) no fish more than seven years old have been encountered. Fluctuations in the representation of the various life history categories and inadequate data prevent definite statements regarding the representation of the various categories beyond the one that it is probable that $2 / 1$ and $2 / 2$ fish form the most important contributions among normal populations, with $3 / 1,1 / 1,3 / 2$, and $2 / 1 \mathrm{~S} .1$ occasionally contributing to an appreciable extent, No other categories have formed as much as 10 percent of the total run in any season at Waddell Creek, and also do not appear to be of importance in other streams.

We may now turn to a discussion of size. In Table 32 the seasonal average lengths of adults checked through the upstream trap have been arranged in the same manner as were percentages in Table 28. In preparing Table 32, however, all fish for which there was any question regarding sex or scale interpretation of age, and also all known hatchery fish, have been eliminated, since in the present case it was necessary only to obtain sufficient numbers to show representative lengths for the fish of each sex, by life history categories, in each season.

The rate of growth is so much greater in the ocean than in fresh water that it is obvious the ocean growth in general determines the size

TABLE 32
Waddell Creek, Steelhead: Adults Checked Through Upstream Trap, by Life History Category and Sex Mean Length (in cm.)

TABLE 32 - Continued
Waddell Creek, Steelhead: Adults Checked Through Upstream Trap, by Life History Category and Sex Mean Length (in cm.)

Season	Sex	Fish spawning for second time									
		1/1S. 1	1/1S/I	2/1S. 1	3/1S. 1	4/1S. 1	1/1.1S. 1	2/1.1S.1	3/1.1S.1	4/1.1S.1	2/1S. 2
1933-34	$\begin{gathered} \delta \\ 申 \\ \text { ¢ } \\ \text { total } \end{gathered}$	$\begin{array}{ll} 52.5 & (1) \\ 52.5 & (1) \end{array}$	-----------	$\begin{array}{ll} \hline 61.1 & (22) \\ 62.0 & (11) \\ 61.4 & (33) \end{array}$	$\begin{gathered} 60.0 \quad(2) \\ ----- \\ 60.0 \quad(2) \end{gathered}$	-----------	$\begin{aligned} & 69.5 \quad \text { (1) } \\ & 69.5 \end{aligned}$	$\begin{array}{ll} \hline 67.5 & (1) \\ 75.2 & (12) \\ 74.6 & (13) \end{array}$	----------	-----------	-------
1934-35	δ	57.0 (2)	-----	57.2 (3)	-----	--	-----	-----	----	----	78.5 (1)
	¢	-----	--	----	69.0 (2)	-----	-----	74.7 (11)	-----	-----	-----
	total	57.0 (2)	-----	57.2 (3)	69.0 (2)	-----	-----	74.7 (11)	-----	---	78.5 (1)
1935-36	δ	-----	---	58.6 (26)	66.6 (6)	-----	-----	74.0 (2)	-----	-----	(
	아	-----	-----	59.4 (8)	64.3 (16)	68.5 (1)	-----	73.2 (13)	-----	-----	-----
	total	-----	-----	58.8 (34)	65.0 (22)	68.5 (1)	-----	73.3 (15)	-----	----	-----
1936-37	δ		-----	63.0 (17)	65.0 (2)	64.5 (1)	-----	-----	-----	----	$74.5 \quad \text { (2) }$
	ㅇ	---	-----	62.6 (9)	65.2 (3)	--ー--	-----	74.2	$78.5 \quad \text { (7) }$	-----	------
	total	-----	-----	63.3 (26)	65.1 (5)	64.5 (1)	-----	74.2 (9)	$78.5 \quad \text { (7) }$	-----	$74.5 \quad \text { (2) }$
1937-38	$\widehat{\sigma}$	39.5 (1)	---	63.6 (19)	$66.8 \quad(12)$		73.5 (1)	$66.0 \text { (2) }$	-----	---	-----
	¢	-----	-----	66.5 (20)	65.7 (14)	69.0 (2)	69.2 (3)	71.6 (15)	-----	-----	-----
	total	39.5 (1)	-----	64.8 (39)	66.2 (26)	69.0 (2)	70.3 (4)	71.0 (17)	-----	--	-----
1938-39	\%	-----	-----	63.7 (15)	66.5 (1)	-----	-----	77.0 (2)	----	--	-----
	¢	----	-----	67.0 (19)	66.5 (2)	----	---	75.1 (11)	74.3 (4)	75.5 (1)	-----
	total	-----	-----	65.5 (34)	66.5 (3)	-----	-----	75.4 (13)	74.3 (4)	75.5 (1)	-----
1939-40	ठ	59.0 (2)	-----	60.2 (6)	-----	-----	67.5 (1)	-----	-----	-----	-----
	아	54.5 (1)	-----	63.0 (11)	-----	-----	-----	75.5 (3)	-----	-----	-----
	total	57.5 (3)	-----	62.0 (17)	-----	-----	67.5 (1)	75.5 (3)	----	---	-----
1940-41	δ	60.5 (4)	-----	59.8 (20)	-----	-----	-----	-----	---	---	----
	ㅇ	62.3 (4)	-----	61.9 (20)	64.8 (3)	-----	69.0 (6)	69.5 (5)	-----	--	-----
	total	61.4 (8)	-----	60.8 (40)	64.8 (3)	-----	69.0 (6)	69.5 (5)	-----	--	----
1941-42	O	57.7 (5)	-----	59.3 (21)	55.5 (1)	-----	-----	74.5 (1)	-----	-----	-----
	¢	56.0 (2)	-----	59.6 (18)	63.5 (1)	-----	69.5 (5)	$72.5 \quad \text { (19) }$	75.0 (2)	-----	-----
	total	57.2 (7)	-----	59.4 (39)	59.5 (2)	-----	69.5 (5)	$72.6 \quad(20)$		-----	
Averages*	ठ	57.3 (14)	-----	60.8 (149)	65.5 (24)	64.5 (1)	70.5 (2)	72.0 (8)	---	---	75.8 (3)
	q	$58.5 \text { (8) }$	-----	63.1 (116)	$65.2 \quad \text { (41) }$	$68.8 \text { (3) }$	$69.2 \quad \text { (15) }$	$73.4 \quad \text { (98) }$	$76.7 \text { (13) }$	$75.5 \quad \text { (1) }$	\qquad
	total	$57.7 \text { (22) }$	-----	$61.8 \quad(265)$	$65.3 \quad(65)$	$67.8 \text { (4) }$	69.4	$73.3 \text { (106) }$	$76.7 \text { (13) }$	$75.5 \text { (1) }$	75.8
Averages \dagger	δ	54.7	-----	60.7	63.4	64.5	70.5	71.8	-----	-----	76.5
	아	56.3	-----	62.8	65.6	68.8	69.3	73.5	75.9	75.5	-----
	total	54.2	-----				69.2	73.4	75.9	75.5	76.5

TABLE 32 - Continued
Waddell Creek, Steelhead: Adults Checked Through Upstream Trap, by Life History Category and Sex Mean Length (in cm.)

Season	Sex	Fish spawning for third time							Fish spawning for fourth time			Total number
		1/2S.1	2/2S.1	3/2S.1	4/2S. 1	1/1.2S.1	2/1.2S.1	3/1.2S.1	1/3S.1	2/3S. 1	2/1.3S.1	
1933-34	$\begin{gathered} \hline \delta \\ \circ \\ \text { ot } \\ \text { total } \end{gathered}$	$\begin{gathered} 71.0(2) \\ ---- \\ 71.0(2) \end{gathered}$	$\begin{gathered} \hline---- \\ 63.5(1) \end{gathered}$	$74.5 \text { (1) }$		-------	81.5	$\begin{gathered} ----- \\ 79.5(1) \end{gathered}$	-----------	--------	$\begin{gathered} \hline---- \\ 80.5(1) \end{gathered}$	$\begin{aligned} & 166 \\ & 223 \end{aligned}$
1934-35	$\begin{aligned} & \delta^{\prime} \\ & \text { of } \end{aligned}$		-----		-------	--------		-------	-----	76.5 -----	--------	265
		-----	-----	-----	-----	-----	-----	-----	-----	76.5 (1)	-----	539
1935-36		-------		-----				-------	-------		-----	202
	아		-----	-------	-------	-------	76.5			--------	-----	248
	total	---			------	-------	$\begin{array}{r} 76.5 \text { (2) } \\ 76.5 \quad(2) \end{array}$	-------	-------	-----		450
	$\widehat{\delta}$	-----	$69.5 \quad \text { (3) }$	-------	-----	-----	-----	-------	-----	-------	-------	228
1936-37	ㅇ	-----	-----	70.7 (5)	-----	75.5 (1)	-----	72.5 (1)	-----	-----	-----	245
		----	69.5 (3)	70.7 (5)	-----	75.5 (1)	-----	72.5 (1)	-----	-----	-----	473
	δ	---	-----	----	----	-----	-----	-----	67.5 (1)		------	165
1937-38	¢	76.5 (1)	63.5 (1)	-------	-----	-----	-----	-----		-----		208
	total	76.5 (1)	63.5 (1)		-----	-----	-----	-----	67.5	-----	-----	373
	δ	-----	72.5 (2)	----	----	-----	-----	-----	67.5----	-----	-----	212
1938-39	ㅇ total	-----	72.8 (6)72.8 (8)	74.0 (2)	-------	-----	82.5 (1)	-----	-----	-----	-----	243
		-----				-----	82.5 (1)	-----	-----	-----	-----	455
	δ	--	72.8 (-----	74.0 (-----	-----	-----	-----	-----	-----	-----	-----	214
1939-40	아	--	73.5 (1)	----	----	-----	----	-----	-----	-----	--	228
	total	---	73.5 (1)	----	-----	-----	----	-----	-----	-----	-----	442
	δ	----	-----	----	-----	-----	----	-----	-----	-----	---	205
1940-41	아	--	67.0 (2)	---	-----	-----	----	-----	-----	-----	-----	185
	total	-----	67.0 (2)	----	-----	-----	----	----	-----	-----	-----	390
	δ	-----	65.7 (5)	-----	-----	-----	-----	-----	-----	---	-----	165
1941-42	${ }^{+}$	70.5 (1)	68.5 (9)	$71.5 \quad$ (1)	-----	--	75.0 (6)	70.5 (1)	--	-----	-----	212
	total	70.5 (1)	67.5 (14)	71.5 (1)	-----	-----	75.0 (6)	70.5 (1)	-----	-----	-----	377
Averages	$\begin{gathered} \hline \delta^{2} \\ \text { ¢ } \\ \text { total } \\ \hline \end{gathered}$		$\begin{array}{ll} \hline 68.2 & (10) \\ 69.4 & (20) \\ 69.0 & (30) \\ \hline \end{array}$	-----$71.9 \quad(9)$$71.9 \quad(9)$		$\begin{gathered} 75.5 \quad \text { (1) } \\ 75.5 \quad \text { (1) } \\ \hline \end{gathered}$	$\begin{aligned} &---- \\ & 77.1(11) \\ & 77.1(11) \\ & \hline \end{aligned}$	$\begin{aligned} & 74.2 \quad(3) \\ & 74.2 \quad(3) \\ & \hline \end{aligned}$	------	$\begin{array}{r} 76.5 \quad(1) \\ 76.5 \quad(1) \\ \hline \end{array}$	------	-----
		73.5 (2)							$\begin{aligned} & 67.5 \text { (1) } \\ & 67.5 \text { (1) } \\ & \hline \end{aligned}$		$\begin{gathered} 80.5 \\ 80.5 \\ \hline \end{gathered}$	----
		72.3 (4)										-----
		71.0	69.2	-----	-----	-----	-----	-----	-----	-----	-----	-----
	ㅇ	73.5	68.1	72.7	-----	75.5	78.9	74.2	67.5	76.5	80.5	-----
	total	72.7	68.2	72.7	-----	75.5	78.9	74.2	67.5	76.5	80.5	-----

[^26]attained by the fish of a given sex and life history category in a given season. Certain exceptions to this rule will be discussed further in this section.

In the case of the silver salmon (page 46 and Table 8) we saw that there was a tendency for males to attain a larger size than females. A careful study of the data in Table 32 reveals some very interesting facts in this regard for the steelhead. Taking up the first spawners, we find that among the fish that have spent two or more years at sea prior to return to fresh water, the males on the average attain a larger size than do females. This is shown most clearly for those categories for which the numbers of fish (shown in parentheses in Table 32) are the largest, large enough to be significant. In the case of the $2 / 2$ fish, which are by far the most numerous in this group and the scales of which are the easiest to interpret, the males average larger than the females in each season.

Among the fish that returned to spawn after only one year at sea, among the most numerous group (2/1) the females attain a larger size than do the males. This is true in every season. In the case of the $1 / 1$ fish, the average size of females is greater than that of males for all seasons combined, and also in five of the seven seasons for which both males and females were available.

In the case of the $3 / 1$ fish, the females are larger than the males if the average for all seasons combined is calculated as means of seasonal averages (assumption that the seasonal averages are representative of the particular season), but the males are larger than the females if the averages are based on total numbers. A very interesting fact is revealed by an examination of the situation in individual seasons. It is seen that in those seasons in which the fish of this category were the largest (especially 1936-37 and 1934-35, with the largest numbers of fish) the males averaged larger than the females, while in those seasons in which the fish were markedly below average in size (1933-34 and 1935-36) the females averaged larger than the males.

In the case of the $4 / 1$ fish, the numbers are probably too small to reach valid conclusions.

What is the explanation for the general tendency of males to reach a larger size than females among the fish spending two years at sea before returning to fresh water, and females to reach a larger size than males among the fish spending one year at sea before returning to fresh water? The most plausible explanation which occurs to the writers is that a greater proportion of males than of females has attained sexual maturity in fresh water prior to initial entry into the ocean among the fish returning to fresh water after one year at sea than among those returning after two years at sea. We know that among various species, including the Pacific salmons, males often mature precociously. Why the relative percentage of males attaining such precociousness should be greater among the fish returning after one year at sea than among those returning after two years at sea is not known, but may be dependent upon size attained in fresh water by grilse in comparison with size attained in the same length of time by fish which return after two years at sea, or may be dependent upon some other phase of the biology of the fish.

It appears that the reason why among the $3 / 1$ fish the males average larger than the females in those seasons in which the fish of this category are larger than average, while the females average larger than the males in those seasons in which the fish are smaller than average, may be bound up with the proportionate numbers of fish of each sex reaching precocious sexual maturity under conditions producing larger than average fish and smaller than average fish. It will be noticed that among both the $3 / 1$ and $2 / 1$ fish there is proportionately more fluctuation in size from season to season than among other life history categories. The reason for this lies partly in growth conditions at sea, but is probably even more dependent upon the proportion which have spent a growing season in the lagoon. The proportion which does this is determined not only by the biology of the fish but also by fluctuating physical conditions. In some seasons a deep and large lagoon has persisted through the summer, while in other seasons there has been hardly any lagoon. In those seasons in which a large proportion of the fish had spent a summer in the lagoon, the average size is larger, while in those seasons in which a small proportion had spent a summer in the lagoon, the average size is smaller. The presence of fish of both types in the same season results in bimodal length-frequency distributions for fish of the same life history category.

It is possible that secondary sexual characters, especially the elongated snout of males, play some part in determining the relative size of males and females among the different life history categories, but that these are not of primary importance is indicated by the fact that among the various categories of fish spawning for a second or third time we find that the same size relationships persist: among the repeat spawners derived from first spawners which had returned to fresh water after one year at sea the females are larger than the males. This is clearly brought out in Table 33. Numbers of repeat spawners derived from first spawners which had returned to fresh water after two or more years at sea are so small that the probable reverse tendency among them is not clearly marked.

The data in Table 33 also indicate that growth is resumed following spawning among all life history categories. The only exceptions occur among two minor groups, $3 / 1.1 \mathrm{~S} .1$ and $1 / 2 \mathrm{~S} .1$; small numbers of fish may well be the cause of the apparent lack of growth in these cases.

From Table 33 it is also seen that the greatest increase in growth following first spawning, both absolute and relative, is made by the $1 / 1$ group (males $18.8 \mathrm{~cm} ., 49$ percent; females 18.3 cm ., 46 percent; total 18.6 cm ., 48 percent), followed by the $2 / 1$ fish (males $15.5 \mathrm{~cm} ., 34$ percent; females 14.1 cm ., 29 percent; total $15.1 \mathrm{~cm} ., 32$ percent). Thus, it is evident that the greatest increase is made by the smallest fish. That increase is dependent upon size and not age may be seen from a comparison of the growth made by the $1 / 2$ fish (males 5.1 cm ., 8 percent; females 4.2 cm ., 6 percent; total $4.3 \mathrm{~cm} ., 7$ percent), with that made by the $2 / 1$ fish, which are of the same age.

That relative size attained by males and females is not a function of age alone is shown by the fact that among $2 / 1$ fish females consistently attain a larger average size than do males, while among $1 / 2$ fish males consistently attain a larger average size than do females.

An extremely interesting and important fact to be noted from Table 32 is that，as in the case of the silver salmon，the size attained in a given season by one sex of a given life history category is paral－ leled by the size attained by the other sex，with due allowance in those cases in which numbers of fish are small．This coupled with the facts（1）that significant differences exist in average size attained by fish of the same life history category in different seasons and（2）that there appears to be a lack of correlation between the average size

TABLE 33

Waddell Creek，Steelhead：Adults Checked Through Upstream Trap，Arranged to Show Growth of Repeat Spawners Derived From Various Life History Categories

Sex	First spawners		Second spawners		Third spawners		Fourth spawners	
	Category	Mean length in cm．＊						
$\begin{gathered} \hline \delta \\ 申 \\ \text { ¢ } \\ \text { total } \end{gathered}$	2／1	$\begin{gathered} \hline 45.3(641) \\ 49.0(377) \\ 46.7(1018) \end{gathered}$	\} 2/1S. 1	$\begin{aligned} & \hline 60.8(149) \\ & 63.1(116) \\ & 61.8(265) \\ & \hline \end{aligned}$	\} $2 / 2 \mathrm{~S} .1$	$\begin{array}{ll} \hline 68.2 & (10) \\ 69.4 & (20) \\ 69.0 & (30) \\ \hline \end{array}$	\} $2 / 3 \mathrm{~S} .1$	76.5 $76.5 \text { (1) }$
$\begin{gathered} \hline \delta^{\prime} \\ 申 \\ \text { total } \end{gathered}$	2／2	$\begin{aligned} & \hline 70.4(316) \\ & 66.7(597) \\ & 68.0(913) \\ & \hline \end{aligned}$	\} 2/1.15.1	$\begin{array}{cc} \hline 72.0(8) \\ 73.4 \quad(98) \\ 73.3(106) \end{array}$	\} $2 / 1.2 \mathrm{~S} .1$	$\begin{array}{r} 77.1 \text { (11) } \\ 77.1 \quad(11) \\ \hline \end{array}$	\} 2/1.3S.1	80.5 （1） 80.5 （1）
$\begin{gathered} \hline \text { § } \\ 申 \\ \text { ¢ } \\ \text { total } \end{gathered}$	3／1	$\begin{gathered} \hline 55.6(163) \\ 54.9(164) \\ 55.3(327) \\ \hline \end{gathered}$	\} 3/1S. 1	$\begin{array}{ll} \hline 65.5 & (24) \\ 65.2 & (41) \\ 65.3 & (65) \end{array}$	\} 3/2S. 1		\} 3/3s. 1	
$\begin{gathered} \hline \text { § } \\ 申 \\ \text { ot } \\ \text { total } \end{gathered}$	1／1	$\begin{aligned} & \hline 38.5(106) \\ & 40.2 \text { (46) } \\ & 39.1 \text { (152) } \\ & \hline \end{aligned}$	\} 1/1S. 1	$\begin{array}{ll} 57.3 & (14) \\ 58.5 & (8) \\ 57.7 & (22) \end{array}$	\} 1/2s. 1	$\begin{array}{ll} \hline 71.0 & \text { (2) } \\ 73.5 & (2) \\ 72.3 & (4) \end{array}$	\} 1/3S. 1	67.5 （1） 67.5 （1）
$\begin{gathered} \hline \text { § } \\ 申 \\ \text { ¢ } \\ \text { total } \end{gathered}$	3／2	$\begin{array}{ll} \hline 72.9 & (37) \\ 69.4 & (86) \\ 69.5(123) \end{array}$	\} 3/1.1s. 1	$\begin{aligned} & 76.7 \text { (13) } \\ & 76.7 \text { (13) } \\ & \hline \end{aligned}$	\} 3/1.2S.1	74.2 （3） $74.2 \quad$（3）	\} 3/1.3S. 1	－－－－
$\begin{gathered} \hline \text { o } \\ 申 \\ \text { total } \\ \text { tol } \end{gathered}$	1／2	$\begin{aligned} & \hline 65.4 \quad(34) \\ & 65.0(98) \\ & 65.1(132) \end{aligned}$	\} 1/1.1S. 1	$\begin{array}{rr} \hline 70.5 & (2) \\ 69.2 & (15) \\ 69.4 & (17) \end{array}$	\} 1/1.2S.1	75.5 （1） 75.5 （1）	\} 1/1.3S.1	－－－－
$\begin{gathered} \hline \text { § } \\ 申 \\ \text { ¢ } \\ \text { total } \end{gathered}$	4／1	$\begin{array}{cc} \hline 57.3 & (9) \\ 56.7 & (9) \\ 57.0 & (18) \\ \hline \end{array}$	\} 4/1S. 1	$\begin{array}{ll} \hline 64.5 & (1) \\ 68.8 & (3) \\ 67.8 & (4) \\ \hline \end{array}$	\} 4/2S. 1	－－－－	\} 4/3S.1	－－－－
$\begin{gathered} \hline \text { § } \\ 申 \\ \text { ot } \\ \text { total } \end{gathered}$	4／2	$\begin{array}{cc} \hline 79.5 & \text { (2) } \\ 71.8 & \text { (4) } \\ 74.3 & (6) \end{array}$	\} 4/1.1s. 1	$75.5 \quad(1)$ $75.5 \quad \text { (1) }$	\} 4/1.2S.1	－－－	\} 4/1.35.1	－－－
$\begin{gathered} \hline \text { § } \\ 申 \\ \text { ¢t } \\ \text { total } \end{gathered}$	2／3	$\begin{array}{ll} \hline 75.7 & \text { (5) } \\ 70.0 & \text { (2) } \\ 74.1 & \text { (7) } \end{array}$	\} 2/2.1s. 1	－－－－－	$\}^{2 / 2.2 S .1}$	－－－	\} 2/2.3S.1	－－－－
$\begin{gathered} \hline \text { § } \\ 申 \\ \text { ¢t } \\ \text { total } \end{gathered}$	1／3	$\begin{array}{ll} \hline 77.5 & (1) \\ 79.5 & (1) \\ 78.5 & (2) \end{array}$	\} 1/2.1S.1	－－－－－	\} 1/2.2S.1	－－－－	\} $1 / 2.3 \mathrm{~S} .1$	－－－－
$\begin{gathered} \hline \text { § } \\ 申 \\ \text { total } \end{gathered}$	4／3	－－－	$\} \quad 4 / 2.1 \mathrm{~S} .1$	－－－－－	\} 4/2.28.1	－－－	\} 4/2.3S.1	－－－－
$\begin{gathered} \hline \delta \\ \varnothing \\ \text { ¢ } \\ \text { total } \end{gathered}$	3／3	－－－－	\} 3/2.1s. 1	－－－－－－	\} 3/2.2S.1	－－－－－－－	\} 3/2.3S.1	－－－－

[^27]Waddell Creek, Steelhead: Mean Length (in cm.) of Comparable First Spawners and Repeat Spawners to Show Effect of Spawning on Growth

TABLE 34 (continued)

Waddell Creek, Steelhead: Mean Length (in cm.) of Comparable First Spawners and Repeat Spawners to Show Effect of Spawning on Growth									
	ठ	69.0 (2)	60.5 (4)	71.2 (28)	59.8 (20)	-----	-----	79.5 (1)	---
1940-41	¢	67.9 (12)	62.3 (4)	66.8 (51)	61.9 (20)	70.6 (6)	64.8 (3)	-----	-----
	total	68.1 (14)	61.4 (8)	68.3 (79)	60.8 (40)	70.6 (6)	64.8 (3)	79.5 (1)	-----
	\bigcirc	58.0 (2)	57.7 (5)	68.2 (15)	59.3 (21)	64.5 (1)	55.5 (1)	-----	----
1941-42	아	60.9 (16)	56.0 (2)	65.1 (50)	59.6 (18)	66.5 (1)	63.5 (1)	---	-----
	total	60.6 (18)	57.2 (7)	65.8 (65)	59.4 (39)	65.5 (2)	59.5 (2)	-----	-----
	ठ	65.4 (34)	57.3 (14)	70.4 (316)	60.8 (149)	$72.9 \quad$ (37)	$65.5 \quad$ (24)	79.5 (2)	64.5 (1)
Average *	ㅇ	65.0 (98)	58.5 (8)	66.7 (597)	63.1 (116)	69.4 (86)	65.2 (41)	71.8 (4)	68.8 (3)
	total	65.1 (132)	57.7 (22)	68.0 (913)	61.8 (265)	69.5 (123)	65.3 (65)	74.3 (6)	67.8 (4)
	δ	66.3	54.7	70.3	60.7	71.8	63.4	79.5	64.5
Averages \dagger	¢	64.9	56.3	66.7	62.8	68.9	65.6	71.8	68.8
	total	65.4	54.2	67.9	61.5	69.8	64.5	75.6	67.3

[^28]of the downstream migrants of a given age and year class and returning adults derived from them, indicates that conditions in the ocean may vary sufficiently from season to season to affect markedly the size of steelhead from a given stream.

Any attempt to determine the influence of a particular ocean year on the average size of the adults of a given life history category is obscured by many factors, including small numbers, precocious maturity and residence in the lagoon (particularly in the case of the grilse), different average lengths of time spent at sea during the same growth season by fish of different life history categories (because of different migration times both downstream and upstream), and different sex ratios among the different life history categories. However, there does appear to be a tendency for the $1 / 2,2 / 2$, and $3 / 2$ groups, fish of different year classes and life history categories but the same ocean histories, to parallel each other in growth achieved in certain seasons. We may note that in the 194142 season the fish not only of these categories, but also of all the other more important categories, were of markedly below average size. It is of extreme interest that in the same season the silver salmon were also decidedly below average in size (Table 8). Thus, the ocean growth season of 1941-42 (i.e., principally summer of 1941) appears to have been a very poor one for both steelhead and silver salmon.

One other interesting fact may be demonstrated by the data in Table 32: the repeat spawners of a given life history category are markedly smaller than first spawners of the same year class which have spent the same number of seasons in fresh water and in the ocean. For example, the $1 / 2$ fish may be compared with the $1 / 1 \mathrm{~S} .1$ fish, the $2 / 2$ fish with the 2.1S.1 fish, etc. These data are singled out in Table 34, which shows clearly how spawning cuts down the subsequent size of the fish. Exceptions occur: individual fish complete their spawning and return to sea in short order, and so make rapid growth again.

TABLE 35

Waddell Creek, Steelhead: Spawning Runs, by Seasons

Season	Checked through upstream trap			Jumped over dam			Spawned below dam			Total run		
	σ	¢	Total	\bigcirc	아	Total	δ	ㅇ	Total	δ	¢	Total
1933-34	166	223	389	33	9	42	20	35	55	219	267	486
1934-35	265	274	539	3	--	3	7	5	12	275	279	554
1935-36	202	248	450	42	6	48	7	8	15	251	262	513
1936-37	228	245	473	10	--	10	11	10	21	249	255	504
1937-38	165	208	373	10	--	10	25	20	45	200	228	428
1938-39	212	243	455	--	--	--	5	6	11	217	249	466
1939-40	214	228	442	25	5	30	10	10	20	249	243	492
1940-41	205	185	390	25	5	30	10	10	20	240	200	440
1941-42	165	212	377	30	10	40	16	16	32	211	238	449
Totals	1,822	2,066	3,888	178	35	213	111	120	231	2,111	2,221	4,332
Averages	202	230	432	20	4	24	12	13	25	234	247	481

It is of interest that Waddell Creek steelhead achieve approximately the same length as silver salmon of the same life history categories, as follows:
$1 / 1$ males $\quad 1 / 2$ males $\quad 1 / 2$ females

Steelhead	38.5	65.4	65.0
Silver salmon	40.6	64.7	63.9

Very few data on lengths of steelhead from other streams are available for comparison, but there is some unpublished evidence that steelhead (and silver salmon) from the Columbia River are larger, while those from the Klamath River are smaller, than comparable Waddell Creek fish. It appears, therefore, that the size of steelhead is not correlated with the size or latitude of the home stream.

The previous tables of this section have dealt with the fish which were checked through the upstream trap. In addition, in all seasons a number of fish spawned below the dam and in all seasons but one a comparatively small number of fish succeeded in jumping over the dam at extreme flood stage. Estimates of the numbers of such fish were made and are included in Table 35 , which shows the estimated total runs into Waddell Creek. ${ }^{26}$ It is assumed that the sex-life history composition of the fish spawning below the dam was essentially the same as that of those spawning above; field observations yielded no evidence to indicate that this assumption was not valid. From an examination of the figures in Table 35 it is obvious that among fish jumping over the dam males were in excess of females out of all proportion to the sex ratio among fish checked through the upstream trap. Examination of unclipped fish seen spawning or found dead above the dam and checked downstream after spawning, as well as general field observations, has shown that males are much more successful than females in jumping a fall such as that created by the dam. However, the numbers of fish which jumped over the dam are comparatively so small that they alter the general picture of the composition of the expected steelhead spawning run but little.

Sex Ratio

From Tables 28 and 29 it is seen that both among first spawners and second spawners, males characteristically predominate in certain categories, while females predominate in others. It will be found that among both first spawners and second spawners, males predominate in the life history categories forming the fish of the lesser total ages, while females predominate in those forming the fish of the greater total ages. This was shown clearly in Table 30, in which the fish discussed previously were grouped according to total age.

From this table it is seen that in considering sex ratios when the fish are grouped according to total age, the first, second, third, and fourth spawners must be considered separately. It will be noticed that

[^29]among the first spawners, females predominate among the four-year fish, while among the second spawners males predominate among the four-year fish.

Referring back to Table 29, we see that survival following spawning is higher among females than among males. Even in those groups in which males predominated when the fish entered as first spawners, the relatively higher survival among females persists through each successive spawning, until finally the females are numerically superior. As a result, there are very few males among the older groups of repeat spawners. One might expect that the spawning act would affect the females more than the males, especially since the females dig the nests, and so that a reverse phenomenon would be encountered. However, the lower survival among males probably results from the fact that males serve more than one female, and so are exposed not only to prolonged physical exertion, but also to the dangers of being stranded in the stream by lowering water levels and the closing of the bar at the mouth of the stream. It is possible that in large streams, the mouths of which remain permanently open, survival among males is somewhat higher than in the smaller streams, like Waddell Creek.

It is obvious from the preceding discussion that we cannot speak of the sex ratio of the steelhead run as a whole, without considering the ramifications and complexities created by the multiplicity of life history categories, differential survival of sexes among repeat spawners, and variations of behavior within certain life history categories. However, it may be of interest also to consider the end result as regards sex ratio, keeping in mind the various factors that create it. From Tables 28 and 35 we see that on the average the sex ratio for the run as a whole is one male to 1.13 females (47 percent to 53 percent) if only the fish checked upstream are considered, and one male to 1.05 females (49 percent to 51 percent) if the estimated total run is used. Among first spawners, the ratio is $1: 1.05$ ($49: 51$ percent) for fish checked upstream, and 1.02:1 (50:50 percent) for those in the estimated total run.

Despite possible slight variations from the above figures in the ratios actually existing under natural conditions in various streams, it is evident that some unnatural factors are operating at egg collecting stations and other places where females are greatly in excess of males, sometimes as much as six females to one male.

An excess of females over males among the first spawners that have spent two years or more at sea prior to return to fresh water is theoretically to be expected, assuming a $1: 1$ sex ratio among juveniles and an equal mortality rate among males and females in the ocean, since males predominate among the grilse. The general picture for the steelhead first spawners is much the same as that for the silver salmon, although females are represented to some extent among all categories of steelhead grilse, while the silver salmon grilse are all males.

In the following subsection we shall consider another phase of this subject, the normally changing sex ratios during the course of a spawning run.

Changes in Sex-Life History Category Composition During the Run

The life history category and sex composition of the runs is not the same throughout the season. As in the case of the silver salmon, males predominate in the early portions of the runs, while females predominate in the latter portions. This change in sex ratio may be noted in Figure 23 and Table 27.

Since the sexes and life history categories are associated, it follows that changes in the representation of the life history categories also occur throughout the run. Of the principal categories, the $2 / 1$ fish of smaller size predominate strongly in the early part of the run. There appears to be a general tendency for $2 / 2$ fish to appear in increasing numbers as the season progresses, reaching a peak at midseason, and thereafter declining in numbers. The larger grilse, composed of the $3 / 1$ fish and the larger $2 / 1$ fish, do not appear in large numbers until March or the latter part of February, and thenceforth increase in relative abundance during the remainder of the season. Most of the other categories occur in numbers too small to note definite trends. Even in the case of the major categories, exceptions occur, but the generalizations stated probably represent the normal pattern. Seasonal changes in the runs of six of the most important life history categories of Waddell Creek steelhead are shown in Figure 25 (and Table A-15 of the Appendix).

Sportsmen and others have noted the variations in the composition of the steelhead runs in streams which have not been investigated from a biological viewpoint. They speak of the occurrence of small fish in the early part of the run, followed by the "large winter steelhead," in turn followed by fish of medium size, often known as "bluebacks".

Figure 25. Seasonal distribution of life history categories in the Waddell Creek steelhead spawning run.

Deviations from the basic pattern are caused by abnormal environmental conditions, such as prolonged low stream flow, which delays the movement of some categories and the subsequent bunching of various categories when conditions again become suitable for upstream migration, and abnormal abundance or scarcity of certain life history categories.

The changing sex ratio in the steelhead run as a whole is accentuated by the fact that within certain life history categories the sex ratio changes in the same direction within the course of a season. Within the $2 / 1$ group, males are greatly in excess at the beginning of the run, the sexes are approximately equally represented by the latter part of February or the early part of March, while females are usually somewhat in excess by the end of the run. Within the $2 / 2$ group, there is some indication that males are more abundant in the early than in the late part of the run. Trends among the other categories are not evident.

Factors Influencing the Time of Upstream Migration

It has already been pointed out that in certain streams entry and upstream migration may necessarily be delayed by physical conditions. In many streams the first heavy upstream migrations coincide with large increases in stream flow, especially in streams which attain low summer levels, but such migrations often do not occur with the first large increases in stream flow.

As in the case of the silver salmon, the writers believe that in Waddell Creek and similar small streams there is also a definite relationship between ascension of the streams by spawning fish and flow of water, which so far it has proved impossible to show quantitatively, because of the existence of several variables. Steelhead, like silver salmon, ascend both on rising and falling stream levels, but cease movement during peak floods. However, the number of fish taken during any given water height is not approximately the same, but depends upon the proportion of the run that has already ascended the stream during the storm and during the season, upon preceding flows and climatic conditions, and possibly upon other factors, such as sexual ripeness of fish and turbidity of water. For example, on more than one occasion a number of steelhead have entered Waddell Creek during a storm or series of storms, but have "holed up" in pools in the lower portion of the stream, below the trap, as a result of sudden cessation of the storm and lowering of flow. These fish tend to remain "holed up" until a change of weather occurs, in which case even a light rain and small rise in stream level will cause a large number to ascend the stream or spawn below the pool in which they had waited. In this respect the steelhead appear to be less demanding than the silver salmon, sometimes ascending the stream or dropping below to spawn if the period of fair weather is quite prolonged. In general, the steelhead appear to be less exacting than silver salmon as regards the conditions under which they will spawn or ascend an obstacle in a stream, such as a fishway. Diurnal fluctuations in migration may now be considered.

Steelhead, silver salmon, and king salmon move upstream mainly in the daytime. Observations by Chapman (1941), Neave (1943), and the
writers which substantiate this statement were discussed in the comparable section for silver salmon (page 55). It was also pointed out that various workers have noted the occasional occurrence of periods of relative inactivity in upstream movement of various salmonids within the daylight hours, but that 110 correlations between such fluctuations in movement during the daytime and environmental factors have been demonstrated. As Chapman (1941) pointed out, they are "probably multiple with complex inter-relationships." It was noted that particularly at Scott Creek two daily peaks of migration among the steelhead have been observed by the writers on successive days, without any marked changes in stream discharge, turbidity of water, or general weather conditions (other than light and temperature).

Changes in Body Form and Coloration Associated With Maturation

The changes in body form and coloration which are associated with maturation in sea-run steelhead are of the same character as those in the silver salmon, but usually much less marked. In the males, these changes are characterized by elongation of the jaws, with knobbing but rarely with hooking, the growth of canine-like teeth, and the increase in depth of body by the ridging of the back. Among the larger fish, the extent of these changes is sufficiently greater in the males than in the females to enable the experienced observer to determine the sex by external examination. Among the smaller fish the sexual differences in these characters are sometimes so slight that considerable difficulty may be experienced in distinguishing between males and females, especially in fish which are not ripe. Following spawning these growths are partially resorbed, but the jaws never fully recover their original shape. ${ }^{27}$

Like the Pacific salmons, steelhead at sea are quite silvery. In fresh water a pink or reddish lateral band, usually most prominent and brightest in males, develops along the body. The opercles (gill covers) become similarly colored.

As in the Pacific salmons, the scales, which are loosely attached in individuals in salt water and in those recently arrived from the sea, become firmly imbedded with the approach of spawning, particularly in the males.

Spawning Beds

Females choose the redd sites. Examination of many redds shows that the site selected is typically near the head of a riffle (which is also the lower end of a pool) composed of medium and small gravel. Usually the site is close to the point where the smooth surface water "breaks" into the riffle.

The nature of the redd site insures a good supply of oxygen for the eggs, since in streams a considerable portion of the water flowing through a swift riffle passes through the gravel.

Although steelhead ordinarily spawn in places that also look "good" to the experienced observer, and which he would have selected as

[^30]probable spawning sites before the fish had arrived, occasional individuals pick sites which the observer would have picked as being unfavorable, either because of the composition or configuration of the bottom or the character of the flow. The power of the fish to dig a pit in apparently unfavorable bottom is illustrated by one example cited by Needham and Taft (1934). The female in question dug a nest in a hard, gravelly, semicemented mixture of decomposing rock forming a portion of a ford built for automobile passage in the East Branch of Waddell Creek just above The Forks. This ford had been constructed by piling up rocks which were held in place by wire poultry netting along the downstream margin. The female had crumbled this hardpan and worn away the edge of the outcrop so that it was evenly broken off near the edge of the ford. Fish select unusual and apparently unfavorable sites even when there is no overcrowding and apparently more favorable unused sites are available in readily accessible portions of the stream. Steelhead so choose their redds that they are very rarely exposed by falling stream levels, in both Waddell Creek and other California coastal streams.

Spawning

The first complete, recorded observations on the spawning of sea-run steelhead were made during the spring of 1933 in Waddell Creek by P. R. Needham, A. C. Taft, and Leo Shapovalov and were described in detail by Needham and Taft (1934). Their account was confined largely to observations on three fish placed in a pen in the natural stream. A generalized account of the spawning of steelhead is here presented, as follows.

The female first selects a suitable spawning site. In this process several sites may be selected and abandoned. After a satisfactory site is finally chosen, the female begins nest digging. One or more males may accompany, the female, but the males do not participate in the digging. Usually one male becomes the mate; the other males, although sometimes persistent in approaching the female, seem to sense this and usually yield to the dominant male when he makes a rush at them. Probably more often than not the mate is a larger fish than the attendant males, but even if smaller, his "right" to the female is usually recognized. On occasion the dominant males chase the accessory males viciously, even to the extent of driving them into the riffle above or below the nest. The fighting and digging often result in a great deal of commotion, especially when several males are in attendance, so that the resultant splashing may be heard several hundred feet from the stream.

While the female is digging the nest, the male assumes positions slightly behind (downstream) and to one side of her. The dominant male often changes his position from one side to the other, and apparently attempts to stimulate her. At frequent intervals he approaches the side of the female closely and the two fish quiver, together or separately. This quivering and also the nest digging have often been mistaken for the emission of the sexual products by different writers (e.g., Kendall and Dence (1929) for eastern brook trout), but the behavior accompanying the latter action is quite different. When several males accompany a female, the accessory males usually arrange themselves in an arc on the downstream side of the female. The distance that they
maintain depends upon the pugnacity of the dominant male. In the accompanying photograph (Figure 26) four males will be seen ranged about the mating pair and nest. Two other males, six to nine inches long (stream fish), participated but do not appear in the photograph. The dominant male then alternates between darts at these fish and courting of the female. Upon returning from an attack on other males, the dominant male often rubs his snout both over and under the tail of the female, probably either to stimulate her or as a sign of recognition. Fish of both sexes face upstream during the spawning activities.

In digging the nest the female turns on her side and with powerful and rapid movements of the tail disturbs the bottom materials, which are then carried a short distance downstream by the current. As this process is repeated the nest takes form and finally results in an oval or roundish pit or depression. Depending partly on the size of the fish, the pit is approximately from four inches to a foot in depth and 15 inches in diameter. After several vigorous digging operations the female usually drops back into the pit and may test its dimensions with her anal fin.

The length of time that elapses between the beginning of courting and nest building activities on the chosen redd and the deposition of the sexual products varies greatly. In the observations of 1933 the deposition of the eggs and milt took place four hours and twenty-five minutes after the fish were placed in the pen and one hour and twenty-five minutes after digging had been started.

At the moment of deposition, the female drops into the pit and lowers her vent and anal fin into the deepest part. The male instantly or simultaneously moves into a position parallel and next to her, so that the vents are opposite. Both fish open their mouths wide and arch their bodies so that they are rigid, with their backs concave (in the observations of 1933, the tip of the female's snout broke the surface of the water), and the eggs and milt are exuded simultaneously. The eggs drop into the bottom of the pit in a compact group and are enveloped by a cloud of milt. The whole process, from the time that the female drops into the pit until the synchronized orgasm resulting in the actual deposition of the eggs, takes only a few seconds.

For many years the view was generally held that natural reproduction of salmonids is a rather ineffective process, but various studies contradict this opinion. Probably rarely are any of the eggs swept out of the pit, even when the current is swift. Sometimes some of the milt may be swept downstream, but an ample amount settles with the eggs to insure thorough fertilization. Apparently both the eggs and the milt are held in the pit by current eddies below the normal level of the stream bed. This view has been advanced for the spawning of various salmonids by Peart (1920) and others.

Hobbs (1937), in his studies in New Zealand, concluded that at least 97.5 percent of the brown trout eggs lodged in the redds at the time of spawning. The present writers believe that 97.5 percent would express a minimum average for the number of eggs buried in the redds by steelhead.

Immediately upon deposition of the eggs and milt, the female, unaided by the male, begins to cover up the eggs. This she accomplishes in a few seconds by turning on her side and digging to each side and

FISH BULLETIN NO. 98

FIGURE 26. A pair of Waddell Creek steelhead over spawning nest, with four smaller males ranged around the nest Photograph by Paul R. Needham, April, 1933.
forward of the nest, the current sweeping the gravel into the pit. The eggs are well covered in a brief period of time. The males appear uninterested in this process.

When the eggs are well covered the female begins to dig another pit two or three feet directly upstream from the first. By working upstream in this manner the eggs of the first pit are buried deeper by materials washed downstream from the subsequent digging. This process is repeated as other pits are dug. In the 1933 observations the eggs were deposited in the second pit one hour and forty minutes after initial deposition, and digging of the third pit was started shortly. Apparently the fish in question completed spawning during the night, since by morning she had left the redd and retired to the adjoining pool. When she was killed for examination in the early afternoon it was found that only seven eggs remained.

Judging by the separately raised piles of gravel, which were in a straight line following the current, the 1933 fish dug six or seven pits to complete spawning. Since fish of similar size (60 cm . long) contain from 3,800 to 7,800 eggs, this female may have averaged a deposition of anywhere from 550 to 1,300 eggs at a time.

The completed redd was approximately 12 feet long and 5 feet wide (60 square feet). The depth of the water averaged about five inches over this area.

Although the 1933 fish completed spawning within 12 hours, it is believed that often the process takes a week or more. The length of time probably depends upon the ripeness of the fish, water and atmospheric conditions (especially temperature and height of water), and the extent to which the mating fish are interrupted by intruders (human beings, stream-side mammals, birds, and other fish).

Fish after natural spawning do not have much blood in the coelomic cavity, while in artificial spawning blood is often found in the coelomic cavity and is sometimes extruded with the last eggs, due to rupture of blood vessels. The amount of damage thus done to the fish depends principally upon (1) the skill of the spawner and (2) the extent to which he attempts to secure a high percentage of eggs contained.

No quantitative estimate can be made of the amount of damage done to redds by subsequent spawners, which may be silver salmon or other steelhead. It is probable that although the losses from this cause may be severe in individual nests, the percentage loss for all eggs deposited in the stream is small.

Spawning sea-run steelhead are very often accompanied by stream trout. Most of these are sexually mature males which act much like the smaller accessory sea-run males, darting in and out during the nestbuilding and courting process. Such fish are often called "egg-eaters" by anglers. However, their primary purpose in being present is probably to participate in the spawning activities. This is indicated by the fact that in occasional instances in which a single stream male has been seen to accompany a nest-building sea-run female unaccompanied by a sea-run male, the behavior of the stream male has been quite similar to that of a sea-run dominant male, the fish maintaining a position parallel to the female and slightly behind and to one side of her.

Accompanying stream fish often do contain a few eggs in their stomach. Such eggs are probably occasional ones shed by fish on their way upstream or in the course of nest digging, disturbed by superimposition of nests on nests prepared by previous fish, or swept out of the spawning pits before they were covered. It is a general thing for trout of various species to contain eggs of whatever species of salmonids are spawning at the time. Some examples were cited in the comparable section on silver salmon spawning (page 59). Eggs eaten by sculpins (Cottus) are most likely occasional ones of the types described previously.

Egg Production

The calculations of numbers of eggs produced by Waddell Creek steelhead are based on the numbers produced by Scott Creek steelhead, since collection of eggs from Waddell fish would have destroyed the experimental plan. There is no evidence to indicate that the Scott Creek fish produce a different average number of eggs for a given size of fish from Waddell fish.

Figure 27. Egg production of Scott Creek steelhead.

Correlation of Number of Eggs With Size of Fish

The relationship between length of the fish and the number of eggs produced is shown in Figure 27. This relationship was determined from 562 measurements of the amount (volume) of eggs and the size (volume) of individual eggs obtained from manually spawned fish of known lengths, taken at Scott Creek during the 1931-32, 1932-33, and 1933-34 seasons. ${ }^{28}$

Measurement of the eggs was carried out according to the Taft method, described in the comparable section for silver salmon (pages 59-61). This method is particularly valuable for securing data on trout egg production, since it permits the securing of the data without destroying either the fish or the eggs. As in the case of the salmon, total egg volume was measured in a $1,000 \mathrm{cc}$. glass graduate, and the volume of individual eggs by averaging the displacement of 10 eggs in a burette.

In calculating the volume factor (F) for Scott Creek steelhead, three egg counts and measurements from two fish were used. The volume in cc. of individual eggs was obtained from two of these measurements by averaging the volume of 110 eggs measured in lots of 10 and for the other by averaging the volume of 100 eggs measured in lots of 10 . From these values a volume factor of 0.674 was obtained. The data used in obtaining F are shown in Table A-16 of the Appendix. The frequency distribution of quantity of eggs (in cc.) stripped from Scott Creek steelhead is given in Table A-17 of the Appendix.

Examination of 12 manually spawned fish taken at random during the seasons of 1931-32 and 1932-33 showed that in ordinary hatchery spawning only about 90 percent of the number of eggs contained in the fish is obtained, the remaining 10 percent being left in the ovaries (see Appendix, Table A-18). Therefore, to obtain the total number of eggs the calculated number was multiplied by 1.1.

Although the number of fish examined (12) to determine the percentage of eggs left in the fish in artificial spawning may not be large enough to give an exact figure, there is evidence to support the view that the percentage obtained is not far from the average. For 151 red salmon spawned by the expression method at Cultus Lake, British Columbia, in 1931 and 1932, Foerster (1936) records the average number of eggs left in the stripped fish as 14.5 percent of the total number of eggs. For 16 manually spawned golden trout (Salmo agua-bonita), Curtis (1934) found the number of eggs left in the fish to be about 7 percent of the number contained. The percentage of eggs obtained in artificial spawning of steelhead probably depends principally upon (1) the skill of the spawner and (2) the ripeness of the fish. It does not appear to depend upon size or life history of the fish, or the number or size of eggs produced.

The total number of eggs was plotted in 400-egg intervals against fish length in $2-\mathrm{cm}$. intervals and a regression line was fitted to the points.

[^31]This line was fitted by the method of least squares and, since the relationship is curvilinear, the regression line was determined on a logarithmic scale and later transposed to a linear scale. This regression line is not as accurate as one determined from the original paired variates, but is close enough to the true one to be used here, considering all possible sources of error. Its equation is Number of Eggs $=0.9471 \mathrm{X}$ Length ${ }^{2.1169}$. The correlation ratio, γ, for the relationship between eggs produced and fish length is 0.838 .

Before the factor used to obtain the calculated number of eggs (0.674) was chosen, a factor of 0.6888 had been used. Using this latter factor, and omitting the data for 1934-35, the regression of eggs produced on fish length had been calculated separately for first spawners, second spawners, and all fish combined. While these regressions are not believed to be as accurate as the present ones and therefore are not presented at this time, they do show that the differences between first and second spawners and between each of these categories and all fish combined are so slight that a single regression may be used.

Prior to the adoption of the method finally used, an attempt was made to calculate the number of eggs on the basis of the average diameter of 10 eggs rather than volume. This method was found to be unreliable.

In the corresponding section for silver salmon a correlation was shown to exist between number of eggs and length of fish, and it was pointed out that other workers had found a positive significant correlation between number of eggs and both length and weight in other species of salmonids. Weights of the Scott Creek steelhead were not obtained. The significance of such a correlation in the management and study of the species involved was also noted.

Percentage of Eggs Deposited

It was shown in the preceding section that in artificial stripping approximately 10 percent of the eggs are left in the fish. To calculate the total number of eggs deposited in Waddell Creek in each season it was necessary to know the average number of eggs left in the fish after spawning.

By the very nature of the plan of the experiments at Waddell Creek it was impossible to kill spent steelhead to determine the number of eggs left in the fish after spawning. Reliance therefore had to be placed on (1) chance dead spent steelhead found in Waddell Creek, (2) observations on other streams, and (3) observations on closely related adult salmonids of similar size and habits. There are only four records for counts of eggs in dead spent steelhead found in Waddell Creek. These fish contained $0,3,16$, and 58 eggs, respectively. As noted in a previous section, the 60 cm . Scott Creek steelhead used in the 1933 spawning pen experiment at Waddell Creek contained only seven eggs after spawning. The average for the five fish for which definite counts are recorded is therefore only 16.8 . This meager record is supported by a number of notes for dead steelhead at Waddell Creek made by different field observers to the effect that the fish were "completely spent". As stated in the corresponding section for silver salmon (page 62), these observations are in close agreement with the findings of the writers and other workers for other species of salmonids.

Therefore, it was decided not to subtract any eggs in calculating the number deposited by Waddell Creek steelhead, but to use the total egg production figures obtained for Scott Creek steelhead of the same lengths and expressed by the regression line in Figure 27. It is likely that the number of eggs left in the fish after natural spawning bears little or no relation to the size of the fish (and consequently the number of eggs produced).

Percentage of Eggs Fertilized

Although quantitative data for Waddell Creek steelhead are not available, there is every indication that the percentage of eggs fertilized is very high and rather constant. Extensive spawning work by personnel of the California Department of Fish and Game has shown that the percentage of steelhead eggs fertilized can be quite high under the close to ideal artificial conditions. In the corresponding section for silver salmon (page 63) it was noted that the observations of Hobbs (1937) indicated a uniformly high efficiency of fertilization (over 99 percent) for other species of salmonids, and that since the spawning of the various trouts and salmons follows essentially the same pattern and local conditions usually play a more important role than the factors peculiar to the species involved, it appears legitimate to apply them in the present studies.

The previously cited observations on the spawning act of steelhead in Waddell Creek (pages 144-148) support the view that the percentage of fertilization is quite high. Besides, the observations of the writers and the various seasonal observers consistently indicate a tremendous emergence from the gravel.

Return of Adults to the Sea (Post-spawning Behavior)

After spawning the spent steelhead which have not succumbed to old age, disease, or predators descend to the sea. In the parlance of the angler, such fish are "downstreamers".

In certain streams, steelhead are reported to return to sea immediately after spawning, while in others they are known to delay their return, lingering in the larger pools for considerable periods of time.

In Waddell Creek, within the same season some fish have returned to sea almost immediately after spawning, while others have been taken as late as the week of December 10-16 of the following season. However, the bulk of the fish have been taken during the period April-June. The spent adults taken in the downstream trap at Waddell Creek during the nine seasons of operation are shown in Table 36. The figures do not represent total numbers, since a number of fish are known to have passed downstream over the dam, especially during the earlier portions of the migration, but do show the approximate period of migration.

The fish which do not proceed immediately to the sea gather in the larger pools, where they swim lazily about close to the surface. There is some tendency for the fish to gather in small groups, or for individuals to follow one another, but no real schooling takes place. In Waddell Creek, the same group of fish has been seen week after week in the pool above the dam. At times an individual will leave the pool and resume his downstream journey, or not uncommonly half-a-dozen or so may start toward the sea. The factors which influence the fish to resume

TABLE 36
Waddell Creek, Steelhead: Spent Adults Checked Through Downstream Trap, by Seasons and Weekly Periods

Period	1933-34			1934-35			1935-36			1936-37			1937-38			1938-39			1939-40			1940-41			1941-42			Total			
	σ^{2}	안	$\begin{array}{\|l} \hline \text { To- } \\ \text { tal } \\ \hline \end{array}$	ठ	+	$\begin{array}{\|l} \hline \text { To- } \\ \mathrm{tal} \\ \hline \end{array}$	ठ	+	$\begin{array}{\|l\|} \hline \text { To- } \\ \text { tal } \\ \hline \end{array}$	ठ	¢	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { To- } \\ \text { tal } \end{array} \\ \hline \end{array}$	ठ	+	$\begin{array}{\|c} \hline \text { To- } \\ \text { tal } \\ \hline \end{array}$	O	아	$\begin{array}{\|l\|} \hline \text { To- } \\ \text { tal } \\ \hline \end{array}$	O	아	$\begin{array}{\|l\|} \hline \text { To- } \\ \text { tal } \\ \hline \end{array}$	σ^{2}	아	$\begin{array}{\|c\|} \hline \text { To- } \\ \text { tal } \\ \hline \end{array}$	ठ	+	$\begin{array}{\|l\|} \hline \text { To- } \\ \text { tal } \\ \hline \end{array}$	$\widehat{ }$	아	Total	Avg.
Oct. 1-7	-	-	-	-	-	-	-	-	-		$\dagger 1$	$\dagger 1$	-	-	-	-	$\dagger 1$	$\dagger 1$	-	$\dagger 1$	$\dagger 1$	-	-	-	-	-	-	-	$\dagger 3$	$\dagger 3$	+
Oct. 8-14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$\dagger 1$	$\dagger 1$	-	-	-	-	-	-	-	-	-	-	$\dagger 1$	$\dagger 1$	+
Oct. 15-21	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Oct. 22-28	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$\dagger 1$	$\dagger 1$	$\dagger 2$	-	-	-	-	$\dagger 1$	$\dagger 1$	-	-	-	$\dagger 1$	$\dagger 2$	$\dagger 3$	+
Oct. 29-Nov. 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nov. 5-11	$1 \dagger$	-	$1 \dagger$	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$\dagger 1$	-	$\dagger 1$	+
Nov. 12-18	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nov. 19-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Nov. 26-Dec. 2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dec. 3-9	-	(*1)	(*1)	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dec. 10-16	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	$\dagger 1$	-	$\dagger 1$	1	-	1	-	-	-	-	-	-	$\begin{gathered} 2(\dagger \\ 1) \end{gathered}$		$2(\dagger 1)$	+
Dec. 17-23	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-)	-	-	-
Dec. 24-30	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Dec. 31-Jan. 6	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Jan. 7-13	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Jan. 14-20	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Jan. 21-27	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Jan. 28-Feb. 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	1	1		1	+
Feb. 4-10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Feb. 11-17	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Feb. 18-24	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	-	-	-	-	1	1	+
Feb. 25-Mar. 3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1		1	1		1	+
Mar. 4-10	-	-	-	-	-	-	3	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	4	5	2	7	1
Mar. 11-17	-	-	-	-	-	-	1	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	2	+
Mar. 18-24	-	1	1	-	-	-	10	4	14	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	10	6	16	+
Mar. 25-31	-	-	-	2	-	2	6	3	9	-	-	-	-	-	-	4	5	9	-	-	-	7	-	7	2	1	3	21	9	30	3
Apr. 1-7	6	2	8	1	-	1	1	3	4	1	-	1	-	2	2	3	4	7	-	-	-	-	-	-	3	6	9	15	17	32	4
Apr. 8-14	-	1	1	-	-	-	2	-	2	1	-	1	-	1	1	6	21	27	-	-	-	-	-	-	-	-	-	9	23	32	4
Apr. 15-21	6	1	7	2	-	2	5	2	7	1	1	2	-	-	-	2	1	3	2	1	3	1	-	1	-	-	-	19	6	25	3
Apr. 22-28	13	7	20	-	1	1	3	1	4	1	2	3	1	2	3	3	6	9	-	-	-	-	-	-	2	1	3	23	20	43	5
Apr. 29-May 5	4	3	7	1	1	2	5	1	6	2	3	5	2	1	3	4	4	8	3	-	3	-	-	-	2	2	4	23	15	38	4

TABLE 36 (continued)
Waddell Creek, Steelhead: Spent Adults Checked Through Downstream Trap, by Seasons and Weekly Periods

Period	1933-34			1934-35			1935-36			1936-37			1937-38			1938-39			1939-40			1940-41			1941-42			Total			
	δ^{1}	+	$\begin{array}{\|l} \hline \text { To- } \\ \text { tal } \\ \hline \end{array}$	O	아	$\begin{aligned} & \hline \text { To- } \\ & \text { tal } \\ & \hline \end{aligned}$	δ^{1}	+	$\begin{array}{\|l\|} \hline \text { To- } \\ \text { tal } \\ \hline \end{array}$	$\widehat{ }$	+	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { To- } \\ \text { tal } \end{array} \\ \hline \end{array}$	ठ	+	$\begin{array}{\|l\|} \hline \text { To- } \\ \text { tal } \\ \hline \end{array}$	O	+	$\begin{array}{\|l} \hline \text { To- } \\ \text { tal } \\ \hline \end{array}$	O	아	$\begin{aligned} & \hline \text { To- } \\ & \text { tal } \\ & \hline \end{aligned}$	ठ	+	$\begin{array}{\|l\|} \hline \text { To- } \\ \text { tal } \\ \hline \end{array}$	ठ	+	$\begin{array}{\|l\|} \hline \text { To- } \\ \text { tal } \\ \hline \end{array}$	δ^{1}	아	Total	Avg.
May 6-12	2	1	3	-	-	-	2	1	3	-	1	3	1	-	1	6	8	14	2	-	2	-	-	-	3	2	5	18	13	31	3
May 13-19	1	1	2	-	-	-	3	2	5	2	2	4	4	3	7	3	-	3	-	-	-	-	-	-	5	-	5	18	8	26	3
May 20-26	3	8	11	-	-	-	2	-	2	3	1	4	-	1	1	6	4	10	-	-	-	-	-	-	1	-	1	15	14	29	3
May 27-June 2	-	-	-	-	-	-	-	-	-	-	1	1	-	-	-	3	5	8	-	-	-	-	-	-	-	-	-	3	6	9	1
June3-9	3	8	11	-	-	-	1	-	1	-	-	-	1	-	1	1	2	3	-	-	-	-	-	-	-	-	-	6	10	16	2
June 10-16	-	-	-	-	-	-	-	-	-	6	3	9	1	1	2	1	3	4	-	-	-	-	-	-	-	-	-	8	7	15	2
June 17-23	-	-	-	-	-	-	-	-	-	-	-	-	1	-	1	2	3	5	-	-	-	-	-	-	-	-	-	3	3	6	1
June 24-30	-	-	-	1	-	1	-	1	1	-	-	-	-	-		1	-	1	-	-	-	-	-	-	-	-	-	2	1	3	+
July 1-7	1	-	1	-	-	-	-	-	-	1	-	1	-	-	-	9	3	12	-	-	-	-	-	-	-	-	-	11	3	14	2
July 8-14	-	1	1	-	-	-	-	1	1	-	1	1	-	-	-	6	8	14	-	-	-	-	-	-	-	-	-	6	11	17	2
July 15-21	-	2	2	-	-	-	-	-	-	-	-	-	-	-	-	2	-	2	-	-	-	-	-	-	-	-		2	2	4	+
July 22-28	-	-	-	-	-	-	-	-	-	-	1	1	-	-	-	2	-	2	-	-	-	-	-	-	-	-	-	2	1	3	+
July 29- Aug. 4	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	2	-	-	-	-	-	-	-	-	-	-	2		+
Aug. 5-11	-	-	-	-	-	-	-	-	-	-	1	1	-	-	-	-	1	1	-	1	1	-	-	-	-	-	-	-	3	3	+
Aug. 12-18	1	-	1	-	-	-	1	-	1	-	-	-	-	-	-	-	-	-	1		1	-	-	-	-	-	-	3	-	3	+
Aug. 19-25	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	1	3	-	-	-	-	-	-	-	-	-	2	1	3	+
Aug. 26-Sept. 1	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	+
Sept. 2-8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sept. 9-15	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sept. 16-22	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Sept. 23-30	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	2	3	-	-	-	-	-	-	-	-	-	1	3	4	+
Totals	41	37	78	7	2	9	45	19	64	20	18	38	11	12	23	69	86	155	9	3	12	8	2	10	22	16	38	232	195	427	47

* From 1932-33 upstream migration.
\dagger Taken during this week of following season.
the seaward journey following such prolonged interludes in pools are not yet fully known, although some such emigrations have followed light rains. In the larger streams much greater numbers of spent steelhead gather in the larger pools, especially behind dams. For example, hundreds of such fish have been observed in the extensive pool above Benbow Dam, on the South Fork of Eel River.

Spent adult steelhead typically do not resume feeding while in fresh water. As a result, those taken soon after spawning (unless weakened by disease or old age) are thin, but active and in good condition, while those taken several months after spawning are quite emaciated. Individuals captured in OctoberDecember of the following seasons apparently have not eaten following spawning; their stomachs are empty and shrunken and their mouths and gills are often covered by numerous parasitic copepods (Salmincola). The male taken during the week of December 10-16, 1939, must not have eaten for at least 34 weeks, since the last upstream male of the same size in the preceding season was taken during the week of April 15-21; it is remarkable that fish can remain alive and active following the rigors of spawning and such a prolonged fast. It is not known if individuals which have abstained from food for so long a period that their stomachs are shrunken are physiologically capable of resuming feeding.

Spent adults which have not resumed feeding will nevertheless strike at various objects, such as coins or pebbles thrown into the water. Fish in the pool back of Benbow Dam have been observed to rush at coins tossed in 10 or 12 feet away. In such cases one fish after another has been seen to seize and then "spit out" the coin in its descent to the bottom. A valid explanation of this interesting behavior seems to be lacking. It hardly seems likely that the fish see such an object as an enemy, yet we know that the fish are not seeking food. In any case, this behavior has resulted in the taking of spent steelhead on spinners, especially with a May 1 opening of the trout season.

Only a very few adults which have completed spawning have been taken again in the same season in the upstream trap at Waddell Creek. However, fish which have been artificially stripped, often return in large numbers to the upstream trap at spawning stations, usually within a few days of spawning. The incomplete removal of the sexual products under artificial conditions and the completeness of spawning under natural conditions may play a role in this difference in post-spawning behavior.

Following spawning, adult steelhead, which typically "color up" in fresh water before spawning, gradually assume a pale, "washed-out" appearance, although some of the redness may be retained. The scales remain firmly imbedded. Only following their re-entry into the sea does the silveriness typical of salmonids in salt water return.

Embryology and Hatching of Eggs

The best and only complete account of the development of steelhead eggs is that by Wales (1941). The embryology of the steelhead is in general similar to that of other trout and of salmon, and the details will not be presented in this paper.

The number of days required for steelhead eggs to hatch varies from about 19 at an average temperature of $60^{\circ} \mathrm{F}$. to about 80 at an
average temperature of $40^{\circ} \mathrm{F}$. At the temperatures prevailing in Waddell Creek, the usual hatching time is from 25 to 35 days.

Various exceptions and special considerations in regard to development and hatching have been cited and discussed under the comparable section for silver salmon and have general application to the steelhead. As in the case of the silver salmon, silting occurring between fertilization and hatching and caused by severe floods or mining is probably the principal cause of pre-hatching losses. Various experiments were cited to show this. Experiments conducted by Shapovalov (1937) on steelhead substantiate the results obtained with other species.

Under normal hatchery conditions the hatch is between 80 and 90 percent of steelhead eggs taken. There is no quantitative basis for estimating the average percentage of steelhead eggs hatching in Waddell Creek, but the writers believe that under favorable conditions (principally absence of heavy silting) it is comparable to that of hatchery eggs, or 80 to 90 percent of the eggs deposited. Even in periods of heavy floods, when the water is laden with silt, stream velocities in areas utilized for spawning by trout and salmon are probably sufficient to prevent excessive deposition of silt and thus damage to the eggs in the gravel.

At time of hatching steelhead are approximately 17 to 18 mm . (0.7 inch) long and weigh about 0.1 gram (270 fish per ounce).

Emergence From the Gravel

Silting is also probably the principal factor in determining the survival rate from time of hatching to emergence from the gravel.

In the experiments conducted by Shapovalov (1937) it was impossible to segregate the survival from time of burial to hatching from the survival from hatching to emergence, but the over-all survival to time of emergence was 29.8 percent in the presence of considerable silting and 79.9 percent in the absence of much silting. In the former instance the water flowing over the gravel had a considerably lower velocity than would water in a natural stream laden with an equal amount of silt and so it may be that under natural conditions the percentage of emergence is rarely as low as 29.8 percent. Again, there is no quantitative basis for estimating the average percentage of steelhead emerging from the gravel in Waddell Creek, but the writers believe that under favorable conditions (principally absence of heavy silting) it is high, probably between 70 and 85 percent of the eggs deposited. There is, of course, no stage in hatchery operations directly comparable to the period from time of hatching to time of emergence under natural conditions, but under hatchery conditions the losses during the equivalent period of time normally are light, so that hatchery survival to time that steelhead finish emerging from the gravel under natural conditions is still between 80 and 90 percent of the eggs taken.

For the areas which he examined, Hobbs (1937) concluded that (1) the incidence of loss subsequent to fertilization, where heavy loss occurs, is much greater in the pre-eyed than in the eyed eggs or in the hatched- fish-in-the-gravel stage, (2) heavy losses of fertilized eggs are the outcome of adverse environmental conditions and not of inherent weakness, (3) the extent of losses of fertilized eggs in undisturbed redds depends primarily on the amount of very fine material in the redds
during the development of eggs before eyeing, and (4) Saprolegnia (fungus) infection of dead pre-eyed eggs is responsible for losses of eggs at later stages.

Hobbs (1940) found the loss between hatching and the time of emergence to be extremely light, exceeding 1 percent in only one river system.

The experiments conducted by Shapovalov (1937) indicate that the steelhead fry start emerging from the gravel two to three weeks after hatching and require another two to three weeks to complete emergence. This is probably what happens under normal conditions existing in, California coastal streams. Shallow burial, loose gravel, absence of silt, and high temperatures may all be expected to speed emergence, while the opposite conditions may be expected to retard emergence.

Under normal conditions the fry rarely emerge from the gravel before the yolk sac is absorbed. Shallow burial results in premature emergence. This was indicated by the experiments of Shapovalov (loc. cit.) and had previously been cited for Pacific salmon (Oncorhynchus) by Babcock (1911). The time of emergence from the gravel approximately coincides with the beginning of feeding in the hatcheries.

Because of the normal long period of emergence, at the time that the last fish emerge the first fish to have emerged are usually considerably larger than the former, despite the fact that the eggs were deposited at the same time.

At time of emergence from the gravel steelhead are approximately 23 to 26 mm . (0.95 inch) long and weigh about 0.16 gram (180 fish per ounce).

Stream Life Prior to Seaward Migration (General Features)
At Waddell Creek the only quantitative data regarding numbers of fish were obtained at times of migration through the traps, so the following account will necessarily be based on general observations.

The behavior of juvenile steelhead during their first year of life, especially during the first couple of months following emergence from the gravel, is generally similar to that of the silver salmon fry. The freshlyemerged fish first take up residence in the shallow gravel areas, especially at the sides of the stream. At first they tend to congregate in schools, but as time passes and the fish grow these schools break up and the fish spread up and down the stream, selecting individual small "territories", from which they drive other fish of the same size or somewhat larger.

The fry in the shallows feed avidly and grow rapidly. The individual fry rise to nearly every small object drifting downstream or falling into the water, selecting those that are suitable and rejecting those that are not. Following their rise, they return to the original position.

Soon after the first steelhead have emerged from the gravel, marked differences in size are to be noted among the fish of the season, within the same section of stream. For example, 20 fish seined in one pool in Waddell Creek on July 12, 1932, by J. H. Wales ranged from 43 to 77 mm . in length. Such differences result principally from the prolonged spawning season and therefore prolonged hatching and emergence periods of the steelhead. Of course, different growth rates of individuals play some role in creating fish of different sizes, but the long spawning
season is the principal cause. In addition, the fish of the lower portions of the stream, with the warmer temperatures, are on the average larger than those of the upper portions. Larger average size in the warmer portions of the stream results both from a more rapid growth rate and a somewhat shortened hatching period, so that these fish have a head start on those from the cooler waters.

Soon after the peak of emergence there is a marked decline in the numbers of fry in the stream, due to mortality. Possible causes of losses at Waddell Creek are predators, drying stream channels, and disease, and have already been discussed in the comparable section on silver salmon. Predatory fishes are believed to make the greatest inroads.

As the fish grow, they gradually move into deeper water and eat coarser food. However, unlike the silver salmon, in late summer the young steelhead do not appear to move into the deep, quiet pools, but inhabit the moderately swift portions of the stream. Diurnal movements within limited areas may occur, but have not been studied in any detail. At this time the growth rate of the fish begins to slow down (probably not as early nor as markedly as in the case of the silver salmon) in association with the period of maximum stream temperatures and minimum flow, with some evidence to indicate that the former plays the greatest part. During the period of heavy rainfall and lowest temperatures, December through February, feeding is generally quite light and growth negligible, according to measurements and scale readings. It appears that during this period of floods and great turbidity the young steelhead, like the silver salmon, are not swept downstream and do not migrate downstream voluntarily in large numbers, but make use of backwater and eddies in maintaining their position in the stream.

Following the period of maximum precipitation, the fish start making extremely rapid growth (usually in March), as witnessed by the sharp increase in average size of fish and new growth registered on the scales. The resumption of heavy feeding is probably influenced both by rising temperatures and an abundance of aquatic food organisms. Although a steady lowering of stream flow takes place during the ensuing months, adverse water conditions ordinarily are not reached before midsummer.

Some data are available regarding the sex ratio among stream steelhead and indicate that great care should be taken in drawing conclusions, for the reason that apparent differences may depend upon the time of year at which the fish are taken and the manner in which they are caught. Actual differences may exist in certain age groups (especially the older ones) and certain categories (e.g., upstream or downstream migrants), although the available data have not yet revealed such differences. Probably the sex ratio is close to $1: 1$ among stream steelhead two years of age or under.

Snyder (1938), reporting on data obtained from upwards of 1,000 trout caught by Theodore J. Hoover by hook and line in Waddell Creek between May 1, 1927, and May 1, 1928, found that of 866 fish sexed 466 (53.8 percent) were males and 400 (46.2 percent) females. However, the sex representation among fish caught by angling is not necessarily representative of the sex ratio of a stream population, and, moreover, in the case under discussion the numbers caught in the different months were not equal. Males predominated in the catches most strongly during the period February-July, while females predominated or the
sex ratio was approximately equal during the period August-January. Snyder concludes that "A seasonal variation in the sex is indicated..., although the numbers involved are too small to warrant definite conclusions."

Shepherd (1928) reported on 55 stream steelhead caught by hook and line in Waddell Creek in October, 1926, July and December, 1927, and January, 1928. Of the 55, 32 (58.2 percent) were males and 23 (41.8 percent) females. There was a slight predominance of males in all four months, but the figures are too small to make comparative analyses. Data obtained during the course of the present experiments support the evidence that males predominate in anglers' catches in the spring of the year. Of 24 trout caught by two anglers in the East Branch of Waddell Creek (above the closed area) on May 1, 1942, 23 were males. Nineteen of the 23 males were ripe; the female was spawned out. It is not unlikely that at least during the spawning season males strike at a baited hook or lure more readily than do females. If this is the case, it is interesting to speculate that a short angling season during the spring months may create a marked shortage of males where an intensive fishery exists.

The sex ratio of yearling steelhead held in rearing ponds at the Big Creek State Fish Hatchery was, on the basis of six samples, approximately 1:1. These samples contained a total of 207 males and 193 females.

At this point it may be noted that the young steelhead exhibit much greater variation in individual behavior than do the juvenile silver salmon. This is most markedly brought out by the fact that the young steelhead migrate down at various ages from + to 4 , while practically all of the silver salmon migrate downstream as yearlings. While the salmon go to sea almost immediately, some of the steelhead remain for a whole season in the lagoon or the lower portion of the stream, after which some move out to sea, while others make an upstream migration and then a second downstream migration. While most of the steelhead go to sea before maturing, some fish of both sexes spawn before going to sea, while still others complete their life cycles without going to sea at all. (Among the silver salmon perhaps a few males reach precocious sexual maturity prior to their seaward migration, but none of the females do so.) There are other variations in the behavior of individual young steelhead; for example, although most of the fish diminish feeding and growth in the late summer or early autumn, some continue to feed and make rapid growth deep into the winter. Some resume heavy feeding and growth in the middle of the winter, while others do not do so until spring. Some diminish feeding and growth for a prolonged period, while others resume feeding and growth after only a brief interlude. These variations in behavior are reflected in the structure of the scales; for example, some scales are just beginning to form an annulus at the same time that others show considerable new growth. Some of the variations in regard to growth and annulus formation undoubtedly are associated with sexual maturity and migration.

The various migrations made by stream steelhead will be discussed in subsequent sections.

TABLE 37
Waddell Creek, Steelhead: Stream Fish Checked Through Downstream Trap, by Seasons and Weekly

					erio						
Period	$\begin{aligned} & \text { J } \\ & \text { ñ } \\ & \end{aligned}$	$\begin{aligned} & n \\ & \dot{1} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { ñ } \end{aligned}$	$\begin{aligned} & \text { en } \\ & \text { b } \\ & \text { on } \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{1} \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{2} \\ & \infty \\ & \underset{\sim}{2} \end{aligned}$			$\begin{aligned} & \underset{\sim}{7} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \frac{\bar{y}}{d} \\ & \stackrel{\rightharpoonup}{0} \times \stackrel{\text { II }}{0} \end{aligned}$	
Oct. 1-7		--	--	2	6	60	21	5	131	225	28
Oct. 8-14		--	7	3	10	59	84	11	25	199	24
Oct. 15-21		--	--	3	12	4	20	1	97	137	17
Oct. 22-28	-	--	--	--	15	12	14	44	70	155	19
Oct. 29-Nov. 4	\%	1	--	--	26	216	6	43	145	437	55
Nov. 5-11	\bigcirc	10	--	--	24	42	22	14	43	155	19
Nov. 12-18		66	14	11	107	2	11	18	32	261	33
Nov. 19-25		21	71	8	131	2	--	8	7	248	31
Nov. 26-Dec. 2		8	10	1	35	285	2	6	7	354	44
Dec. 3-9	3	5	11	2	23	174	--	2	87	307	34
Dec. 10-16	28	9	15	6	26	47	20	1	31	183	20
Dec. 17-23	5	3	2	26	5	220	13	134	34	442	49
Dec. 24-30	8	15	77	102	1	80	20	3	23	329	39
Dec. 31-Jan. 6	--	12	330	90	8	43	11	6	1	501	56
Jan. 7-13	--	7	53	12	5	65	7	15	1	165	18
Jan. 14-20	4	--	19	10	7	33	--	10	1	84	9
Jan. 21-27	3	1	8	5	9	32	3	9	--	70	8
Jan. 28-Feb. 3	3	4	6	3	--	37	--	1	9	63	7
Feb. 4-10	16	9	1	17	1	17	2	--	--	63	7
Feb. 11-17	11	4	3	18	--	6	3	3	4	52	6
Feb. 18-24	30	3	3	23	14	2	2	4	13	94	10
Feb. 25-Mar. 3	27	3	16	19	11	2	2	2	42	124	14
Mar. 4-10	22	12	68	37	3	26	2	1	79	250	28
Mar. 11-17	70	20	83	28	19	40	3	33	8	304	34
Mar. 18-24	159	50	105	10	2	77	54	31	26	514	57
Mar. 25-31	201	54	81	15	1	297	17	25	152	843	94
Apr. 1-7	308	126	43	40	10	369	1	1	209	1,107	123
Apr. 8-14	411	18	83	31	30	511	11	1	89	1,185	132
Apr. 15-21	344	53	173	33	46	414	58	50	8	1,179	131
Apr. 22-28	391	85	118	41	29	559	28	74	52	1,377	153
Apr. 29-May 5	150	101	147	57	45	348	9	24	161	1,042	116
May 6-12	105	51	94	75	108	649	37	244	223	1,586	176
May 13-19	111	32	248	142	174	404	33	287	225	1,656	184
May 20-26	138	50	213	236	235	243	47	521	480	2,163	240
May 27-June 2	68	62	207	246	187	68	218	400	112	1,568	174
June 3-9	225	84	102	374	163	37	213	397	400	1,995	222
June 10-16	67	68	224	217	98	147	165	552	621	2,159	240
June 18-23	13	159	345	108	183	84	120	842	421	2,275	253
June 24-30	2	108	309	95	352	14	293	416	390	1,979	220
July 1-7	41	136	29	379	212	69	251	145	265	1,527	169
July 8-14	49	20	55	519	183	69	153	57	333	1,438	160
July 15-21	28	76	138	162	170	16	116	117	308	1,131	126
July 22-28	19	47	82	20	214	44	150	164	128	868	96
July 29-Aug. 4	9	57	59	10	66	21	519	31	44	816	91
Aug. 5-11	11	55	26	92	57	37	401	19	18	716	80
Aug. 12-18	18	20	101	61	43	48	175	11	23	500	56
Aug. 19-25	6	5	87	33	77	21	48	22	9	308	34
Aug. 26-Sept. 1	6	26	50	20	87	46	32	21	8	296	33
Sept. 2-8	4	12	12	42	46	9	17	39	18	199	22
Sept. 9-15	3	16	7	28	16	28	27	119	31	275	31
Sept. 16-22	--	3	5	9	26	21	15	240	15	334	37
Sept. 23-30	--	4	3	8	32	33	8	391	62	541	60
Totals	3,117	1,791	3,943	3,529	3,390	6,189	3,484	5,615	5,721	36,779	--

Downstream Migration of Stream Fish

Time and Size of the Migration

During the nine seasons of operation of the trap, ${ }^{29} 36,779$ stream steelhead were checked on their downstream migration. The number taken during each weekly period in each season is shown in Table 37 and Figures 11-19.

The length of these fish from tip of snout to fork of caudal fin was recorded in mm ., measurement being made to the next highest $\mathrm{mm} .{ }^{30}$

Scale samples were taken from the great majority of the fish during the first six seasons of operation, i.e., 1933-34 through 1938-39. ${ }^{31}$ Scale samples were not taken during the last three seasons, 1939-40 through 1941-42, largely because it was believed that further scale samples from downstream steelhead would not yield information commensurate with the effort expended.

Time permitted "reading" of only a portion $(1,695)$ of the scale samples taken. Of these, 1,412 were measured as well as read.

From Table 37 and Figures 11-19 it is apparent that some stream steelhead, unlike the juvenile silver salmon, migrate downstream at all times of the year, but that the largest numbers migrate in the spring and summer, with a secondary migration in the late fall or early winter. It is also seen that during January and February the migration is very light.

Age and Size of the Fish

Since it was impossible to examine scales from all of the fish, some alternative system of age analysis had to be adopted. Assignment of fish to age classes at any given point of time in one season on the basis of scale reading for another season proved unsatisfactory because of seasonal differences resulting from (1) varying time of the migration as a whole, (2) varying growth rate (and consequently size of fish) of one or more age classes, (3) varying numerical size of one or more age classes, and (4) other changes in the pattern of the downstream migration of one or more age classes brought about by their place of origin in the stream, rate of migration, etc. Therefore, the logical method that presented itself was that of segregation of age classes according to modal groups of length frequencies, with reading of scales where overlaps between the modal groups occurred.

By definition in this paper, an age + fish becomes age 1 with the completion of its first annulus, an age 1 fish becomes age 2 with the completion of its second annulus, etc. In Waddell Creek, annulus formation is generally completed in December or January, but varies

[^32]widely for individual fish. However, for the sake of simplicity, in the tables and figures dealing with stream steelhead the break between seasons (September 30-October 1) has been used as the changeover point from one age to another. Thus, fish of the season's hatch are called age + , fish of the previous season's hatch (although including some fish that have not yet formed an annulus) though generally distinct from the younger ones, are not distinct from each other, but tend to form unimodal groups. These older age class groups are called age 1 , fish of the second previous season's hatch (although including a few fish that have not yet formed a second annulus) are called age 2 , etc.

In Table 38 (and Tables A-19 to A-27 for the individual seasons, in the Appendix) the different age classes stand out rather conspicuously, with occasional overlaps. We see that in general the two youngest age classes in each season (i.e., the fish of the season and of the previous season's hatch) stand out as separate entities. These older age class groups, however, are composed principally of fish of one age class (fish completing their second year or in their third year, depending upon the portion of the season in which they are recorded), with fish of older age classes scattered through most of the length-frequency group.

Figure 28. Stream steelhead checked through the downstream trap at Waddell Creek during the 1938-39 season; length frequencies by two-week periods.

TABLE 38
Waddell Creek, Steelhead: Stream Fish Checked Through Downstream Trap, All Seasons Combined; Length-frequency Distribution by Two-week Periods

Length in mm .	$\begin{gathered} \text { O ct } 1- \\ 14 \end{gathered}$	$\begin{gathered} \text { Oct } \\ 15-28 \end{gathered}$	$\begin{gathered} \hline \text { Oct } \\ 29- \\ \text { Nov } \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} \text { Nov } \\ 12-25 \end{gathered}$	$\begin{gathered} \text { Nov } \\ 26- \\ \text { Dec } 9 \end{gathered}$	$\begin{gathered} \text { Dec } \\ 10-23 \end{gathered}$	$\begin{gathered} \text { Dec } \\ 24 \text {-Jan } \\ 6 \end{gathered}$	$\begin{gathered} \text { Jan } 7- \\ 20 \end{gathered}$	Jan. 21-Feb 3	$\begin{gathered} \mathrm{Feb} \\ 4--17 \end{gathered}$	$\begin{gathered} \text { Feb } \\ 18- \\ \text { Mar } 3 \end{gathered}$	$\begin{gathered} \text { Mar } 4 \\ -17 \end{gathered}$	$\begin{gathered} \text { Mar. } \\ 18-31 \end{gathered}$
			* 6	*55									
21-25	--	--	--	--	--	--	--	--	--	--	--	--	--
30	--	--	--	--	--	--	--	--	--	--	--	--	--
35	--	--	2	--	--	--	--	--	--	--	--	--	--
40	2	1	6	2	1	--	1	3	--	--	--	--	--
45	7	5	17	11	13	4	13	1	1	-	--	--	--
50	27	8	31	46	37	32	30	8	6	2	--	--	--
55	57	26	61	69	109	68	79	19	18	5	--	2	--
60	56	9	88	72	116	76	138	35	15	8	3	2	--
65	45	11	60	60	101	84	146	39	18	15	6	4	2
70	36	22	56	44	66	63	160	28	13	14	6	3	1
75	52	31	61	33	49	49	101	39	9	16	5	5	3
80	33	45	43	29	52	39	62	17	7	8	2	6	4
85	15	29	41	20	20	44	24	11	4	3	2	4	6
90	26	32	27	14	16	28	25	6	10	1	1	--	6
95	22	21	20	7	17	24	10	8	4	1	1	3	7
100	10	12	13	10	13	16	5	2	5	--	3	3	6
105	10	6	7	7	11	13	6	7	2	2	1	5	4
110	4	6	11	4	9	15	4	3	--	2	5	8	3
115	6	8	7	3	8	11	6	6	4	4	7	9	3
120	3	5	7	2	8	8	5	5	--	3	13	5	2
125	4	3	5	4	1	16	1	2	3	8	9	6	10
130	2	1	6	7	5	7	2	3	3	2	5	4	18
135	2	3	6	3	4	6	2	1	1	5	12	8	27
140	2	2	3	3	1	4	1	1	--	3	14	10	24
145	--	--	1	--	1	7	1	1	2	3	9	13	62
150	1	2	2	1	--	2	1	3	2	2	7	19	73
155	--	2	3	1	--	1	--	--	--	1	7	21	94
160	--	--	--	--	--	1	1	--	2	--	9	32	99
165	1	1	--	--	1	4	1	--	--	2	10	36	127
170	--	--	2	--	--	1	--	--	1	1	8	41	111
175	--	--	--	--	--	1	1	--	--	1	8	48	108
180	--	--	--	--	--	--	2	--	1	1	19	41	96
185	--	--	--	--	--	--	--	--	--	--	10	37	88
190	--	--	--	--	1	--	--	--	1	2	10	32	80
195	--	--	--	--	--	--	2	--	--	--	9	30	53
200	--	--	--	--	--	--	--	--	--	--	2	27	64
205	--	--	--	--	--	--	--	--	--	--	6	15	45
210	--	--	--	--	--	1	--	--	--	--	2	14	25
215	--	--	--	--	--	--	--	1	--	--	5	12	23
220	--	1	--	--	--	--	--	--	--	--	2	14	23
225	--	--	--	--	--	--	--	--	1	--	--	7	14
230	--	--	--	--	--	--	--	--	--	--	--	7	9
235	--	--	--	--	1	--	--	--	--	--	--	6	9
240	--	--	--	--	--	--	--	--	--	--	--	6	7
245	--	--	--	1	--	--	--	--	--	--	--	1	8
250	--	--	--	--	--	--	--	--	--	--	--	3	3
255	--	--	--	--	--	--	--	--	--	--	--	1	4
260	--	--	--	--	--	--	--	--	--	--	--	2	4
265	--	--	--	--	--	--	--	--	--	--	--	1	2
270	--	--	--	--	--	--	--	--	--	--	--	--	--
275	1	--	--	--	--	--	--	--	--	--	--	--	--
280	--	--	--	--	--	--	--	--	--	--	--	--	--
285	--	--	--	--	--	--	--	--	--	--	--	--	--
290	--	--	--	--	--	--	--	--	--	--	--	--	--
295	--	--	--	--	--	--	--	--	--	--	--	--	--
300	--	--	--	--	--	--	--	--	--	--	--	1	--
305	--	--	--	--	--	--	--	--	--	--	--	--	--
310	--	--	--	1	--	--	--	--	--	--	--	--	--
Totals	424	292	592	509	661	625	830	249	133	115	218	554	1,357

* Measured only as 75 mm . or under. \dagger Length not recorded. \ddagger Measured only as $3 "$ or under. § Measured only over 3"

TABLE 38 - continued

Waddell Creek, Steelhead: Stream Fish Checked Through Downstream Trap, All Seasons Combined;Length-frequency Distribution by Two-week Periods													
Length	$\begin{aligned} & \text { Apr. } \\ & 1-14 \end{aligned}$	$\begin{gathered} \text { Apr. } \\ 15-28 \end{gathered}$	Apr. 29- May 12	$\begin{gathered} \text { May } \\ 13-26 \end{gathered}$	$\begin{gathered} \text { May } \\ 27- \\ \text { June } 9 \end{gathered}$	$\begin{gathered} \text { June } \\ 10-23 \end{gathered}$	$\begin{aligned} & \text { June } \\ & 24- \\ & \text { July } 7 \end{aligned}$	$\begin{aligned} & \text { July } \\ & 8-21 \end{aligned}$	$\begin{gathered} \text { July } \\ 22- \\ \text { Aug. } 4 \end{gathered}$	Aug. $5-18$	Aug 19- Sept 1	$\begin{aligned} & \text { Sept } \\ & 2-15 \end{aligned}$	Sept 16- 30
					$\ddagger 189$	\$72	\$42	\$74	$\ddagger 27$	\$28	$\ddagger 12$	± 7	
21-25	--	--	--	2	--	--	--	--	--			--	--
30	--	1	2	6	5	2	--	--	1	AGE	$+$	--	--
35	1	1	1	--	6	19	32	13	1	3	--	3	--
40	--	4	2	3	6	21	120	114	23	12	9	3	--
45	--	--	3	16	11	61	133	185	56	45	20	16	9
50	--	3	4	39	47	126	171	222	115	82	55	18	14
55	--	--	3	87	140	292	294	295	150	155	94	54	35
60	--	1	7	136	204	498	393	333	203	158	116	38	44
65	1	--	5	123	269	637	492	340	251	173	94	50	47
70	1	6	5	68	172	490	466	261	201	130	60	58	81
75	8	13	12	43	100	315	317	238	208	140	39	41	110
80	19	26	51	62	84	244	213	153	135	85	29	47	125
85	29	75	122	138	105	174	169	74	85	63	10	28	109
90	51	114	184	244	158	152	106	74	79	55	11	36	83
95	45	158	230	397	239	158	99	48	47	22	14	18	65
100	34	161	268	464	285	213	99	32	40	19	5	17	40
105	28	120	253	466	332	217	79	26	16	11	6	10	30
110	21	91	215	381	286	195	77	19	13	8	8	5	28
115	17	56	134	315	241	194	77	18	5	8	8	3	12
120	13	35	99	180	204	134	53	14	8	4	3	7	12
125	20	33	64	114	151	80	26	12	7	2	1	3	6
130	26	32	43	72	91	50	18	10	--	--	2	4	7
135	47	43	57	60	62	36	14	6	5	3	2	2	4
140	75	72	56	47	36	11	8	-	3	6	1	1	6
145	115	108	76	49	24	13	2	3	2	--	2	2	4
150	145	140	126	53	13	6	2	1	1	3	--	--	1
155	179	203	111	56	21	6	1	--	1	--	--	--	1
160	207	219	98	53	8	2	--	--	1	--	2	--	--
165	211	178	116	47	12	2	--	--	--			--	1
170	213	164	99	37	6		--	--	--	AG		--	--
175	177	147	65	20	4	1	--	--	--	--	--	--	1
180	156	103	37	10	4	1	--	--	--	--	--	1	--
185	106	69	29	8	4	--	--	--	--	--	--	--	--
190	94	59	19	3	3	--	1	--	--	--	--	1	--
195	66	38	7	5	--	--	--	--	--	--	1	1	--
200	56	20	7	1	--	--	--	--	--	--	--	--	--
205	32	10	1	2	1	--	--	--	--	--	--	--	--
210	26	11	3	1	--	--	--	--	--	--	--	--	--
215	19	9	1	--	1	--	--	--	--	AG		--	--
220	12	5	2	--	--	--	--	--	--	AG		--	--
225	10	7	4	2	--	--	--	--	--	--	--	--	--
230	4	7	--	2	--	--	--	--	--	--	--	--	--
235	3	5	2	2	2	--	1	--	--	--	--	--	--
240	7	2	--	1		1	--	--	--	--	--	--	--
245	5	1	2	1	--	--	--	--	--	--	--	--	--
250	3	2	--	--	--	--	--	--	--	--	--	--	--
255	7	1	1	--	1	--	--	--	--	AG		--	--
260	1	3	--	--	--	--	--	--	--			--	--
265	1	--	--	1	--	--	--	--	--	--	--	--	--
270	--	--	1	1	--	1	--	--	--	--	--	--	--
275	--	--	--	--	--	--	--	--	--	--	--	--	--
280	1	--	--	--	--	--	--	--	--	--	--	--	--
285	--	--	--	--	--	--	--	--	--	--	--	--	--
290	--	--	--	--	--	--	--	--	--	--	--	--	--
295	--	--	--	--	--	--	--	--	--			--	--
300	--	--	--	--	--	--	--	--		AG		--	--
305	--	--	--	--	--	--	--	--	--	--	--	--	--
310	--	--	$\dagger 1$	$\dagger 1$	§36	§8	§1	§3	§1	§1	--	..	--
Totals	2,292	2,556	2,628	3,819	3,563	4,434	3,506	2,569	1,684	1,216	604	474	875
									GRAN	D TOT	L:	36,	

Figure 28 shows the downstream migration for the 1938-39 season by time-length-number. In this graph the modal groups stand out even more clearly than they do in some other seasons and there is little overlap. The modal groups for the fish of the season (which begin their downstream migration almost immediately after emergence from the gravel), and for the next older age class are clearly discernible. The fish of the other age classes are not distinct from each other but form a series of single modal groups which are highly skewed in the direction of the greater lengths. Fish completing their second year and entering their third (and called age 2) form the majority of fish in this series of modal groups. Older fish are scattered throughout, but tend to be more prevalent in the upper, skewed portions, especially toward the earlier part of the migration. Such older fish in turn are composed principally of one age class, with only an occasional older fish.

Figure 29. Stream steelhead checked through the downstream trap at
Waddell Creek, by age groups.

Figures 11-19 and 29 show the age composition of the downstream migration in each season. From these graphs it is seen that the four age classes which, except for an occasional older fish, make up the downstream migration in each season, move down in sequence during the main (spring) migration. The oldest fish appear first and are followed by progressively younger fish. There is often considerable overlap in the migration times of the different age groups, but ordinarily there is a distinct time interval between the occurrence of the peak numbers of each group.

The dividing lines used to separate the age classes are shown in Table 38 (and A-19 to A-27 of the Appendix). Where an overlap occurs, the dividing line does not indicate that all of the fish below the line are thought to belong to one age class and those above it to another, but it does indicate that the two modal groups have been separated to show the correct numbers of fish in the two age classes. If the slope of the curves of the two modal groups is the same at the overlap (no skewness or equal skewness) and the number of fish in each modal group is the same, there will be equal numbers from each modal group (and therefore age class) above and below the line, respectively, and the dividing line will decrease the apparent size range of each age class equally. If the slope of the curves is not the same or the number of fish in each modal group is not the same, the dividing line will decrease the apparent size range of the age class that has the smaller numbers and/ or the greater skewness, but will increase the apparent size range of the other age class, with the larger number of fish and/or the lesser skewness. In general, the lengthfrequency distributions of each age class are skewed positively, i.e., in the direction of the larger fish.

For the great bulk of the data at hand, the method of dividing the age classes by eye is considered to be quite satisfactory. The great majority (probably over 90 percent) of all the downstream migrants are so grouped that there can be little question regarding their assignment to the proper age. Of the remainder (approximately 10 percent), those occurring at points of overlap can be divided with a high degree (probably 90 percent) of accuracy, even without scale reading, since the pattern of each modal group for any given weekly or two-week period is usually fairly obvious from its pattern in the preceding and following periods. Reading of scales at various points of overlap has served to further increase the accuracy of assignment of these doubtful fish to the proper age classes. The greatest difficulty is encountered in segregating age 2 from age 3 fish in the spring migration at those points at which no scale reading was done, because by the time the fish have reached this size and age their size range is so scattered that the fish do not form sharply defined modal groups. However, scale reading for the entire size range of these two age groups combined, carried out for some periods in different seasons, indicates that the age 3 fish are greatly in the minority (forming approximately 5 percent of the fish in the modal group for these two age classes combined) and occur mostly in the earlier portion of the spring migration.

It is believed that over 95 percent of all the fish in the downstream migrations were assigned to the correct age class. ${ }^{32}$

The numbers of fish of each age group passing through the downstream trap in each season, by weekly periods, are shown in Tables 4044. Their proportionate representation in the various seasons is shown in Tables 45 and 46.

The question now arises to what extent the migration through the trap is representative of the total downstream migration (i.e., migration through the trap plus the uncounted migration over the dam and migration of fish produced below the dam), as regards time of migration and age of fish. An estimate of the numbers and age composition of the fish passing uncounted over the dam will be made in the section on "Survival" (pages 204-239), but there is no way of showing the time at which such fish migrated.

During the fall all of the water passes through the trap, so that the numbers of fish shown in Figures 11-19 are the entire numbers migrating downstream at that time. The very light migration at this time is therefore an actual thing and is almost certainly influenced by the minimum flow which is reached during that period. The very light migration at this time (not only of the downstream stream steelhead but also of other categories of steelhead and other fishes),

[^33]TABLE 39
Waddell Creek, Steelhead: Stream Fish Checked Through Downstream Trap; Assignment to Age Groups by Two Observers

Season	5 0 0 0										
1933-34	L.S.	604	19	741	24	1,657	53	112	4	3	+
	E.S.H.	604	19	748	24	1,673	54	89	3	3	+
1935-36	LS	1,365	35	1,655	42	830	21	90	2	3	+
	E.S.H.	1,370	35	1,567	40	937	24	66	2	3	+
1936-37	L.S.	1,875	53	1,191	34	451	13	11	+	1	+
	E.S.H.	1,856	52	1,181	33	413	12	78	2	1	+
1939-40	L.S.	2,239	64	945	27	292	8	7	+	1	+
	E.S.H.	2,221	64	943	27	286	8	33	1	1	+
1940-41	L.S.	3,306	59	2,049	36	251	4	9	+	0	+
	E.S.H.	3,463	62	1,797	32	328	6	27	+	0	+
$\begin{gathered} \text { Totals } \\ (19,688) \end{gathered}$	L.S.	9,389	48	6,581	33	3,481	18	229	1	8	+
	E.S.H.	9,514	48	6,236	32	3,637	18	293	1	8	+

TABLE 40
Waddell Creek，Steelhead：Age＋Stream Fish Checked Through Downstream Trap，by Weekly Periods

					Periods						
Period	$\begin{aligned} & \underset{\sim}{m} \\ & \underset{\sim}{\Omega} \end{aligned}$	$$	$\begin{aligned} & \text { ద్} \\ & \\ & \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \text { è } \\ & \text { N} \end{aligned}$	$\begin{gathered} \infty \\ \stackrel{\sim}{\Omega} \\ \stackrel{\sim}{\Omega} \end{gathered}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { q} \\ & \text { q} \\ & \text { N } \end{aligned}$	$\begin{aligned} & \underset{寸}{1} \\ & \underset{\sim}{c} \end{aligned}$	$\frac{\tilde{N}}{\underset{\sim}{\underset{G}{2}}}$	$\begin{aligned} & \text { ते } \\ & \frac{3}{3} \\ & \stackrel{3}{3} \end{aligned}$	$\begin{aligned} & \text { 品 } \\ & \text { 荡 } \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$
Oct．1－7	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Oct．8－14	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Oct．15－21	－－	－－	－－	－－	－－	－－	－－	－－	－	－－	－－
Oct．22－28	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Oct．29－Nov． 4	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Nov．5－11	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Nov．12－18	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Nov．19－25	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Nov．26－Dec． 2	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Dec．3－9	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Dec．10－16	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Dec．17－23	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Dec．24－30	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Dec．31－Jan． 6	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Jan．7－13	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Jan．14－20	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Jan．21－27	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Jan．28－Feb． 3	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Feb．4－10	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Feb．11－17	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Feb．18－24	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Feb．25－Mar． 3	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Mar．4－10	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Mar．11－17	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Mar．18－24	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Mar．25－31	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Apr．1－7	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Apr．8－14	－－	1	－－	－－	－－	－－	－－	－－	－－	1	＋
Apr．15－21	1	－－	－－	－－	－－	－－	－－	3	－－	4	＋
Apr．22－28	2	－－	－－	－－	－－	－－	－－	4	－	6	1
Apr．29－May 5	4	－－	－－	－－	－－	－－	－－	1	1	6	1
May 6－12	8	－－	－－	－－	2	1	－－	5	7	23	3
May 13－19	38	－－	4	7	4	5	－－	49	24	131	15
May 20－26	70	1	7	16	49	8	－－	176	47	374	42
May 27－June 2	30	10	6	58	71	7	6	168	21	377	42
June 3－9	189	－－	19	158	86	26	16	200	125	819	91
June 10－16	59	－－	140	139	67	124	81	413	244	1，267	141
June 17－23	13	131	276	58	150	67	74	709	189	1，667	185
June 24－30	2	92	272	82	324	14	253	342	230	1，611	179
July 1－7	40	129	24	369	200	60	241	105	218	1，386	154
July 8－14	48	19	54	508	172	68	148	41	300	1，358	151
July 15－21	26	75	134	159	165	15	113	98	288	1，073	119
July 22－28	18	47	82	20	210	44	139	150	128	838	93
July 29－Aug． 4	9	57	59	10	66	20	494	29	43	787	87
Aug．5－11	11	55	25	92	57	37	388	17	18	700	78
Aug．12－18	17	20	101	61	42	47	164	8	21	481	53
Aug．19－25	6	5	87	32	77	21	41	20	8	297	33
Aug．26－Sept． 1	6	25	49	20	84	45	25	20	6	280	31
Sept．2－8	4	12	11	41	46	7	15	36	14	186	21
Sept．9－15	3	13	7	28	16	27	24	114	24	256	28
Sept．16－22		3	5	9	26	19	12	228	10	312	35
Sept．23－30		4	3	8	32	29	5	370	43	494	55
Totals	604	699	1，365	1，875	1，946	691	2，239	3，306	2，009	14，734	－－

TABLE 41
Waddell Creek, Steelhead: Age 1 Stream Fish Checked Through Downstream Trap, by Weekly Periods

				by W	ekly Pe	ods					
Period	$\begin{aligned} & \underset{\sim}{2} \\ & \underset{\sim}{\omega} \end{aligned}$	$\begin{gathered} \stackrel{n}{4} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \text { N} \\ & \stackrel{\sim}{\kappa} \\ & \Omega \end{aligned}$	$\begin{aligned} & \hat{\mathrm{b}} \\ & \stackrel{\mathrm{~N}}{\mathrm{o}} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\rightharpoonup}{\aleph} \\ & \stackrel{\sim}{\Omega} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$			$\begin{aligned} & \underset{\sim}{\mathcal{T}} \\ & \underset{\sim}{7} \end{aligned}$		
Oct. 1-7		--	--	2	6	60	19	3	126	216	27
Oct. 8-14		--	7	3	9	57	71	9	25	181	23
Oct. 15-21		--	--	2	11	4	18	1	91	127	16
Oct. 22-28	끙	--	--	--	15	12	14	26	67	134	17
Oct. 29-Nov. 4	运	--	--	--	26	215	4	33	125	403	50
Nov. 5-11	\%	6	--	--	24	42	21	12	38	143	18
Nov. 12-18_-		56	14	10	104	2	11	16	29	242	30
Nov. 19-25		13	67	8	128	2	--	8	7	233	29
Nov. 26-Dec. 2		7	10	1	33	284	2	4	5	346	43
Dec. 3-9	1	5	9	2	22	168	--	2	74	283	31
Dec. 10-16	13	9	15	6	21	47	14	1	30	156	17
Dec. 17-23	3	2	2	24	5	216	13	101	30	396	44
Dec. 24-30	6	14	76	101	1	80	15	2	23	318	35
Dec. 31-Jan. 6	-	10	324	85	7	42	9	6	1	484	54
Jan. 7-13	--	6	48	12	5	64	1	9	1	146	16
Jan. 14-20	2	--	19	10	7	33	--	8	--	79	9
Jan. 21-27	3	1	6	5	6	32	2	9	--	64	7
Jan. 28-Feb. 3	--	3	2	2	--	36	--	1	8	52	6
Feb. 4-10------	11	8	1	11	1	16	1	--	--	49	3
Feb. 11-17------	5	2	3	6	--	5	--	1	3	25	3
Feb. 18-24	3	--	2	8	3	--	--	4	6	26	3
Feb. 25-Mar. 3	2	--	4	1	--	--	--	2	3	12	1
Mar. 4-10	2	3	6	3	--	11	--	--	2	27	3
Mar. 11-17	4	3	5	2	4	7	--	4	1	30	3
Mar. 18-24	10	3	1	1	1	4	2	2	--	24	3
Mar. 25-31	10	1	2	--	--	12	1	--	1	27	3
Apr. 1-7	23	15	2	4	2	20	1	1	10	78	9
Apr. 8-14	59	3	3	1	2	113	2	1	9	193	21
Apr. 15-21	115	9	2	1	--	185	6	25	1	344	38
Apr. 22-28	124	9	8	1	1	349	3	47	7	549	61
Apr. 29-May 5	61	41	30	2	4	241	3	13	58	453	50
May 6-12	66	32	67	20	29	599	22	224	187	1,246	138
May 13-19	68	22	231	92	81	381	18	228	189	1,310	146
May 20-26	65	37	206	200	149	227	28	335	411	1,658	184
May 27-June 2	35	51	199	184	105	60	194	230	86	1,144	127
June 3-9	36	83	82	216	76	11	185	195	272	1,156	128
June 10-16	8	68	84	78	31	23	76	139	375	882	98
June 17-23	--	28	69	49	33	17	46	133	232	607	67
June 24-30	--	16	37	13	28	--	40	74	160	368	41
July 1-7	1	7	4	10	12	8	10	40	47	139	15
July 8-14	1	1	1	11	11	1	5	16	33	80	9
July 15-21	2	1	4	3	5	1	3	19	20	58	6
July 22-28	1	--	--	--	4	--	11	14	--	30	3
July 29-Aug. 4	--	--	--	--	--	1	25	2	1	29	3
Aug. 5-11	--	--	1	--	--	--	13	2	--	16	2
Aug. 12-18	1	--	--	--	1	1	11	3	2	19	2
Aug. 19-25	--	--	--	1	-	-	7	2	1	11	1
Aug.26-Sept. 1	--	1	1	--	2	1	7	1	2	15	2
Sept. 2-8	--	--	1	--	-	2	2	3	4	12	1
Sept. 9-15	--	2	--	-	--	1	3	5	7	18	2
Sept. 16-22	--	--	--	--	--	2	3	12	5	22	2
Sept. 23-30	--	--	--	--	--	4	3	21	19	47	5
Totals	741	578	1,655	1,191	1,015	3,699	945	2,049	2,834	14,707	--

TABLE 42
Waddell Creek, Steelhead: Age 2 Stream Fish Checked Through Downstream Trap, by Weekly Periods

Period	$\begin{gathered} \underset{\sim}{\omega} \\ \underset{\sim}{\alpha} \end{gathered}$	$\begin{aligned} & \text { in } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \hat{N} \\ & \text { Nิ } \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { だ } \\ & \text { N} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\lambda} \\ & \underset{\sim}{\Omega} \end{aligned}$	$\begin{aligned} & \underset{\sim}{2} \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & \stackrel{q}{1} \\ & \alpha \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \mathcal{F} \\ & \underset{G}{\mathcal{T}} \end{aligned}$	$\begin{aligned} & \frac{2}{3} \\ & \frac{3}{0} \frac{1}{3} \\ & 3.5 \end{aligned}$	
Oct. 1-7		--	--	--	--	--	2	2	5	9	1
Oct. 8-14		--	-	--	1	2	12	2	--	17	2
Oct. 15-21	\square	--	--	1	1	--	1	--	6	9	1
Oct. 22-28	$\stackrel{3}{\circ}$	--	--	--	--	--	--	18	3	21	3
Oct. 29-Nov. 4	~	1	--	--	--	1	2	10	20	34	4
Nov. 5-11	0	4	--	--	--	--	1	2	5	12	2
Nov. 12-18	Z	7	--	1	3	--	--	2	3	16	2
Nov. 19-25		8	4	--	3	--	--	--	--	15	2
Nov. 26-Dec. 2		1	--	--	2	1	--	2	2	8	1
Dec. 3-9	1	--	2	--	1	6	--	--	11	21	2
Dec. 10-16	15	--	--	--	4	--	6	--	1	26	3
Dec. 17-23	2	1	--	2	--	4	--	33	4	46	5
Dec. 24-30	2	1	--	1	--	--	4	1	--	9	1
Dec. 31-Jan. 6	--	2	5	5	1	1	2	--	--	16	2
Jan. 7-13	--	1	5	--	--	1	6	6	--	19	2
Jan. 14-20	2	--	--	--	--	--	--	1	1	4	+
Jan. 21-27	--	--	2	--	3	--	1	--		6	1
Jan. 28-Feb. 3	2	1	4	1	-	1	--	--	1	10	1
Feb. 4-10	5	1	--	6	-	1	1	--		14	2
Feb. 11-17	6	2	-	12	--	1	3	1	1	26	3
Feb. 18-24	25	3	1	14	9	2	2	-	7	63	7
Feb. 25-Mar. 3	20	3	9	16	9	2	2	-	37	98	11
Mar. 4-10	12	6	55	30	3	14	2	1	70	193	21
Mar. 11-17	50	14	56	25	12	25	3	27	5	217	24
Mar. 18-24	128	41	85	8	1	68	47	27	24	429	48
Mar. 25-31	178	46	63	15	1	256	16	24	143	742	82
Apr. 1-7	272	103	39	36	8	336	--	--	190	984	109
Apr. 8-14	337	14	75	30	26	386	9	--	80	957	106
Apr. 15-21	221	44	169	32	44	229	52	22	7	820	91
Apr. 22-28	257	76	103	39	27	205	25	23	45	800	89
Apr. 29-May 5	83	60	116	55	39	106	6	9	102	576	64
May 6-12	31	19	24	54	77	47	15	15	29	311	35
May 13-19	5	10	9	43	85	18	15	9	12	206	23
May 20-26	2	12		20	37	7	19	10	21	128	14
May 27- June 2	1	1	2	4	11	--	18	2	5	44	5
June 3-9	--	1	1	--	1	--	12	2	3	20	2
June 10-16	--	--	--	--	--	--	8	--	--	8	1
June 17-23	--	--	--	--	--	--	--	--	--	--	--
June 24-30	--	--	--	--	--	--	--	--	--	--	--
July 1-7	--	--	1	--	--	--	--	--	--	1	+
July 8-14	--	--	--	--	--	--	--	--	--	--	--
July 15-21	--	--	--	--	--	--	--	--	--	--	--
July 22-28	--	--	--	--	--	--	--	--	--	--	--
July 29-Aug. 4	--	--	--	--	--	--	--	--	--	--	--
Aug. 5-11	--	--	--	--	--	--	--	--	--	--	--
Aug. 12-18	--	--	--	--	--	--	--	--	--	--	--
Aug. 19-25	--	--	--	--	--	--	--	--	--	--	--
Aug. 26-Sept. 1	--	--	--	--	1	--	--	--	--	1	+
Sept. 2-8	--	--	--	1	--	--	--	--	--	1	+
Sept. 9-15	--	1	--	--	--	--	--	--	--	1	+
Sept. 16-22	--	--	--	--	--	--	--	--	--	--	--
Sept. 23-30	--	--	--	--	--	--	--	--	--	--	--
Totals	1,657	484	830	451	410	1,720	292	251	843	6,938	--

TABLE 43
Waddell Creek, Steelhead: Age 3 Stream Fish Checked Through Downstream Trap,

Period	$\begin{aligned} & \underset{\sim}{m} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { n} \\ & \underset{2}{2} \\ & 2 \end{aligned}$	$\begin{aligned} & \text { ò } \\ & \\ & \end{aligned}$	$\begin{aligned} & \hat{n} \\ & \hat{6} \\ & \hat{\sigma} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{1}{1} \\ & \stackrel{\rightharpoonup}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \infty \\ & \stackrel{\omega}{\omega} \end{aligned}$	$\begin{aligned} & \dot{q} \\ & \stackrel{1}{2} \\ & \end{aligned}$	$\begin{aligned} & \overrightarrow{7} \\ & \dot{\circ} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\underset{\sim}{\underset{G}{I}}}{\underset{\sim}{7}}$	$\begin{aligned} & \hline \frac{\pi}{0} \\ & \frac{0}{0} \\ & \frac{3}{3} \\ & \frac{0}{0} \\ & 3 \\ & \hline \end{aligned}$	
Oct. 1-7		--	--	--	--	--	--	--	--	--	--
Oct. 8-14		--	--	--	--	--	--	--	--	--	--
Oct. 15-21		--	--	--	--	--	1	--	--	1	+
Oct. 22-28	끙	--	--	--	--	--	--	--	--	--	--
Oct. 29-Nov. 4	\%	--	--	--	--	--	--	--	--	--	--
Nov. 5-11	χ°	--	--	--	--	--	--	--	--	--	--
Nov. 12-18		1	--	--	--	--	--	--	--	1	+
Nov. 19-25		--	--	--	--	--	--	--	--	--	--
Nov. 26-Dec. 2		--	--	--	--	--	--	--	--	--	--
Dec. 3-9	1	--	--	--	--	--	--	--	1	2	+
Dec. 10-16	--	--	--	--	1	--	--	--	--	1	+
Dec. 17-23	--	--	--	--	--	--	--	--	--	--	--
Dec. 24-30	--	--	1	--	--	-	1	--	--	2	+
Dec. 31-Jan. 6	-	--	1	--	--	--	--	--	--	1	+
Jan. 7-13	--	--	--	--	--	--	--	--	--	--	--
Jan. 14-20	--	--	--	--	--	--	--	1	--	1	+
Jan. 21-27	--	--	--	--	--	--	--	--	--	--	--
Jan. 28-Feb. 3.	1	--	--	--	--	--	--	--	--	1	+
Feb. 4-10	--		--	--	--	--	--	--	--	--	--
Feb. 11-17	--	--	--	--	--	--	--	1	--	1	+
Feb. 18-24	2	--	--	1	2	--	--	--	--	5	1
Feb. 25-Mar. 3	5	--	3	2	2	--	--	--	2	14	2
Mar. 4-10	7	3	6	4	--	1	--	--	7	28	3
Mar. 11-17	16	3	22	1	3	7	--	2	2	56	6
Mar. 18-24	21	6	19	1	--	5	5	2	2	61	7
Mar. 25-31	12	7	16	--	--	29	--	1	8	73	8
Apr. 1-7	13	8	2	--	--	12	--	--	9	44	5
Apr. 8-14	15	--	5	--	2	12	--	--	--	34	4
Apr. 15-21	7	--	2	--	2	--	--	--	--	11	1
Apr. 22-28	8	--	7	1	1	5	--	--	--	22	2
Apr. 29-May 5	2	--	--	--	2	1	--	1	--	6	1
May 6-12	--	--	3	1	--	2	--	--	--	6	1
May 13-19	--	--	3	--	4	--	--	1	--	8	1
May 20-26	--	--	--	--	--	1	--	--	1	2	+
May 27-June 2	2	--	--	--	--	1	--	--	--	3	+
June 3-9	--	--	--	--	--	--	--	--	--	--	--
June 10-16	--	--	--	--	--	--	--	--	1	1	+
June 17-23	--	--	--	--	--	--	--	--	--	--	--
June 24-30	--	--	--	--	--	--	--	--	--	--	--
July 1-7	--	--	--	--	--	1	--	--	--	1	+
July 8-14	--	--	--	--	--	--	--	--	--	--	--
July 15-21	--	--	--	--	--	--	--	--	--	--	--
July 22-28	--	--	--	--	--	--	--	--	--	--	--
July 29-Aug. 4	--	--	--	--	--	--	--	--	--	--	--
Aug. 5-11	--	--	--	--	--	--	--	--	--	--	--
Aug. 12-18	--	--	--	--	--	--	--	--	--	--	--
Aug. 19-25	--	--	--	--	--	--	--	--	--	--	--
Aug. 26-Sept. 1	--	--	--	--	--	--	--	--	--	--	--
Sept. 2-8	--	--	--	--	--	--	--	--	--	--	--
Sept. 9-15	--	--	--	--	--	--	--	--	--	--	--
Sept. 16-22	--	--	--	--	--	--	--	--	--	--	--
Sept. 23-30	--	--	--	--	--	--	--	--	--	--	--
Totals	112	28	90	11	19	77	7	9	33	386	--

TABLE 44
Waddell Creek, Steelhead: Age 4 Stream Fish Checked Through Downstream Trap, by Weekly Periods

TABLE 45
Waddell Creek, Steelhead: Stream Fish Checked Through Downstream Trap, by Age Groups and Seasons

Season											
1933-34	604	19	741	24	1,657	53	112	4	3	+	3,117
1934-35	699	39	578	32	484	27	28	2	2	+	1,791
1935-36	1,365	35	1,655	42	830	21	90	2	3	+	3,943
1936-37	1,875	53	1,191	34	451	13	11	+	1	+	3,529
1937-38	1,946	57	1,015	30	410	12	19	1	0	0	3,390
1938-39	691	11	3,699	60	1,720	28	77	1	2	+	6,189
1939-40	2,239	64	945	27	292	8	7	+	1	+	3,484
1940-41	3,306	59	2,049	36	251	4	9	+	0	0	5,615
1941-42	2,009	35	2,834	50	843	15	33	1	2	+	5,721
Totals	14,734	40	14,707	40	6,938	19	386	1	14	+	36,779

coupled with the fact that the steelhead and silver salmon have virtually completed their growth of the season, makes the end of September a convenient point to end a season.

Except by general observation, there is no way of knowing how many fish migrate downstream over the dam during the apparent slack period of January-February. This is a period of heavy rainfall and the stream is often at flood stage and turbid. General observations at Waddell and Scott creeks and data obtained from other streams all indicate that actually there is little downstream migration of steelhead during this period. Comparatively few steelhead have been observed

Figure 30. Mouth of Waddell Creek after a storm. Photograph by Leo Shapovalov, January 11, 1936.

TABLE 46
Waddell Creek, Steelhead: Stream Fish Checked Through Downstream Trap, by Age Groups and Weekly Periods, All Seasons Combined

Period	Number of age + migrants	Percentage of age group (during season)	Percentage of all age groups (during week)	Number of age 1 migrants	Percentage of age group (during season)	Percentage of all age groups (during week)	Number of age 2 migrants	Percentage of age group (during season)	Percentage of all age groups (during week)	Number of age 3 migrants	Percentag e of age group (during season)	Percentag e of all age groups (during week)	Number of age 4 migrants	Percentag e of age group (during season)	Percentag e of all age groups (during week)	Number of all migrants
Oct. 1-7	---	---	---	216	1	96		+	4	---	---	---	---	---	---	225
Oct. 8-14	---	---	---	181	1	91	17	+	9	---	---	---	1	7	1	199
Oct. 15-21	---	---	---	127	1	93	9	+	6	1	+	1	---	---	--	137
Oct. 22-28	---	---	---	134	1	86	21	+	14	---	---	---	---	---	---	155
Oct. 29-Nov. 4	---	---	---	403	3	92	34	+	8	---	---	---	---	---	---	437
Nov. 5-11	---	---	---	143	1	92	12	+	8	---	---	---	---	---	---	155
Nov. 12-18	---	---	---	242	2	93	16	+	6	1	+	+	2	14	1	261
Nov. 19-25	---	---	---	233	2	94	15	+	6	---	---	---	---	---	---	248
Nov. 26-Dec. 2	---	---	---	346	2	98	8	+	2	---	---	---	---	---	---	354
Dec. 3-9	---	---	---	283	2	92	21	+	7	2	1	1	1	7	+	307
Dec. 10-16	---	---	---	156	1	85	26	+	14	1	+	1	---	--	---	183
Dec. 17-23	---	---	---	396	3	90	46	1	10	---	---	---	---	---	---	442
Dec. 24-30	---	---	---	318	2	97	9	+	3	2	1	1	---	---	---	329
Dec. 31- Jan. 6	---	---	---	484	3	97	16	+	3	1	+	+	---	---	---	501
Jan. 7-13	---	---	---	146	1	88	19	+	12	---	---	---	---	---	---	165
Jan. 14-20	---	---	---	79	1	94	4	+	5	1	+	1	---	---	---	84
Jan. 21-27	---	---	---	64	+	91	6	+	9	---	---	---	---	---	---	70
Jan. 28-Feb. 3	---	---	---	52	+	83	10	+	16	1	+	2	---	---	---	63
Feb. 4-10	---	---	---	49	+	78	14	+	22	---	---	---	---	---	---	63
Feb. 11-17	---	---	---	25	+	48	26	+	50	1	+	2	---	---	---	52
Feb. 18-24	---	---	---	26	+	28	63	1	67	5	1	5	---	---	---	94
Feb. 25-Mar. 3	---	---	---	12	+	10	98	1	79	14	4	11	---	--	---	124
Mar. 4-10	---	---	---	27	+	11	193	3	77	28	7	11	2	14	1	250
Mar. 11-17	---	---	---	30	+	10	217	3	71	56	15	18	1	7	+	304
Mar. 18-24	---	---	---	24	+	5	429	6	83	61	16	12	---	---	---	514
Mar. 25-31	---	---	---	27	+	3	742	11	88	73	19	9	1	7	+	843
Apr. 1-7	---	---	---	78	1	7	984	14	89	44	11	4	1	7	+	1,107
Apr. 8-14	1	+	+	193	1	16	957	14	81	34	9	3	---	---	---	1,185

TABLE 46-continued.
Waddell Creek, Steelhead: Stream Fish Checked Through Downstream Trap, by Age Groups and Weekly Periods, All Seasons Combined

	dell	k, Stee			Checked	hrough	ownstre	Trap,	y Age G	ups and	Weekly	eriods,	Seaso	mb		
Period	Number of age + migrants	Percentage of age group (during season)	Percentage of all age groups (during week)	Number of age 1 migrants	Percentage of age group (during season)	Percentage of all age groups (during week)	Number of age 2 migrants	Percentage of age group (during season)	Percentage of all age groups (during week)	Number of age 3 migrants	Percentag e of age group (during season)	Percentag e of all age groups (during week)	Number of age 4 migrants	Percentag e of age group (during season)	Percentag e of all age groups (during week)	Number of all migrants
Apr. 15-21	4	+	+	344	2	29	820	12	70	11	3	1	---	---	---	1,179
Apr. 22-28	6	+	+	549	4	40	800	12	58	22	6	2	---	---	---	1,377
Apr. 29-May 5	6	+	1	453	3	43	576	8	55	6	2	1	1	7	+	1,042
May 6-12	23	+	1	1,246	8	79	311	4	20	6	2	+	---	---	---	1,586
May 13-19	131	1	8	1,310	9	79	206	3	12	8	2	+	1	7	+	1,656
May 20-26	374	3	17	1,658	11	77	128	2	6	2	1	+	1	7	+	2,163
May 27-June 2	377	3	24	1,144	8	73	44	1	3	3	1	+	---	--	---	1,568
June 3-9	819	6	41	1,156	8	58	20	+	1	---	---	---	---	---	---	1,995
June 10-16	1,267	9	59	882	6	41	8	+	+	1	+	+	1	7	+	2,159
June 17-23	1,667	11	73	607	4	27	---	---	---	---	---	---	1	7	+	2,275
June 24-30	1,611	11	82	368	2	19	---	---	---	---	---	---	---	---	---	1,979
July 1-7	1,386	9	91	139	1	9	1	+	+	1	+	+	---	---	---	1,527
July 8-14	1,358	9	94	80	1	6	---	---	---	---	---	---	---	---	---	1,438
July 15-21	1,073	7	95	58	+	5	---	---	---	---	---	---	---	---	---	1,131
July 22-28	838	6	97	30	+	3	---	---	---	---	---	---	---	---	---	868
July 29-Aug. 4	787	5	96	29	+	4	---	---	---	---	---	---	---	---	---	816
Aug. 5-11	700	5	98	16	+	2	---	---	---	---	---	---	---	---	---	716
Aug. 12-18	481	3	96	19	+	4	---	---	---	---	---	---	---	---	---	500
Aug. 19-25	297	2	96	11	+	4	---	---	---	---	---	---	---	---	---	308
Aug. 26-Sept. 1	280	2	95	15	+	5	1	+	+	---	---	---	---	---	---	296
Sept, 2-8	186	1	93	12	+	6	1	+	+	--	---	---	---	---	---	199
Sept. 9-15	256	2	93	18	+	7	1	+	+	---	---	---	---	---	---	275
Sept. 16-22	312	2	93	22	+	7	---	---	---	---	---	---	---	---	---	334
Sept. 23-30	494	3	91	47	+	9	---	---	---	---	---	---	---	---	---	541
Totals	14,734	---	40	14,707	---	40	6,938	---	19	386	---	1	14	---	+	36,779

moving downstream during this period at Waddell and Scott creeks and at the various counting and egg taking stations of the California Department of Fish and Game, such as the ones at Benbow Dam on the South Fork of Eel River, Van Arsdale Dam on the Eel River, San Lorenzo Egg Taking Station on the San Lorenzo River, Sweasey Dam on the Mad River, and various stations in the Klamath River system. Pautzke and Meigs (1940), drawing on unpublished data of Loyd A. Royal and C. H. Ellis for the Minter Creek Experimental Station in the State of Washington, state that no downstream steelhead were taken in their trap from September 1, 1938, to April 2, 1939. At Minter Creek, all fish passing downstream are taken, since large rotary screens prevent the escape of any past the trap.

Evidence based on general observations at Waddell and Scott creeks and data obtained from other streams also indicate that the largest numbers of stream steelhead migrate downstream at the approximate times indicated in Figures 11-19. Pautzke and Meigs (1940), quoting Royal and Ellis, state that of the total of 672 steelhead downstream migrants counted through the trap between April 2, 1939, and June 11, 1939, 449 or 71.6 percent passed through the trap during the three-week period from May 1st to May 21st. Part-season counts and observations at the various counting and egg taking stations of the California Department of Fish and Game indicate a heavy migration during this same period and a marked tapering-off in September and October.

The fact that the same flows at which the main migration takes place through the trap are often reached at times when no migration occurs through the trap (Figures 11-19) is a strong indication that the migrations through the trap are in general indicative of the migration taking place in the stream as a whole.

Although heavy and light migrations of downstream stream steelhead in the stream as a whole occur at the times shown in Figures 11-19, it is probable that the numbers shown in this graph are not proportionate to the numbers migrating down in the stream as a whole, especially during the period of heaviest migration. Probably the time of beginning of the spring migration is shown fairly accurately on the graph, but it is to be expected that, because of the large volume of water passing over the dam, proportionately larger numbers than are shown by the graph migrate downstream over the dam in the early stages of the spring migration. As less and less water passes over the dam (except for occasional freshets), the proportion of fish passing through the trap increases, until the water stops flowing over the dam and all of the fish enter the trap. If the age groups making up the downstream migration occurred in the same proportions throughout the season, Figure 29 would show the correct age composition of the downstream migration, even if it did not show the true distribution of numbers at all times of the season. However, the age composition of the downstream migration is very different at different times of the season, as we saw from Figures 11-19. Since the older age classes migrate first in the spring migration, it is to be expected that they will be the most affected by fish passing over the dam and so will show up in disproportionately small numbers among the fish taken in the trap and shown in Figures 11-19 and 29.

Since only about one-fourth of the returning adults are marked it would appear, at first glance, that three-fourths of the fish (1) passed downstream over the dam uncounted, (2) were produced in Waddell Creek below the dam, or (3) strayed from other streams. The amount of straying from other streams will be shown to be a very minor factor (pages 197-201). The fish that spawn below the dam form only about 5 percent of the total spawning run into the stream. Thus, it would still appear that a considerable number of fish pass downstream over the dam, uncounted and unmarked. However, it will be shown, in the discussion of the survival of the different age classes among the marked fish that there is a much higher survival rate among the fish of the older age classes. Comparatively small numbers of age 2 and 3 fish, the ones that are migrating after the spring migration has started but while there is yet considerable water going over the dam, produce the bulk of the marked adults. This being the case, it becomes evident that comparatively small numbers of fish of these older classes could pass over the dam and still produce the unmarked adults "unaccounted for", i.e., the unmarked adults not resulting from fish produced below the dam or straying from other streams. That is probably what actually happens.

Sex Ratio

Sufficient numbers of downstream migrants have not been sexed to determine quantitatively the representation of sexes. The sex ratio may vary somewhat with the age of the fish. Probably it approaches $1: 1$ among the fish two years old and younger, but may deviate from equal representation among the older fish.

Factors Influencing the Time of Migration and Size at Migration

Possible factors influencing the time of migration and the size of the fish, and their interrelationships, were discussed for the silver salmon (pages 86-88). The reader is referred to that discussion, since most of it is also applicable to the steelhead, except in that the situation for the latter is made still more complex because a heterogeneous population is involved, while the silver salmon formed a homogeneous population. The steelhead downstream migrants form a heterogeneous population not only because they are formed of different age classes, but also because this migration is composed of offspring of sea-run fish which (a) have made a previous downstream migration and are going to sea in the current season, (b) are making their initial downstream migration and are going to sea in the current season, and (c) are making their initial downstream migration but will not go to sea until the following season, and to a minor extent of other offspring of sea-run fish that will not go to sea and offspring of stream fish that may or may not go to sea. No attempt was made and no method is known to distinguish these various groups, except in individual cases, nor to determine the extent of the representation of these groups in the downstream migrations.

In applying the discussion of influencing factors contained in the section on silver salmon to the steelhead, each age class must be treated as a separate unit.

From Figures 11-19 we see that the main (spring) migration as a whole occurs later or earlier in some seasons than in others, as was the case with the silver salmon. Similarly, Figures 11-19 reveal that the early seasons are those with generally low stream levels for the same dates during the migration period (notably 1933-34 and 1938-39), while the late seasons are those with generally high stream levels for the same dates during the migration period (notably 1934-35, 1937-38, 1939-40, and 1940-41). The effects of the absolute stream levels on the time of migration are probably modified by rate of drop in stream level, sudden spring freshets, etc.

The fish that migrate down in the late fall are principally of the previous season's year class. From an examination of Figures 11-19, it is apparent that there is a great deal of fluctuation in the size of this migration from season to season and also that this migration may have several peaks within a season. Both of these phenomena are accounted for by the fact that this migration, or rather series of migrations, is associated with rainfall, which is fairly well brought out in Figures 1119. However, these graphs probably do not bring out the association between migration and rainfall as clearly as graphs showing rainfall ${ }^{33}$ or the proper combination of rainfall and stream flow would do. Naturally, there is an association between rainfall and stream flow, but the early rains are not as well reflected in the stream flow immediately following as are the later rains, when the ground has become soaked and a much larger proportion of the precipitation goes into surface runoff. The fall migrations appear to be influenced by the rainfall out of proportion to its effect on the amount of stream flow. Since the autumn rains vary greatly, both regarding amount and time of occurrence, the migrations occurring at this time assume a fluctuating character.

The fall migration, although often occurring near the beginning of the season chosen for the present studies, probably should properly be thought of as the tail-end of the migration of fish of the season in the previous season, which has been interrupted by low water and perhaps other factors associated with low water. The basis for this view lies principally in the fact that in some years there is no break between the fish of the fall migration and the fish of the same year class in the previous season's spring-summer migration (e.g., 1937-38 to 1938-39 and 1940-41 to 1941-42), while there is always a break between the fall migration and the following spring migration of fish of the same year class. Also, it appears characteristic for a migration of a given age class to rise rather steadily and rapidly to a peak and then taper off for a longer period. Normally, in the spring the migration of fish of the season rises steadily and rapidly to a peak and stretches out, with fluctuations, far into the summer, so that it appears correct to consider the secondary rise in numbers of fish of the same year class as the tail-end of the springsummer migration, rather than as the fluctuating beginning of the spring migration.

Climatic factors not only affect the general starting time of the main migration, but also create breaks in the pattern once it has gotten

[^34]under way. However, a given factor does not have the same effect at all times of the year but can, on the contrary, have an opposite effect from one time to another. For example, during the normal period of heavy migration a rain stops or markedly slows down the migration, while a rain during a period when there is normally very little migration accelerates it. This phenomenon is true also of other streams. For example, J. H. Wales (unpublished data) reports the following regarding the stream steelhead downstream migration during May, 1942, in the Grenada irrigation ditch of the Klamath River system, Siskiyou County, California:
"Fairly good catches were made in the irrigation ditch [with a fyke net] just below the bar screen on those days when the steelhead fingerlings were migrating downstream. A cold rain storm caused an abrupt cessation of the run but with warm weather this migration was resumed." (Monthly report to the Division of Fish and Game for May, 1942.)

As the spring migration as a whole is pushed backward or forward within a season, so the age composition pattern within the migration is pushed backward or forward. The result of this is, of course, that the age composition of the fish migrating at any given time or brief period of time, such as a weekly or two-week period, in two seasons may be quite different.

From an examination of Figures $11-19$, it is also apparent that the strength of a given age class, i.e., its representation within a season both in absolute numbers and in proportion to the other age classes individually and as a whole, varies considerably from season to season. The result of this is, of course, that even when the growth rate and the water levels are the same in two seasons, so that the fish of a given age class start migrating at the same time and are of the same size when they migrate in the two seasons, their proportionate representation among all the fish migrating at any given point of time may be quite different, and so the age composition of the total migration at the same point of time will be different.

An examination of Table 38 and Figure 28 reveals that there is, as a rule, a distinct increase in length of the fish of a given age class within a season between the end of the fall migration and the beginning of the spring migration. Since the fall migration is composed largely of fish of a single year class (age + fish, which become age 1 fish in the spring), in the tables and graph this is evident only for that age class, but from a careful analysis of scattered fish of older year classes in all seasons is also true for them. An examination of a large number of scales reveals that the great majority of the fish in the fall migration have nearly completed growth of the season or are forming an annulus, while the great majority in the spring migration, even in the early part of the migration, have started growth of the new season. The increase in size within the age class therefore represents a growth made by that age class as a whole, rather than a migration of the smaller fish of the age class in the fall, followed by a spring migration of the larger fish of the same age class. (The early start of the growing season at Waddell Creek, fairly evident in the tables and graph under discussion, has been discussed on pages 73, 157.) (It happens that the fall migration of 1938-39, shown in Figure 28, was
the largest in numbers and extended farther into the winter in steady numbers than that of any other season and so from this standpoint is atypical.)

It will also be seen from an examination of Table 38 and Figure 28 that once a migration of a given age class begins, there is often, although not always, a decrease in the average size of the migrating fish of that age class. Quite obviously, individuals do not become smaller, and so this phenomenon must result because the larger individuals of a given age class migrate earlier than the smaller ones. The same phenomenon was encountered in the case of the silver salmon and discussed on pages 87-88"; it is evident from that discussion that it could come about in any one of three ways.

Since the later migrants are sometimes smaller than the earlier migrants, it is evident that the law of "growth for age" at migrationthat the quick growers migrate first, but that the later migrants are always a little bigger when they go to sea than the quicker growers which migrated earlier-held by British investigators (e.g., Went, 1942) to be generally operative for the Atlantic salmon (Salmo salar), is not applicable to the Waddell Creek steelhead. It is still possible, however, that among the latter the earlier migrants are the quick growers. If this is true, it is possible either that they are quick growers because of inherent factors, or simply because they happen to be in the portions of the stream with conditions suitable for rapid growth.

Rapid growth does not necessarily mean large size of fish; but, other things being approximately equal, size and rapid growth are associated. (Two cases in which rapid growth would not mean large size of fish may be given. Case 1. Of two fish hatched at the same time in different portions of the stream, one has an inherent rapid growth rate, while the other has a slow growth rate; the fish with the rapid growth rate, hatching in a portion of the stream with less favorable growing conditions than the slow grower, makes less absolute growth in a season than does the slow grower, and so at the end of the season is smaller than the slow grower. Case 2. Two fish, one with an inherent rapid growth rate and the other with an inherent slow growth rate, are hatched in the same section of stream, or in sections having equally favorable conditions; however, the rapid grower is hatched considerably later than the slow grower and again makes less absolute growth during the season than the slow grower. If the rapid grower happened to hatch both later in the season and in a portion of the stream with less favorable growing conditions, the result previously cited would be further accentuated.)
(British investigators have concluded that Atlantic salmon making the best growth in their first year continue to make the best growth throughout life, and that the average length of juvenile Atlantic salmon (parr) which migrate to sea at a particular age is always greater than that of those of the same age which remain for an additional year, or years, in fresh water. This has not been worked out in the case of the Waddell Creek steelhead.)

The hypothetical picture of the downstream migration of silver salmon, as regards time of migration and size of fish, presented on pages 87-88, applies also to the steelhead, with different age classes considered separately.

Characteristics of the Migration

The extent of schooling at migration time has not been noted sufficiently to be recorded at this time. Young steelhead do school in streams under certain conditions, individuals of the same size tending to group together. Yearling steelhead planted at one point in the San Lorenzo River on one day have been observed gathered in a school of over 1,000 individuals on the following day approximately one-half mile below the point of stocking.

Quantitative observations were not made in regard to diurnal distribution of the migration. General observations indicate that some fish move down at all hours of the day and night, but that the bulk of the fish move downstream during the night or at least in the early morning or late evening.

General color notes were taken for a number of the 1933-34 season migrants, during the period December through April. They indicate that on the fish of smaller size the parr marks are generally pronounced and that such fish are not "silvery," while the larger fish are silvery. There are various individual variations; some of the silvery fish are a "silvery blue," while others are silvery with a pink or red lateral stripe. Aside from noting the association of "silveriness" with size of fish, no attempt was made to correlate coloration with sex, sexual development, or other such characteristics of the fish. Both in 1933-34 and in subsequent seasons individuals with "rainbow" coloration, prominent parr marks and rich body and fin coloration, have been noted among the downstream migrants. Examination of such fish has usually revealed them to be sexually mature, and these fish are believed to be mainly the offspring of stream fish.

Upstream Migration of Stream Fish

Time and Size of the Migration

During the nine seasons of operation of the trap, ${ }^{34} 3,104$ stream steelhead were checked on their upstream migration. The number taken during each weekly period in each season is shown in Table 47.

The length of all of these fish from tip of snout to fork of caudal fin was recorded in mm ., measurement being made to the next highest mm.

Scale samples were taken from practically all of the fish during the first six seasons of operation, i.e., 1933-34 through 1938-39. Scale samples were not taken during the last three seasons, 1939-40 through 1941-42, largely because it was believed that further scale samples from these fish would not yield information commensurate with the effort expended.

Of the 1,245 scale samples taken, 1,126 were mounted and read (131 for 1933-34 read only, those for other seasons read and measured), including all for the 1933-34, 1934-35, 1935-36, and 1936-37 seasons, 480 for the 1937-38 season, and a few scattered ones for other seasons.

Table 47 is an over-all presentation of the upstream migration, without distinction as to age or origin of the fish involved. Even without

[^35]TABLE 47
Waddell Creek, SteeIhead: Stream Fish Checked Through Upstream Trap, by Seasons and Weekly Periods

Period	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{2}{2} \end{aligned}$	$\begin{aligned} & \stackrel{i}{n} \\ & \stackrel{1}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & n \\ & n \\ & \end{aligned}$	$\begin{aligned} & \hat{N} \\ & \hat{0} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{1} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \tilde{1} \\ & \infty \\ & \infty \\ & \end{aligned}$	$\begin{aligned} & \text { Y } \\ & \text { à } \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \underset{\sim}{Y} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \overline{3} \\ & \stackrel{\pi}{0} \\ & 3 \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { 爭 } 00 \\ & 0 \\ & 3 \\ & 3 \\ & \hline \end{aligned}$
Oct. 1-7		--	--	--	--	--	--	--	5	5	1
Oct. 8-14		--	--	--	--	--	--	1	6	7	1
Oct. 15-21		--	--	--	1	--	--	-	2	3	+
Oct. 22-28	T	--	--	--	--		--	3	1	4	1
Oct. 29-Nov. 4	~	--	--	--	1	22	--	11	7	41	5
Nov. 5-11	\bigcirc	--	--	--	--	8	4	5		17	2
Nov. 12-18		4	--	2	2	13	--	--	3	24	3
Nov. 19-25		-	--	--	2	17	--	--	3	22	3
Nov. 26-Dec. 2		--	--	--	3	24	2	7	10	46	6
Dec. 3-9	4	5	9	1	7	29	1	6	16	78	9
Dec. 10-16	5	2	--	--	150	17	2	3	40	219	24
Dec. 17-23	15	1	--	8	110	4	5	77	766	986	110
Dec. 24-30	6	--	33	2	129	5	4	68	75	322	36
Dec. 31-Jan. 6	27	4	68	2	120	6	1	61	215	504	56
Jan. 7-13	7	2	48	--	14	15	--	12	24	122	14
Jan. 14-20	16	--	38	2	10	1	17	4	50	138	15
Jan. 21-27	4	4	8	1	15	4	7	8	2	53	6
Jan. 28-Feb. 3	1	11	6	13	2	2	--	3	14	52	6
Feb. 4-10	10	1	--	11	3	5	1	5	4	40	4
Feb. 11-17	5	--	4	4	2	1	1	10	4	31	3
Feb. 18-24	--	2	4	--	1	--	4	5	--	16	2
Feb. 25-Mar. 3	2	--	1	2	--	--	--	2	--	7	1
Mar. 4-10	1	1	--	--	1	2	2	3	2	12	1
Mar. 11-17	1	--	--	--	1	--	1	2	2	7	1
Mar. 18-24	1	--	1	--	--	--	--	1	--	3	+
Mar. 25-31	--	--	--	--	--	--	--	1	--	1	+
Apr. 1-7	1	--	--	2	4	--	--	1	2	10	1
Apr. 8-14	--	--	--	2	--	--	--	1	1	4	+
Apr. 15-21	1	--	--	2	3	--	--	--	1	7	1
Apr. 22-28	1	--	--	2	--	--	--	10	--	13	1
Apr. 29-May 5	4	--	--	--	1	--	--	5	--	10	1
May 6-12	2	--	1	--	--	--	--	1	--	4	1
May 13-19	9	--	--	--	--	--	--	3	2	14	2
May 20-26	8	--	1	1	1	--	--	5	--	16	2
May 27-June 2	--	--	--	1	5	8	--	7	1	22	2
June 3-9		--	--	--	--	2	1	1	2	6	1
June 10-16		--	--	--	--	1	1	1	--	3	+
June 17-23		--	--	5	2	3	2	7	--	19	2
June 24-30		--	4	1	1	--	1	6	2	15	2
July 1-7		--	--	1	1	--	5	1	--	8	1
July 8-14		--	--	8	--	1	--	1	2	12	2
July 15-21		--	--	6	2	--	6	3	--	17	2
July 22-28	O	--	2	1	--	--	24	46	--	73	9
July 29-Aug. 4	©	--	--	--	4	-	6	25	2	37	5
Aug. 5-11	¿	--	--	4	--	--	6	3	--	13	2
Aug. 12-18		--	--	2	--	--	4	--	--	6	1
Aug. 19-25		--	--	--	--	--	5	--	--	5	1
Aug. 26-Sept. 1		--	1	4	1	--	5	--	--	11	1
Sept. 2-8		--	--	--	1	--	1	3	2	7	1
Sept. 9-15		--	--	--	1	--	--	2	--	3	+
Sept. 16-22		--	--	--	--	--	--	5	--	5	1
Sept. 23-30		--	--	1	--	--	--	--	3	4	1
Totals	131	37	229	91	601	190	119	435	1,271	3,104	*365

[^36]

Figure 31. Waddell lagoon at full size, showing sand spit and ocean in background. Photograph by Paul R. Needham.
a breakdown into age groups, it is apparent that this upstream migration is not a haphazard affair, but follows a definite pattern, with the peak of migration usually occurring close to the beginning of the calendar year, and a secondary, quite minor rise occurring near the end of July. As will be seen from the subsequent discussion, the latter migration is not comparable to the main, or winter, migration and is composed of fish younger than those in the winter migration.

There is tremendous fluctuation in the size of the upstream migration from season to season and the weekly total and average figures for all seasons are influenced by one season (1941-42). However, the pattern in other seasons is much the same as that in the 1941-42 season.

Unlike the downstream migrations, the upstream migrations do not involve sampling, but represent the entire runs (with the possible exception of a few quite small fish-mostly fish of the season-that may have wanted to migrate upstream during the summer but were too small to make the ascent of the fishway).

The upstream migration is composed of fish that had previously migrated downstream and spent some time in the lagoon (or the section of the stream below the dam) and fish that had hatched in the section of the stream below the dam. Like the downstream migrants, they are probably composed largely of offspring of sea-run fish but to a minor extent of offspring of stream fish. Most of the upstream migrants make a subsequent downstream migration in the same season (some after spawning). In 1933-34, for example, 72 of the 129 upstream fish were recorded downstream in the same season. Since some fish probably went downstream over the dam (unrecorded), it is quite likely that the number returning downstream was even higher.

Probably following their second downstream migration most of the fish go to sea. That some of them go to sea is known from marking.

Age and Size of the Fish
Since scales were not examined from all of the fish, the system of dividing lines (used for separating the age groups in the downstream migrants and discussed on pages $165-166$) was used to supplement the segregation into age groups according to scale readings. As in the case of the downstream migrants, the dividing lines were drawn more or less arbitrarily by eye, but taking into consideration the pattern of the migration, including time, size of age classes, and size of fish in the age classes. Where numbers of fish were not sufficient to form conspicuous modal groups, the dividing lines used for the downstream migrants were used as a guide, with allowance made for the fact (as will be discussed later) that the upstream fish of a given age class are not quite of the same size as the downstream fish of the same age class at the same time. The dividing lines used are shown in Table 48. It is believed that over 95 percent of all the fish in the upstream migrations were assigned to the correct age classes. Length-frequency distributions of upstream stream fish in each season are shown in Tables A-28 to A-36 of the Appendix.

From Tables 49-55 it is apparent that not only does the size of the entire migration fluctuate considerably from season to season, but also that the strength of a given age class, i.e., its representation within a season both in absolute numbers and in proportion to the other age classes individually and as a whole, varies considerably from season to season.

Sex Ratio

Data regarding the sex of upstream stream steelhead are not sufficient to warrant definite conclusions regarding the sex ratio. In the one season in which the upstream fish were killed and examined internally (1934-35), the run consisted of 14 males and 14 females. However, the run was small and the fish below average in size, so the sex ratio may not be representative of conditions in other seasons. In other seasons individual males and females were recognized in the case of fish with flowing sexual products, but were not sufficiently numerous to establish sex ratios. Secondary sexual characters are not sufficiently developed in most of the upstream stream steelhead to permit sex differentiation on the basis of external characters.

Factors Influencing the Time of Migration and Size at Migration

In all probability the great majority of the upstream stream steelhead have spent a summer in the lagoon. Possibly or probably a few have spent all or part of the time between the dam and the lagoon, and some may have migrated in and out of the lagoon with the tides (i.e., out to sea). In all probability, then, the size of the upstream migration will depend upon the physical conditions that have existed in the lagoon during the preceding summer, especially the size of the lagoon and the closing and opening dates of the bar at the mouth. The physical character of the lagoon and the opening and closing dates have fluctuated considerably during the course of the experiments. Undoubtedly the food supply in the lagoon is also influenced by these factors, and in turn influences the number of fish produced and their size.

TABLE 48
Waddell Creek, SteeIhead: Stream Fish Checked Through Upstream Trap, All Seasons Combined; Length-frequency Distribution by Two-week Periods

Length in mm.	$\begin{aligned} & \text { Oct. } \\ & 1-14 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Oct. } \\ 15- \\ 28 \end{array}$	$\begin{array}{\|c} \text { Oct. } \\ 29- \\ \text { Nov } \\ 11 \end{array}$	$\begin{array}{\|l\|l} \text { Nov } \\ 12- \\ 25 \end{array}$	$\begin{array}{\|c} \begin{array}{c} \text { Nov } \\ 26- \\ \text { Dec. } \\ 9 \end{array} \end{array}$	$\begin{array}{\|c\|} \text { Dec. } \\ 10-23 \\ \hline \end{array}$	$\begin{gathered} \text { Dec. } \\ 24- \\ \text { Jan. } \\ 6 \end{gathered}$	$\begin{array}{\|l\|l} \hline \text { Jan. } \\ 7-20 \end{array}$	$\begin{array}{\|c} \hline \text { Jan. } \\ 21- \\ \text { Feb. } \\ 3 \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{Feb} \\ 4-17 \\ \hline \end{array}$	$\begin{array}{\|c} \text { Feb. } \\ 18- \\ \text { Mar. } \\ 3 \end{array}$	$\left\|\begin{array}{c} \text { Mar. } \\ 4-17 \end{array}\right\|$	$\begin{array}{\|c} \mathrm{Mar} . \\ 18- \\ 31 \end{array}$	$\begin{gathered} \text { Apr. } \\ 1-14 \end{gathered}$
61-65	--	--	--	--	--	--	--	--	--	--	--	--	--	--
70	--	--	--	--	--	1	--	--	1	--	--	--	--	--
75	--	--	--	--	--	14	--	--	1	--	--	--	--	--
80	--	--	1	1	2	31	2	2	--	2	--	--	--	--
85	--	--	--	--	2	55	2	3	2	--	--	--	--	--
90	--	--	2	1	2	63	4	--	--	3	2	2	--	--
95	5	--	1	--	2	57	3	2	--	1	1	--	--	--
100	1	--	1	1	3	58	3	1	3	2	1	1	--	--
105	--	--	2	3	6	51	11	1	2	2	2	--	--	1
110	--	--	2	1	2	36	5	2	6	2	2	--	1	2
115	2	1	--	--	5	36	5	1	2	2	1	--	--	--
120	--	--	2	1	5	31	8	1	3		1	2	--	--
125	--	1	1	1	2	29	5	7	5	1	1	2	--	2
130	--	--	3	2	--	25	16	1	6	2	--	1	--	--
135	1	--	2	2	2	18	10	5	2	1	--	1	1	3
140	--	--	1	--	1	23	9	6	3	1	1	--	--	1
145	--	1	2	2	6	32	16	9	4	2	1	2	--	2
150	--	--	4	2	3	29	26	5	5	--		--	--	--
155	--	--	5	,	8	43	40	10	2	--	1	--	--	--
160	--	--	2	4	1	54	38	9	3	2	--	1	1	--
165	--	--	4	4	3	61	47	12	3	2	--	1	--	--
170	--	1	1	--	3	57	59	13	1	2	--	--	--	1
175	1	--	1	4	4	63	64	14	4	--	--	--	--	--
180	--	--	1	4	9	50	53	17	3	2	--	1	--	--
185	--	1	1	4	9	60	60	8	2	--	--	--	--	--
190	2	--	3	1	9	51	55	13	5	3	1	--	--	--
195	--	1	--	--	5	30	49	10	8	1	--	--	--	--
200	--	--	3	1	4	25	34	16	6	4	--	1	--	2
205	--	--	4	--	3	24	20	11	5	1	--	--	--	--
210	--	1	3	1	3	8	22	9	1	2	--	--	--	--
215	--	--	3	2	5	8	11	7	1	5	--	--	--	--
220	--	--	--	--	6	16	16	10	1	1	--	--	--	--
225	--	--	1	--	--	8	28	18	1	2	3	--	--	--
230	--	--	--	--	1	12	22	5	2	3	1	--	--	--
235	--	--	--	--	3	10	14	5	2	2	1	--	--	--
240	--	--	--	--	--	8	19	7	--	2	1	1	--	--
245	--	--	--	--	1	4	10	4	--	--	--	--	--	--
250	--	--	--	--	--	2	13	2	1	--		--	--	--
255	--	--	--	--	1	2	4	5	1	4	1	--	--	--
260	--	--	1	--	--	5	6	2	2	2	--	1	--	--
265	--	--	--	--	--	4	4	2	1	2	--	--	--	--
270	--	--	--	--	--	4	3	--	3	--	--	--	--	--
275	--	--	--	--	--	2	1	--	--	--	--	--	--	--
280	--	--	--	1	2	1	1	1	--	--	--	--	--	--
285	--	--	1	--	--	3	3	--	--	2	--	--	1	--
290	--	--	--	--	--	--	--	--	1	--	1	--	--	--
295	--	--	--	--	--	1	1	1	--	1	--	--	--	--
300	--	--	--	--	--	--	1	--		2	--	--	--	--
	--	--	--	--	--	--	1	1	1	--	--	--	--	--
	--	--	--	--	1	--	2	2	--	3	--	2	--	--
Totals	12	7	58	46	124	1,205	826	260	105	71	23	19	4	14

[^37]TABLE 48- Continued
Waddell Creek, Steelhead: Stream Fish Checked Through Upstream Trap, All Seasons Combined; Lengthfrequency Distribution by Two-week Periods

Length in mm .	$\begin{gathered} \text { Apr. } \\ 15- \\ 28 \end{gathered}$	Apr. 29- May 12	$\begin{gathered} \text { May } \\ 13- \\ 26 \end{gathered}$	May 27- June 9	$\begin{gathered} \text { June } \\ 10- \\ 23 \end{gathered}$	$\begin{aligned} & \text { June } \\ & 24- \\ & \text { July } 7 \end{aligned}$	$\begin{gathered} \text { July } \\ 8- \\ 21 \end{gathered}$	July 22- Aug. 4	Aug. 5- 18	Aug. 19- Sept. 1	$\begin{gathered} \text { Sept. } \\ 2- \\ 15 \end{gathered}$	Sept. 16- 30	$\begin{aligned} & \text { To } \\ & - \\ & \text { tal } \\ & \mathrm{s} \\ & \hline \end{aligned}$
61-65	--	--	--	--	--	--	1	--	--	--	--	--	1
70	--	--	--	--	--	1	--	1		AGE +		1	5
75	1	--	--	--	--	1	--	3		AGE +		--	20
80	--	--	--	1	--	1	1	4	--	--	--	3	51
85	--	AGE 1			--	1	3	3	--	--	1	--	72
90	--				--	2	1	1	--	--	3	1	87
95	--	--	1	2	--	--	3	3	--	--	1	--	82
100	2	1	2	--	--	1	2	--	--	--	--	--	83
105	--	1	1	4	3	1	--	1	--	--	--	1	93
110	4	--	1	2	--	--	1	1	1	--	1	--	72
115	3	2	2	3	3	1	--	3	--	1	1	--	74
120	--	1	2	2	--	2	--	--	--	1	--	--	62
125	--	1	3	1	5	1	2	--	1	--	--	1	72
130	--	--	4	1	2	--	--	3	2	1	--	--	69
135	1	--	4	2	2	1	2	2	1	2	--	--	65
140	--	1	1	2	1	1	1	9	--	--	--	--	55
145	1	1	1	--	1	2	2	11	--	1	--	1	100
150	--	1	2	--	--	1	--	11	2	1	--	--	92
155	1	--	--	--	1	1	1	12	--	1	--	--	129
160	--	--	--	1	--	--	1	23	1	2	--	--	143
165	1	--	--	--	--	1	1	12	3	--	2	--	157
170	1	--	--	2	--	1	1	9	2	--	1	--	155
175	1	--	1	--	--	--	2	1	1	1	--	1	163
180	--	--	1	--	--	--	1	--	2	2	--	--	146
185	--	--	--	--	--	--	2	1	--	1	--	--	149
190	--	AGE 2			--	--	--	1	2	--	--	--	146
195	--				3	1	--	--	1	1	--	--	110
200	--	--	--	--	--	--	--	--	--	1	--	--	97
205	--	--	--	--	--	--	--	--	--	--	--	--	68
210	--	--	--	1	--	--	--	--	--	--	--	--	51
215	1	--	--	--	--	--	--	1	--	--	--	--	44
220	--	--	--	--	--	---	--	1	--	--	--	--	51
225	--	--	1	--	--	--	--	--	--	--	--	--	62
230	--	--	1	1	--	--	--	--	--	--	--	--	48
235	--	--	1	--	--	1	--	--	--	--	--	--	39
240	2	--	--	--	--	--	--	--	--	--	--	--	40
245	--	--	--	--	--	--	--	--	--	--	--	--	19
250	--	AGE 3			--	--	--	--	--	--	--	--	18
255	--				--	--	---	--	--	--	--	--	18
260	--	--	--	--	--	1	--	--	--	--	--	--	-
265	--	--	--	--	--	--	--	--	--	--	--	--	13
270	1	--	--	1	--	--	--	--	--	--	--	--	12
275	--	--	--	--	--	--	--	--	--	--	--	--	3
280	--	1	--	--	1	--	--	--	--	--	--	--	8
285	--	1	--	--	--	--	--	--	--	--	--	--	11
290	--	--	--	--	--	--	1	--	--	--	--	--	3
295	--	1	--	--	--	--	--	--	$\text { AGE } 4$			--	5
300	--	--	1	--	--	--	--	--		AGE 4		--	4
	--	2	--	--	--	--	--	--	--	--	--	--	*5
	--	--	--	2	--	--	--	--	--	--	--	--	$\dagger 12$
Totals	20	14	30	28	22	23	29	110	19	16	10	9	3,104

TABLE 49
Waddell Creek，Steelhead：Age＋Stream Fish Checked Through Upstream Trap，by Weekly

Period	$\begin{aligned} & \dot{\sim} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$$	$\begin{aligned} & \text { on } \\ & \text { n} \\ & \end{aligned}$	$\begin{aligned} & \text { n } \\ & \text { on } \\ & \text { N} \end{aligned}$	∞ $\stackrel{\infty}{n}$ $\stackrel{\sim}{\imath}$	$\begin{aligned} & \text { oे } \\ & \infty \\ & \infty \\ & \end{aligned}$	$\begin{gathered} \dot{\text { q }} \\ \text { N } \\ \text { N} \end{gathered}$		$\underset{\sim}{\text { T }}$	$\begin{aligned} & \frac{\lambda}{3} \\ & \frac{0}{0} \overline{\widetilde{3}} \\ & 30 \end{aligned}$	$\begin{aligned} & \text { 入o } \\ & \text { 曾 } \\ & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$
Oct．1－7		－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Oct．8－14		－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Oct．15－21		－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Oct．22－28	J	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Oct．29－Nov． 4	O	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Nov．5－11	$\stackrel{\sim}{0}$	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Nov．12－18	乙	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Nov．19－25		－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Nov．26－Dec． 2		－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Dec．3－9	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Dec．10－16	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Dec．17－23	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Dec．24－30	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Dec．31－Jan． 6	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Jan．7－13	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Jan．14－20	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Jan．21－27	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Jan．28－Feb． 3	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Feb．4－10	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Feb．11－17	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Feb．18－24	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Feb．25－Mar． 3	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Mar．4－10	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Mar．11－17	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Mar．18－24	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Mar．25－31	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Apr．1－7	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Apr．8－14	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Apr．15－21	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Apr．22－28	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Apr．29－May 5	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
May 6－12	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
May 13－19	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
May 20－26	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
May 27－June 2	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
June 3－9		－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
June 10－16		－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
June 17－23		－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
June 24－30		－－	－－	－－	－－	－－	－－	1	2	3	＋
July 1－7		－－	－	－－	－－	－－	3	－－	－－	3	＋
July 8－14		－－	－－	－－	－－	－－	－－	－－	2	2	＋
July 15－21		－－	－－	2	1	－－	4	1	－－	8	1
July 22－28		－－	－－	1	－－	－－	9	－－	－－	10	1
July 29－Aug． 4	B	－－	－－	－－	1	－－	4	1	－－	6	1
Aug．5－11	$\stackrel{\sim}{0}$	－－	－－	－－	－－	－－	－－	－－	－－	－－	－
Aug．12－18		－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Aug．19－25		－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Aug．26－Sept． 1		－－	－－	－－	－－	－－	－－	－－	－－	－－	－－
Sept．2－8		－－	－－	－－	－－	－－	－－	3	1	4	1
Sept．9－15		－－	－－	－－	1	－－	－－	1		2	＋
Sept，16－22		－－	－－	－－	－－	－－	－－	5		5	1
Sept．23－30		－－	－－	1	－－	－－	－－	－－	－－	1	＋
Totals	0	0	0	4	3	0	20	12	5	44	＊5

The average seasonal total is based on 8.5 years，since 1933－34 was only a half year．

TABLE 50
Waddell Creek, Steelhead: Age 1 Stream Fish Checked Through Upstream Trap, by Weekly Periods

Period	$\begin{aligned} & \ddagger \\ & \tilde{n} \\ & \text { n. } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & n \\ & \tilde{1} \\ & \dot{\sim} \\ & \underset{\sigma}{2} \end{aligned}$	$\begin{aligned} & \text { o } \\ & \underset{1}{2} \\ & \text { n } \\ & \end{aligned}$	$\begin{aligned} & \hat{n} \\ & \hat{1} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{gathered} \infty \\ \stackrel{1}{1} \\ \underset{\sim}{2} \\ \hline \end{gathered}$	$\begin{aligned} & \dot{a} \\ & \dot{1} \\ & \infty \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \dot{q} \\ & \dot{1} \\ & \underset{\sim}{2} \end{aligned}$	9 9 9 9		$\begin{aligned} & \lambda \\ & \frac{\pi}{3} \\ & \vdots \\ & 3 \\ & 3 \end{aligned}$	
Oct. 1-7		--	--	--	--	--	--	--	4	4	1
Oct. 8-14		--	--	--	--	--	--	1	3	4	1
Oct. 15-21		--	--	--	--	--	--	--	1	1	+
Oct. 22-28	믕	--	--	--	--	--	--	--	--	--	--
Oct. 29-Nov. 4	\%	--	--	--	--	5	--	--	2	7	1
Nov. 5-11	亿	--	--	--	--	1	2	--	--	3	+
Nov. 12-18		1	--	--	--	--	--	--	3	4	1
Nov. 19-25		--	--	--	2	--	--	--	1	3	+
Nov. 26-Dec. 2		--	--	--	--	5	1	--	5	11	1
Dec. 3-9	--	1	7	--	--	3	1	1	3	16	2
Dec. 10-16	--	--	--	--	7	1	--	--	17	25	3
Dec. 17-23	--	--	--	--	7	1	1	2	446	457	51
Dec. 24-30	--	--	1	--	--	--	--	9	12	22	3
Dec. 31-Jan. 6	--	--	1	--	4	--	--	4	8	17	2
Jan. 7-13	1	--	4	--	--	--	--	1	2	8	1
Jan. 14-20	--	--	7	--	1	--	--	--	1	9	1
Jan. 21-27	--	--	3	--	--	--	--	3	1	7	1
Jan. 28-Feb. 3	--	1	2	--	--	--	--	--	11	14	2
Feb. 4-10	3	--	--	--	--	--	1	--	2	6	1
Feb. 11-17	--	--	1	--	--	--	--	4	3	8	1
Feb. 18-24	--	1	--	--	--	--	2	1	--	4	+
Feb. 25-Mar. 3	1	--	1	1	--	--	--	2	--	5	1
Mar. 4-10	--	--	--	--	--	--	--	1	2	3	+
Mar. 11-17	--	--	--	--	--	--	--	1	1	2	+
Mar. 18-24	--	--	--	--	--	--	--	--	--	--	--
Mar. 25-31	--	--	--	--	--	--	--	1	--	1	+
Apr. 1-7	--	--	--	--	2	--	--	1	2	5	1
Apr. 8-14	--	--	--	--	--	--	--	--	1	1	+
Apr. 15-21	--	--	--	1	--	--	--	--	1	2	+
Apr. 22-28	--	--	--	1	--	--	--	7	--	8	1
Apr. 29-May 5	1	--	--	--	1	--	--	4	--	6	1
May 6-12	1	--	--	--	--	--	--	1	--	2	+
May 13-19	8	--	--	--	--	--	--	3	1	12	1
May 20-26	6	--	1	1	--	--	--	3	--	11	1
May 27-June 2	--	--	--	--	3	7	--	6	1	17	2
June 3-9		--	--	--	--	2	--	1	1	4	+
June 10-16		--	--	--	--	1	1	--	--	2	+
June 17-23		--	--	4	2	3	--	7	--	16	2
June 24-30		--	3	1	1	--	1	4	--	10	1
July 1-7		-	--	1	1	--	2	--	--	4	+
July 8-14		--	--	8	--	1	--	1	--	10	1
July 15-21		--	--	3	1	--	2	2	--	8	1
July 22-28	긍	--	2	--	--	--	14	46	--	62	7
July 29-Aug. 4	$\begin{gathered} \text { 己 } \\ \sim \end{gathered}$	--	--	--	2	--	2	24	2	30	3
Aug. 5-11		--	--	4	--	--	6	3	--	13	1
Aug. 12-18		--	--	2	--	--	4	--	--	6	1
Aug. 19-25		--	--	2	--	--	5	--	--	5	1
Aug. 26-Sept. 1		--	1	4	1	--	5	--	--	11	1
Sept. 2-8		--	--	--	1	--	1	--	1	3	+
Sept. 9-15		--	--	--	--	--	--	1	--	1	+
Sept. 16-22		--	--	--	--	--	--	--	--	--	--
Sept. 23-30		--	--	--	--	--	--	--	3	3	+
Totals	21	4	34	31	36	30	51	145	541	893	*105

* The average seasonal total is based on 8.5 years, since 1933-34 was only a half year.

TABLE 51
Waddell Creek, Steelhead: Age 2 Stream Fish Checked Through Upstream Trap, by Weekly Periods

Period	$\underset{\sim}{2}$ $\underset{\sim}{2}$ $\underset{\sim}{2}$	$\begin{aligned} & \text { n } \\ & \underset{1}{2} \\ & \text { N} \end{aligned}$	$\begin{aligned} & \text { on } \\ & \text { ǹ } \\ & \end{aligned}$	$\begin{gathered} \text { n} \\ \text { b } \\ \text { n} \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \underset{\sim}{2} \\ & \infty \\ & \infty \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & 7 \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$	$\underset{\underset{\sim}{7}}{\underset{\sim}{7}}$	$\begin{aligned} & \overline{3} \\ & \stackrel{~}{8} \\ & 0 \\ & 3 \\ & \hline \end{aligned}$	
Oct. 1-7		--	--	--	--	--	--	--	1	1	+
Oct. 8-14		--	--	--	--	--	--	--	3	3	+
Oct. 15-21		--	--	--	1	--	--	--	1	2	+
Oct. 22-28		--	--	--	--	--	--	--	1	1	+
Oct. 29-Nov. 4		--	--	--	1	17	--	4	5	27	3
Nov. 5-11		--	--	--	--	7	2	2	--	11	1
Nov. 12-18		2	--	2	1	13	--	--	--	18	2
Nov. 19-25		--	--	--	--	17	--	--	2	19	2
Nov. 26-Dec. 2		--		--	3	19	1	5	3	31	4
Dec. 3-9	--	3	2	1	7	21	--	1	9	44	5
Dec. 10-16	--	2	--	--	134	15	2	--	22	175	19
Dec. 17-23	1	1	--	7	101	2	4	8	315	439	49
Dec. 24-30	2	--	5	2	125	5	3	20	61	223	25
Dec. 31-Jan. 6	--	1	1	1	112	2	--	29	203	349	39
Jan. 7-13	2	--	3	--	13	13	--	3	22	56	6
Jan. 14-20	9	--	13	2	5	1	16	1	48	95	11
Jan. 21-27	3	4	4	1	14	4	6	2	1	39	4
Jan. 28-Feb. 3	1	7	2	9	2	--	--	1	3	25	3
Feb. 4-10	2	--	--	7	3	2	--	1	2	17	2
Feb. 11-17	1	--	--	3	2	1	1	4	1	13	1
Feb. 18-24	--	--	--	--	--	--	2	3	--	5	1
Feb. 25-Mar. 3	1	--	--	--	--	--	--	--	--	1	+
Mar. 4-10	1	--	--	--	1	1	2	1	--	6	1
Mar. 11-17	1	--	--	--	1	--	1	--	1	4	+
Mar. 18-24	--	--	1	--	--	--	--	1	--	2	+
Mar. 25-31	--	--	--	--	--	--	--	--	--	--	--
Apr. 1-7	1	--	--	2	2	--	--	--	--	5	1
Apr. 8-14	--	--	--	2	--	--	--	1	--	3	+
Apr. 15-21	1	--	--	1	--	--	--	--	--	2	+
Apr. 22-28	1	--	--	1	--	--	--	2	--	4	+
Apr. 29-May 5	--	--	--	--	--	--	--	1	--	1	+
May 6-12	--	--	--	--	--	--	--	--	--	--	--
May 13-19	--	--	--	--	--	--	--	--	--	--	--
May 20-26	2	--	--	-	1	--	--	2	--	5	1
May 27-June 2	--	--	--	--	2	1	--	1	--	4	+
June 3-9		--	--	--	--	--	--	--	--	--	--
June 10-16		--	--	--	--	--	--	--	--	--	--
June 17-23		--	--	1	--	--	2	--	--	3	+
June 24-30		--	1	--	--	--	--	--	--	1	+
July 1-7		--	--	--	--	--	--	1	--	1	+
July 8-14		--	--	--	--	--	--	--	--	--	--
July 15-21		--	--	--	--	--	--	--	--	--	--
July 22-28	D	--	--	--	--	--	1	--	--	1	+
July 29- Aug. 4	U0	--	--	--	1	--	--	--	--	1	+
Aug. 5-11	0	--	--	--	--	--	--	--	--	--	--
Aug. 12-18		--	--	--	--	--	--	--	--	--	--
Aug. 19-25		--	--	--	--	--	--	--	--	--	--
Aug. 26-Sept. 1		--	--	--	--	--	--	--	--	--	--
Sept. 2-8		--	--	--	--	--	--	--	--	--	--
Sept. 9-15		--	--	--	--	--	--	--	--	--	--
Sept. 16-22		--	--	--	--	--	--	--	--	--	--
Sept. 23-30		--	--	--	--	--	--	--	--	--	--
Totals	29	20	32	42	532	141	43	94	70	1,637	*193

* The average seasonal total is based on 8.5 years, since 1933-34 was only a half year.

TABLE 52
Waddell Creek, Steelhead: Age 3 Stream Fish Checked Through Upstream Trap, by Weekly Periods

Period	$\begin{aligned} & \ddagger \\ & \underset{\sim}{2} \\ & \text { m} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \dot{j} \\ & \text { an } \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{2} \\ & \underset{2}{2} \end{aligned}$		$\begin{aligned} & \infty \\ & \underset{\sim}{1} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { e} \\ & \infty \\ & \infty \\ & \end{aligned}$	q oे à		$\stackrel{\text { Y }}{\underset{\sim}{\square}}$	$\begin{aligned} & \overline{3} \\ & \stackrel{\pi}{0} \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & \lambda .0 \\ & \vdots \\ & \text { 品 } \\ & 0 \\ & 3 \\ & \hline \end{aligned}$
Oct. 1-7		--	--	--	--	--	--	--	--	--	--
Oct. 8-14		--	--	--	--	--	--	--	--	--	--
Oct. 15-21		--	--	--	--	--	--	--	--	--	--
Oct. 22-28	T	--	--	--	--	--	--	3	--	3	+
Oct. 29-Nov. 4	-	--	--	--	--	--	--	6	--	6	1
Nov. 5-11	$\stackrel{\sim}{2}$	--	--	--	--	--	--	3	--	3	+
Nov. 12-18		--	--	--	1	--	--	--	--	1	+
Nov. 19-25		--	--	--	--	--	--	--	--	--	--
Nov. 26-Dec. 2		--	--	--	--	--	--	2	1	3	+
Dec. 3-9	4	1	--	--	--	3	--	4	4	16	2
Dec. 10-16	5	--	--	--	8	1	--	3	1	18	2
Dec. 17-23	14	--	--	1	2	1	--	63	5	86	10
Dec. 24-30	4	--	26	--	4	--	1	34	2	71	8
Dec. 31-Jan. 6	27	1	63	--	4	4	1	28	3	131	15
Jan. 7-13	4	--	37	--	1	2	--	7	--	51	6
Jan. 14-20	7	--	17	--	1	--	1	3	1	30	3
Jan. 21-27	1	--	1	--	1	--	1	2	--	6	1
Jan. 28-Feb. 3	--	3	1	4	--	1	--	2	--	11	1
Feb. 4-10	4	1	--	2	--	2	--	4	--	13	1
Feb. 11-17	4	--	3	--	--	--	--	1	--	8	1
Feb. 18-24	--	1	4	--	1	--	--	1	--	7	1
Feb. 25-Mar. 3	--	--	--	--	--	--	--	--	--	--	--
Mar. 4-10	--	--	--	--	--	--	--	1	--	1	+
Mar. 11-17	--	--	--	--	--	--	--	1	--	1	+
Mar. 18-24	1	--	--	--	--	--	--	--	--	1	+
Mar. 25-31	--	--	--	--	--	--	--	--	--	--	--
Apr. 1-7	--	--	--	--	--	--	--	--	--	--	--
Apr. 8-14	--	--	--	--	--	--	--	--	--	--	--
Apr. 15-21	--	--	--	--	3	--	--	--	--	3	+
Apr. 22-28	--	--	--	--	--	--	--	1	--	1	+
Apr. 29-May 5	2	--	--	--	--	--	--	--	--	2	+
May 6-12	1	--	--	--	--	--	--	--	--	1	+
May 13-19	1	--	--	--	--	--	--	--	1	2	+
May 20-26	--	--	--	--	--	--	--	--	--	--	--
May 27-June 2	--	--	--	--	--	--	--	--	--	--	--
June 3-9		--	--	--	--	--	--	--	1	1	+
June 10-16		--	--	--	--	--	--	--	--	--	--
June 17-23		--	--	--	--	--	--	--	--	--	--
June 24-30		--	--	--	--	--	--	1	--	1	+
July 1-7		--	--	--	--	--	--	--	--	--	--
July 8-14		--	--	--	--	--	--	--	--	--	--
July 15-21		--	--	--	--	--	--	--	--	--	--
July 22-28	T	--	--	--	--	--	--	--	--	--	--
July 29-Aug. 4	$\begin{aligned} & \text { © } \\ & \sim \sim \end{aligned}$	--	--	--	--	--	--	--	--	--	--
Aug. 5-11	$\begin{aligned} & \text { \% } \\ & 0 \end{aligned}$	--	--	--	--	--	--	--	--	--	--
Aug. 12-18		--	--	--	--	--	--	--	--	--	--
Aug. 19-25		--	--	--	--	--	--	--	--	--	--
Aug. 26-Sept. 1		--	--	--	--	--	--	--	--	--	--
Sept. 2-8		--	--	--	--	--	--	--	--	--	--
Sept. 9-15		--	--	--	--	--	--	--	--	--	--
Sept. 16-22		--	--	--	--	--	--	--	--	--	--
Sept. 23-30		--	--	--	--	--	--	--	--	--	--
Totals	79	7	152	7	26	14	4	170	19	478	*56

[^38]TABLE 53
Waddell Creek, Steelhead: Age 4 Stream Fish Checked Through Upstream Trap, by Weekly Periods

Period	$\begin{aligned} & \ddagger \\ & \text { m } \\ & \text { m } \\ & \text { m } \end{aligned}$	$\begin{aligned} & n \\ & \dot{\sim} \\ & \underset{\sim}{m} \end{aligned}$	$\begin{aligned} & 0 \\ & \text { n} \\ & \text { n } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} n \\ \text { on } \\ \text { on } \\ \text { a } \end{gathered}$	$\begin{aligned} & \infty \\ & \underset{\sim}{1} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \mathfrak{n} \\ & \infty \\ & \infty \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { o} \\ & \text { i } \\ & \text { o} \\ & \underset{i}{2} \end{aligned}$	7 1 1 \vdots 2	$\begin{aligned} & \underset{\sim}{\underset{~}{7}} \\ & \underset{\sim}{7} \end{aligned}$	$\begin{aligned} & \frac{\pi}{0} \\ & 8 \\ & 3 \end{aligned}>$	
Oct. 1-7		--	--	--	--	--	--	--	--	--	--
Oct. 8-14		--	--	--	--	--	--	--	--	--	--
Oct. 15-21		--	--	--	--	--	--	--	--	--	--
Oct. 22-28	\bigcirc	--	--	--	--	--	--	--	--	--	--
Oct. 29-Nov. 4	\%	--	--	--	--	--	--	1	--	1	+
Nov. 5-11	\sim	--	--	--	--	--	--	--	--	--	--
Nov. 12-18	Z	1	--	--	--	--	--	--	--	1	+
Nov. 19-25		--	--	--	--	--	--	--	--	--	--
Nov. 26-Dec. 2		--	--	--	--	--	--	--	1	1	+
Dec. 3-9	--	--	--	--	--	2	--	--	--	2	$+$
Dec. 10-16	--	--	--	--	1	--	--	--	--	1	+
Dec. 17-23	--	--	--	--	--	--	--	4	--	4	+
Dec. 24-30	--	--	1	--	--	--	--	5	--	6	1
Dec. 31-Jan. 6	--	2	3	1	--	--	--	--	1	7	1
Jan. 7-13	--	2	4	--	--	--	--	1	--	7	1
Jan. 14-20	--	--	1	--	3	--	--	--	--	4	+
Jan. 21-27	--	--	--	--	--	--	--	1	--	1	+
Jan. 28-Feb. 3	--	--	1	--	--	1	--	--	--	2	+
Feb. 4-10	1	--	--	2	--	1	--	--	--	4	+
Feb. 11-17	--	--	--	1	--	--	--	1	--	2	+
Feb. 18-24	--	--	--	--	--	--	--	--	--	--	--
Feb. 25-Mar. 3	--	--	--	1	--	--	--	--	--	1	$+$
Mar. 4-10	--	1	--	--	--	1	--	--	--	2	+
Mar. 11-17	--	--	--	--	--	--	--	--	--	--	--
Mar. 18-24	--	--	--	--	--	--	--	--	--	--	--
Mar. 25-31	--	--	--	--	--	--	--	--	--	--	--
Apr. 1-7	--	--	--	--	--	--	--	--	--	--	--
Apr. 8-14	--	--	--	--	--	--	--	--	--	--	--
Apr. 15-21	--	--	--	--	--	--	--	--	--	--	--
Apr. 22-28	--	--	--	--	--	--	--	--	--	--	--
Apr. 29-May 5	1	--	--	--	--	--	--	--	--	1	+
May 6-12	--	--	--	--	--	--	--	--	--	--	--
May 13-19	--	--	--	--	--	--	--	--	--	-	--
May 20-26	--	--	--	--	--	--	--	--	--	--	--
May 27-June 2	--	--	--	1	--	--	--	--	--	1	$+$
June 3-9		--	--	--	--	--	1	--	--	1	$+$
June 10-16		--	--	--	--	--	--	1	--	1	$+$
June 17-23		--	--	--	--	--	--	--	--	--	--
June 24-30		--	--	--	--	--	--	--	--	--	--
July 1-7		--	--	--	--	--	--	--	--	--	--
July 8-14		--	--	--	--	--	--	--	--	--	--
July 15-21		--	--	1	--	--	--	--	--	1	+
July 22-28	T	--	--	--	--	--	--	--	--	--	--
July 29-Aug. 4	$\begin{aligned} & 0 \\ & 0 \\ & \hline \end{aligned}$	--	--	--	--	--	--	--	--	--	--
Aug. 5-11	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	--	--	--	--	--	--	--	--	--	--
Aug. 12-18	Z	--	--	--	--	--	--	--	--	--	--
Aug. 19-25		--	--	--	--	--	--	--	--	--	--
Aug. 26-Sept. 1		--	--	--	--	--	--	--	--	--	--
Sept. 2-8		--	--	--	--	--	--	--	--	--	--
Sept. 9-15		--	--	--	--	--	--	--	--	--	--
Sept. 16-22		--	--	--	--	--	--	--	--	--	--
Sept. 23-30		--	--	--	--	--	--	--	--	--	--
Totals	2	6	10	7	4	5	1	14	2	51	*6

* The average seasonal total is based on 8.5 years, since $1933-34$ was only a half year.

At least in some seasons, many of the upstream stream steelhead are sexually mature. For example, many ripe fish were encountered during the 1940-41 season. Others, however, probably do not spawn in the season in which they migrate upstream, and the reason for their migration is not known.

Sea Life

As in the case of the silver salmon, the extremely rapid growth made in the sea, as compared with that made in fresh water, is well known and has been directly observed in the case of Waddell Creek by measurements of juveniles descending to the sea and of fish of the same age classes returning to spawn in the following and in subsequent seasons. Since the seaward migration consists of several age classes, and since the periods covered both by the seaward and spawning migrations are spread over a number of months, it is not possible to present an accurate picture of the growth made, as was done for the silver salmon.

Practically nothing is known regarding the movements of steelhead in the sea. For unknown reasons, very few are caught at sea by commercial salmon trollers. Snyder (1921a) described 16 such fish caught off the coast near Fort Bragg, California, and brought into the harbor in the nearby Noyo Estuary from July 23 to August 25, 1920. These steelhead measured 19 to 29 inches, and weighed $23 / 4$ to $93 / 4$ pounds.

No Waddell Creek steelhead have been reported caught at sea, either by commercial fishermen or sports anglers. One steelhead tagged at the Scott Creek Egg Collecting Station on March 19, 1934 (male, 57 cm ., Tag No. 88463) was caught off Santa Cruz during early March, 1935, by a commercial fisherman. However, considerable numbers of steelhead, along with silver salmon, are taken by sports anglers in Monterey Bay off the coast of Santa Cruz County, especially between Watsonville Beach and Santa Cruz. The usual size of such fish, caught mostly in October and November, just prior to the opening of the mouths of the spawning streams, is 15 to 19 inches. Most of them are caught from piers or from boats operating within half-a-mile of shore. Five steelhead marked in the San Lorenzo River and two marked in Scott Creek are known to have been caught in this fishery. Also, marked fish from Scott Creek have been checked upstream at Waddell Creek and marked fish from Waddell Creek at Scott Creek. It is evident from these records that all steelhead do not simply remain near the mouth of the stream from which they migrated. The greatest minimum distance that any of the fish in the above records had traveled is approximately 19 miles (Scott Creek to Capitola Pier), but some steelhead almost certainly travel considerably greater distances. To what extent fish as adults return to the stream from which they migrated or stray to other streams will be discussed in the following section of this paper.

As was noted in the comparable section on silver salmon, along the California coast the continental shelf extends approximately 100 miles from the shoreline, and there is some evidence to indicate that all of the anadromous salmonids remain within its limits.

Probably the young steelhead, on first migrating to the ocean, remain fairly close to the shoreline. How soon and to what extent they

TABLE 54

Weekly period	Number of age + migrants	Percentage of age group (during season)	Percentage of all age groups (during season)	Number of age 1 migrants	Percentage of age group (during season)	Percentage of all age groups (during season)	Number of age 2 migrants	Percentage of age group (during season)	Percentage of all age groups (during season)
Oct. 1-7	----	----	----	4	+	0.1	1	+	+
Oct. 8-14	----	----	----	4	+	0.1	3	+	0.1
Oct. 15-21	----	----	----	1	+	+	2	+	0.1
Oct. 22-28	--	----	----	----	----	----	1	+	+
Oct. 29-Nov. 4	----	----	-	7	1	0.2	27	2	0.9
Nov. 5-11	----	----	----	3	+	0.1	11	1	0.4
Nov. 12-18	----	--	----	4	+	0.1	18	1	0.6
Nov. 19-25	----	----	----	3	+	0.1	19	1	0.6
Nov. 26-Dec. 2	----	----	----	11	1	0.4	31	2	1.0
Dec. 3-9	----	----	----	16	2	0.5	44	3	1.4
Dec. 10-16	----	----	----	25	3	0.8	175	11	5.6
Dec. 17-23	----	----	----	457	51	14.7	439	27	14.2
Dec. 24-30	----	--	--	22	2	0.7	223	14	7.2
Dec. 31-Jan. 6	----	----	----	17	2	0.5	349	21	11.3
Jan. 7-13	----	----	----	8	1	0.3	56	3	1.8
Jan. 14-20	----	----	----	9	1	0.3	95	6	3.3
Jan. 21-27	----	----	----	7	1	0.2	39	2	1.3
Jan. 28-Feb. 3	--	----	----	14	2	0.5	25	2	0.8
Feb. 4-10	----	----	----	6	1	0.2	17	1	0.5
Feb. 11-17	----	----	--	8	1	0.3	13	1	0.4
Feb. 18-24	----	----	----	4	+	0.1	5	+	0.2
Feb. 25-Mar. 3	----	----	----	5	1	0.2	1	+	+
Mar. 4-10	----	----	----	3	+	0.1	6	+	0.2
Mar. 11-17	----	----	----	2	+	0.1	4	+	0.1
Mar. 18-24	----	----	----	----	----	----	2	+	0.1
Mar. 25-31	----	----	----	1	+	+	----	----	----
Apr. 1-7	----	----	----	5	1	0.2	5	+	0.2
Apr. 8-14	----	----	----	1	+	+	3	+	0.1
Apr. 15-21	----	----	----	2	+	0.1	2	+	0.1

TABLE 54-continued

Weekly period	Number of age + migrants	Percentage of age group (during season)	Percentage of all age groups (during season)	Number of age 1 migrants	Percentage of age group (during season)	Percentage of all age groups (during season)	Number of age 2 migrants	Percentage of age group (during season)	Percentage of all age groups (during season)
Apr. 22-28	----	----	----	8	1	0.3	4	+	0.1
Apr. 29-May 5	----	----	----	6	1	0.2	1	+	+
May 6-12	----	----	----	2	+	0.1	----	----	----
May 13-19	----	----	----	12	1	0.4	----	----	----
May 20-26	----	----	----	11	1	0.4	5	+	0.2
May 27-June 2	----	----	----	17	2	0.5	4	+	0.1
June 3-9	----	----	----	4	+	0.1	----	----	----
June 10-16	----	----	----	2	+	0.1	----	----	----
June 17-23	----	----	----	16	2	0.5	3	+	0.1
June 24-30	3	7	0.1	10	1	0.3	1	+	+
July 1-7	3	7	0.1	4	+	0.1	1	+	+
July 8-14	2	5	0.1	10	1	0.3	----	----	----
July 15-21	8	18	0.3	8	1	0.3	----	----	----
July 22-28	10	23	0.3	62	7	2.0	1	+	+
July 29-Aug. 4	6	14	0.2	30	3	1.0	1	+	+
Aug. 5-11	----	----	----	13	1	0.4	----	----	----
Aug. 12-18	----	----	----	6	1	0.2	----	----	----
Aug. 19-25	----	----	----	5	1	0.2	----	----	----
Aug. 26-Sept. 1	----	----	----	11	1	0.4	----	----	----
Sept. 2-8	4	9	0.1	3	+	0.1	----	----	----
Sept. 9-15	2	5	0.1	1	+	+	----	----	----
Sept. 16-22	5	11	0.2	----	----	----	----	----	----
Sept, 23-30	1	2	+	3	+	0.1	----	----	----
Totals	44	----	1.4	893	---	28.8	1.637	----	52.7

TABLE 54 - continued

Weekly period	Waddell Creek, Steelhead: Stream Fish Checked Through Upstream Trap, by Age Groups, All Seasons Combined										
	Number of age 3 migrants	Percentage of age group (during season)	Percentage of all age groups (during season)	Number of age 4 migrants	Percentage of age group (during season)	Percentage of all age groups (during season)	Number of age 5 migrants	$\begin{aligned} & \text { Percentage of } \\ & \text { age group } \\ & \text { (during } \\ & \text { season) } \end{aligned}$	Percentage of all age groups (during season)	Number of all migrants	Percentage of total migration all seasons
Oct. 1-7	----	----	----	----	----	----	----	----	----	5	0.2
Oct. 8-14	----	----	----	----	----	----	----	----	----	7	0.2
Oct. 15-21	----	----	----	----	----	----	-----	----	----	3	0.1
Oct. 22-28	3	1	0.1			----	----	----	----	4	0.1
Oct. 29-Nov. 4	6	1	0.2	1	2	+	----	----	----	41	1.3
Nov. 5-11	3	1	0.1	----	----	----	----	----	----	17	0.5
Nov. 12-18	1	+	+	1	2	+	----	----	----	24	0.8
Nov. 19-25	--	---	----	---	---	--	----	----	----	22	0.7
Nov. 26-Dec. 2	3	1	0.1	1	2	+	----	----	----	46	1.5
Dec. 3-9	16	3	0.5	2	4	0.1	----	----	----	78	2.5
Dec. 10-16	18	4	0.6	1	2	+	----	----	----	219	7.1
Dec. 17-23	86	18	2.8	4	8	0.1	----	----	----	986	31.8
Dec. 24-30	71	15	2.3	6	12	0.2	----	----	----	322	10.4
Dec. 31-Jan. 6	131	27	4.2	7	14	0.2	----	----	----	504	16.2
Jan. 7-13	51	11	1.6	7	14	0.2	----	----	----	122	3.9
Jan. 14-20	30	6	1.0	4	8	0.1	----	----	----	138	4.4
Jan. 21-27	6	1	0.2	1	2	+	----	----	----	53	1.7
Jan. 28-Feb. 3	11	2	0.4	2	4	0.1	----	----	----	52	1.7
Feb. 4-10	13	3	0.4	4	8	0.1	----	----	----	40	1.3
Feb. 11-17	8	2	0.3	2	4	0.1	----	----	----	31	1.0
Feb. 18-24	7	1	0.2	----	----	----	----	----	----	16	0.5
Feb. 25-Mar. 3	----	----	--	1	2	+	----	----	----	7	0.2
Mar. 4-10	1	+	+	2	4	0.1	----	----	----	12	0.4
Mar. 11-17	1	+	+	---	---	----	----	----	----	7	0.2
Mar. 18-24	1	+	+	----	----	----	----	----	----	3	0.1
Mar. 25-31	----	----	----	----	----	----	----	----	----	1	+
Apr. 1-7	----	----	----	----	----	----	----	----	----	10	0.3
Apr. 8-14	----	----	----	----	----	----	--	----	----	4	0.1
Apr. 15-21	3	1	0.1	----	----	----	----	----	----	7	0.2

TABLE 54-continued

TABLE 55

Waddell Creek, Steelhead: Stream Fish Checked Through Upstream Trap, by Age Groups and Seasons													
Season	Number of age + migrants	Percentage of migration	Number of age 1 migrants	Percentage of migration	Number of age 2 migrants	Percentage of migration	Number of age 3 migrants	Percent-age of migration	Number of age 4 migrants	Percentage of migration	Number of age 5 migrants	Percentage of migration	Number of all migrants
1933-34	No record	----	*21	16	*29	22	*79	60	*2	2	*0	*0	131
1934-35	0	0	4	11	20	54	7	19	6	16	0	0	37
1935-36	0	0	34	15	32	14	152	66	10	4	1	+	229
1936-37	4	4	31	33	42	46	7	8	7	8	0	0	91
1937-38	3	+	36	6	532	89	26	4	4	1	0	0	601
1938-39	0	0	30	16	141	74	14	7	5	3	0	0	190
1939-40	20	17	51	43	43	36	4	3	1	1	0	0	119
1940-41	12	3	145	33	94	21	170	39	14	3	0	0	435
1941-42	5	+	541	43	704	55	19	1	2	+	0	0	1,271
Totals	44	1	893	29	1,637	53	478	15	51	2	1	+	3,104

* No record prior to December 3rd nor after June 2nd
begin to spread out is not known. Almost nothing is known of the extent to which steelhead from different streams mix while in the sea. It is not known, but is not improbable, that steelhead in the sea, like the Pacific salmons, migrate in schools.

Homing and Straying

As pointed out in the comparable section for silver salmon, considerable literature exists regarding "homing" among anadromous members of the salmon family. Because of the general importance of the subject and the valuable contribution derived from the Waddell Creek data, the views of the writers will here be repeated. It is the opinion of the present writers that evidence obtained through marking experiments carried out by scientific workers in this and other countries has established as a fact the existence of homing among anadromous salmonids. Briefly, young salmonids which descend from fresh water to the sea return to their "parent stream" for spawning purposes (young fish artificially hatched and liberated return to the stream in which they were liberated, not to the stream to which their parents returned or in which they were hatched). A review of the subject of homing in trout and salmon and the important literature concerning it are contained in a paper by Shapovalov (1941b) and the reader is referred to this paper for details.

Taft and Shapovalov (1938) presented preliminary data for the extent of homing and straying among steelhead between Waddell Creek and Scott Creek, $43 / 4$ air-line miles to the south. Table 56 shows the complete figures for nine seasons of marking (1931 through 1938-39) and the nine seasons during which returns were obtained (1933-34 through 1941-42). Fish listed as returning include only those taken at the traps in each season, to obtain as nearly comparable a basis as is possible. Males and females have been grouped together in the table, since no significant sexual differentiation has been revealed in the straying fish as compared with those of the same year class returning to their parent stream. It should be kept in mind that the fish marked and liberated at Scott Creek were hatchery-reared.

From Table 56 it is seen that during the entire period 476 (98.1 percent) of the fish marked at Waddell Creek returned there and 9 (1.9 percent) strayed to Scott Creek. Of those marked at Scott Creek, 932 (97.1 percent) returned there and 28 (2.9 percent) strayed to Waddell Creek. These figures show conclusively that the rate of straying among steelhead is considerably less than among silver salmon for the streams involved.

In the case of the silver salmon, it appeared (page 93) that the amount of straying from a given stream is fairly constant for a given year class, but may vary considerably from year class to year class and consequently from the total run entering in one season to the total run entering in another season. Among the steelhead, the rate of straying is so small that it is difficult to formulate definite conclusions regarding this phase of the subject, but there is some indication that the rule postulated for the silver salmon applies to the steelhead as well. Among the fish marked at Scott Creek in 1938-39, greater than average straying in 1939-40 was followed by greater than average straying in 1940-41.

TABLE 56
Waddell and Scott Creeks, Steelhead: Homing and Straying of Marked Fish

TABLE 56 (continued)
Waddell and Scott Creeks, Steelhead: Homing and Straying of Marked Fish

Place and season of marking	Mark	Returned to Scott Creek								
		1933-34	1934-35	1935-36	1936-37	1937-38	1938-39	1939-40	1940-41	1941-42

Waddell Creek

1931	Ad-LV	0	0							
$1932-$										
1933-34	Ad-RP		1 (1.5\%)	1 (1.6\%)	0	0				
1934-35	Ad-LP						0			
1935-36	Both P				3 (10.0\%)	2 (4.4\%)	0	0		
1936-37	Ad-RP					0	0	1 (6.2\%)	0	
1937-38	Ad-LP						0	1 (2.6\%)	0	0

Scott Creek

1932-33	Ad-RV	9 (100\%)	39 (100\%)	4 (100\%)						
1933-34	Both V		38 (100\%)	79 (98.8\%)	10 (100\%)					
1934-35	Ad-LV			197 (99.5\%)	177 (97.3\%)	48 (100\%)	1 (100\%)			
1935-36	Ad-RV					2 (100\%)				
1935-36	Ad-Ant $1 / 2 \mathrm{D}$				6 (100\%)	6 (85.7\%)		1 (100\%)		
1935-36	Both V					6 (100\%)	1 (100\%)			
1937-38	Ad-LV						22 (100\%)	22 (95.7\%)	2 (66.6\%)	
1938-39	Ad-RV							128 (94.1\%)	110 (91.7\%)	$24 \quad(100 \%)$

Although it appears likely that the rate of straying from Waddell Creek to Scott Creek and vice versa may vary to some extent with each year class, the rate of straying even when it is greatest apparently is so small that the various calculated survivals (discussed in the following section), which are based partly on unmarked fish of unknown origin, are not seriously affected. In view of this and because data on straying of marked fish both from Waddell Creek to Scott Creek and from Scott Creek to Waddell Creek are not available for the whole period of the experiments, it was decided that for the purpose of the present studies it was satisfactory to assume that the rate of straying between the two streams was the same.

Even if the rate of straying between the two streams is the same, differences in the numbers of strays contributed by each stream would result from different numbers of returning adults of a given year class produced by each stream. During most of the seasons under consideration the runs into Scott Creek have been considerably larger than those into Waddell Creek, and so it is not improbable that the contribution made by Scott Creek to Waddell Creek has been somewhat greater than vice versa, but it was decided that because of the low rate of straying and the complexity of the problem, involving various year classes with the same mark and different survival rates, any calculations based on the runs into each stream might result in greater errors than calculations based on the assumption that the numbers of steelhead that strayed from Waddell Creek to Scott Creek were equal to the numbers that strayed from Scott Creek to Waddell Creek.

It is not considered probable that streams other than Scott Creek have contributed sufficient strays to alter the survival figures appreciably. The San Lorenzo River, $131 / 2$ miles to the south of Scott Creek, possesses a run of steelhead, but no marked Waddell or Scott Creek fish have been taken at the egg collecting station on that stream, shown in Figure 3. Neither have any marked steelhead from Waddell or Scott creeks been taken in the San Lorenzo River by anglers, of whom there are a considerable number.

As noted in the previous section, some marked Scott Creek and San Lorenzo River steelhead have been caught by anglers in the surf or offshore along the Santa Cruz County coast, mostly in October and November. Without further evidence, however, these fish cannot be treated as strays. In answer to the view that such fish are "lost" and will not return to the parent stream, and that only fish which remain under the influence of water from the parent stream will return to it, it is pointed out the mouths of most California steelhead streams are closed by sand bars during the summer months and that in some cases the lower courses of the streams are entirely dry, so that no fresh water reaches the ocean. In this connection it may be well to consider again the case recorded by Taft and Shapovalov (1938) of a marked Scott Creek steelhead that was first taken in Waddell Creek and later in Scott Creek, without spawning first in Waddell Creek. This case, although perhaps an isolated one, apparently indicates that we can never quite conclude that a marked fish which wanders into another stream is really "lost" until we are definitely sure that it has spawned in the strange stream. This finding points to the possibility that supposed large-scale wandering among salmonids cited in the literature
may have been only temporary straying. For example, this may have been the situation in the experiments described by White (1936), in which marked Atlantic salmon in numbers entered the West Branch of Apple River, Nova Scotia, as well as the East Branch, in which they had been marked, especially since these streams have a common estuary, and approximately the lower mile of each of them is also tidal. Certainly, those fish which have been taken in the sea at any place away from the parent stream might eventually have come back if they had not been taken.

Between Scott Creek and the San Lorenzo River are several small streams, namely, San Vincente, Liddell, Respini, Laguna, Coja, Baldwin, and Medler creeks; the runs of steelhead in these streams are smaller than those in Waddell and Scott creeks. No marked fish have been reported from any of these streams, although no facilities to secure returns were in operation in them, and any reports would have resulted from chance catches made by anglers.

To the north of Waddell Creek are three small streams, Finny, Año Nuevo, and Whitehouse creeks, which have very small steelhead runs. Gazos Creek, $63 / 4$ miles north of Waddell, and Pescadero Creek, 144 miles north, both have steelhead runs of fair extent, but again, no marked Waddell fish have been reported from these two localities, in which no special facilities to secure returns were in operation.

From the preceding discussion we saw that the amount of straying between Waddell and Scott creeks is so small that it is difficult to pick out trends, but that there was some indication that, as in the case of the silver salmon, a given rate of straying is associated with fish returning in different seasons but resulting from a single year class (or marking). If this is true, it appears that the rate of straying that will result is determined by the time that adults first start returning (as $1 / 1$ fish) and is more dependent upon conditions existing up to the time than on conditions existing at the time of entry into the streams for spawning. Until contradictory evidence is presented, it appears satisfactory to set up the same hypothesis which was set up for the silver salmon, namely, that conditions existing at the time of the migration to the ocean determine the rate of straying that will take place in the years of return of the fish to fresh water. What these conditions are, it has not been found possible to state definitely on the basis of the data which are available and have been analyzed, but attention was called to certain possibilities in the case of the silver salmon, and it appears not improbable that the same considerations apply to the steelhead. In the case of the salmon, there was found to be (1) a tendency toward a positive correlation between size of downstream migration and rate of straying and (2) a tendency toward a negative correlation between average size of fish and rate of straying. In other words, the greater the numbers of downstream migrants and the smaller the size of downstream migrants, the greater is the amount of straying. Possible explanations for these correlations were (1) that an unusually large number of downstream migrants attracts predators out of proportion to the average, with the result that the fish entering the ocean are rapidly scattered or in some other way affected so they do not return to their home stream in average

TABLE 57
Waddell Creek，Steelhead：Allocation of Fish Which Jumped Upstream Over the Dam and Spawned Below the Dam to Total Age Classes

Run in season	2	3	4	5	6	7	Pre－ vious spaw ners	Totals	Total fish
1933－34									
\bigcirc	15	61	58	4	－－－	－－－	28	166	
\％ठ	9．0\％	36．7\％	34．9\％	2．4\％	－－－	－－－	16．9\％	－－－	
Dam jumpers	3	12	12	1	－－－	－－－	5	33	
Below dam spawners	2	7	7	1	－－－	－－－	3	20	219 ठすठ
ㅇ	3	40	132	12	－－－	－－－	36	223	
\％	1．3\％	17．9\％	59．2\％	5．4\％	－－－	－－－	16．1\％	－－－	
Dam jumpers	－－－	2	5	1	－－－	－－－	1	9	
Below dam spawners	－－－	6	21	2	－－－	－－－	6	35	267 아우
Mean	23	128	235	21	－－－	－－－	79	486	486
1934－35									
σ^{*}	5	121	115	17	－－－	－－－	7	265	
\％$\widehat{\text { or }}$	1．9\％	45．7\％	43．4\％	6．4\％	－－－	－－－	2．6\％	－－－	
Dam jumpers	－－－	2	1		－－－	－－－		3	
Below dam spawners	－－－	3	3	1	－－－	－－－		7	275 ぶす
앙	4	76	160	20	－－－	－－－	14	274	
\％아	1．5\％	27．7\％	58．4\％	7．3\％	－－－	－－－	5．1\％	－－－	
Dam jumpers	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	
Below dam spawners	－－－	1	3	1	－－－	－－－	－－－	5	279 우우
Mean	9	203	282	39	－－－	－－－	21	554	554
1935－36									
\bigcirc	7	76	67	11	－－－	－－－	41	202	
\％${ }^{\text {o }}$	3．5\％	37．6\％	33．2\％	5．4\％	－－－	－－－	20．3\％	－－－	
Dam jumpers	1	16	14	2	－－－	－－－	9	42	
Below dam spawners	－－－	3	2		－－－	－－－	2	7	251 ठ̋ठ
＋	5	40	119	36	2	－－－	46	248	
\％ 9	2．0\％	16．1\％	48．0\％	14．5\％	0．8\％	－－－	18．5\％	－－－	
Dam jumpers	－－－	1	3	1	－－－	－－－	1	6	
Below dam spawners	－－－	1	4	1	－－－	－－－	2	8	262 아우
Mean	13	137	209	51	2	－－－	101	513	513
1936－37									
\％	－－－	63	113	16	－－－	－－－	36	228	
\％${ }^{\text {o }}$	－－－	27．6\％	49．6\％	7．0\％	－－－	－－－	15．8\％	－－－	
Dam jumpers	－－－	3	5	1	－－－	－－－	1	10	
Below dam spawners	－－－	3	5	1	－－－	－－－	2	11	249 ठす
¢	3	60	116	22	－－－	－－－	44	245	
\％아	1．2\％	24．5\％	47．3\％	9．0\％	－－－	－－－	18．0\％	－－－	
Dam jumpers	－－－	－－－	－－－	－－	－－－	－－－	－－－	－－－	
Below dam spawners	－－－	2	5	1	－－－	－－－	2	10	255 우우
Mean	3	131	244	41	－－－	－－－	85	504	504
1937－38									
δ^{*}	－－－	50	55	18	1	－－－	41	165	
\％§	－－－	30．3\％	33．3\％	10．9\％	0．6\％	－－－	24．8\％	－－－	
Dam jumpers	－－－	3	3	1	－－－	－－	3	10	
Below dam spawners	－－－	8	8	3	－－－	－－－	6	25	200 ठठठ
＋	3	56	50	23	5	－－－	71	208	
\％ 9	1．4\％	26．9\％	24．0\％	11．1\％	2．4\％	－－－	34．2\％	－－	
Dam jumpers	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	
Below dam spawners	－－－	5	5	2	1	－－－	7	20	228 우우
Mean	3	122	121	47	7	－－－	128	128	128

TABLE 57 －Continued
Waddell Creek，Steelhead：Allocation of Fish Which Jumped Upstream Over the Dam and Spawned Below the Dam to Total Age Classes

Run in season	2	3	4	5	6	7	Pre－ vious spawn ers	Totals	Total fish
1938－39									
δ	6	102	72	4	2	－－－	26	212	
\％${ }^{\text {o }}$	2．8\％	48．1\％	34．0\％	1．9\％	0．9\％	－－	12．3\％	－－－	
Dam jumpers	－－－	－－－	－－－	－－－	－－－	－－－	－－－	－－－	
Below dam spawners	－－－	2	2	－－－	－－－	－－－	1	5	217 ర̋す̧
＋	2	85	88	11	－－－	－－－	57	243	
\％ 9	0．8\％	35．0\％	36．2\％	4．5\％	－－－	－－－	23．5\％	－－－	
Dam jumpers	－－－	－－－	－－－	－－－	－－－	－－－	－－	－－－	
Below dam spawners	－－－	2	2	－－－	－－－	－－－	2	6	249 우우
Mean．	8	191	164	15	2	－－－	86	466	466
1939－40									
ठ	33	134	32	3	－－－	－－－	12	214	
\％${ }^{\text {or }}$	15．4\％	62．6\％	15．0\％	1．4\％	－－－	－－－	5．6\％	－－－	
Dam jumpers	4	16	4	－－－	－－－	－－－	1	25	
Below dam spawners	2	6	2	－－－	－－－	－－－	－－－	10	249 ઠ̊すく
¢	18	108	79	2	－－－	－－－	21	228	
\％	7．9\％	47．4\％	34．6\％	0．9\％		－－－	9．2\％	－－	
Dam jumpers	－－－	2	2	－－－	－－－	－－－	1	5	
Below dam spawners	1	5	3	－－－	－－－	－－－	1	10	243 우우
Mean	58	271	122	5		－－－	36	492	492
1940－41									
O	27	116	33	－－－	1	－－－	28	205	
\％${ }^{\text {® }}$	13．2\％	56．6\％	16．1\％	－－－	0．5\％	－－－	13．7\％	－－－	
Dam jumpers	3	14	4	－－－	－－－	－－－	4	25	
Below dam spawners	1	6	2	－－－	－－－	－－－	1	10	240 ठ̋ ${ }^{\text {® }}$
아	9	58	62	6	－－－	－－－	50	185	
\％	4．7\％	31．4\％	33．5\％	3．3\％	－－－	－－－	27．0\％	－－－	
Dam jumpers	－－－	2	2		－－－	－－－	1	5	
Below dam spawners	1	3	3	－－	－－－	－－－	3	10	200 앙
Mean	41	199	106	6	1	－－－	87	440	440
1941－42									
¢	34	54	37	3	－－－	－－－	37	165	
\％	20．6\％	32．7\％	22．4\％	1．8\％	－－－	－－－	22．4\％		
Dam jumpers	6	10	7	－－－	－－－	－－－	7	30	
Below dam spawners	3	5	4	－－－	－－－	－－－	4	16	211 ถึす
¢	9	33	79	17	－－－	1	73	212	
\％아	4．2\％	15．6\％	37．3\％	8．0\％	－－－	0．5\％	34．4\％	－－－	
Dam jumpers	－－－	2	4	1	－－－	－－－	3	10	
Below dam spawners	1	2	6	1	－－－	－－－	6	16	238 운
Mean	53	106	137	22	－－－	1	130	449	449

numbers，and（2）that unfavorable growing conditions（resulting in small size of fish）in some way affect the fish so they do not return to their home stream in average numbers．For the present，because of the complex life history categories among the steelhead，the above mentioned correlations have not been tested．As in the case of the silver salmon，it would be of interest and profitable to carry out marking experiments planned to reveal and to test the indicated tendencies．

One other phase of homing remains to be considered，and that is the extent to which fish returning to the parent stream return to the same portion of the stream．Taft and Shapovalov（1938）found that
within a large river system, the Klamath in Northern California, the amount of straying among sea-run steelhead between tributaries was not greater than between Waddell and Scott creeks. For Waddell Creek an attempt to determine this matter was made on the basis of the distribution of marked and unmarked adults above and below the dam. The problem was made difficult by the fact that only fish which had completed spawning could be used with certainty, with the result that the number of such fish found below the dam (9) was too small to obtain conclusive evidence. None of these was marked, but for the purposes of the present studies the proportion of marked to unmarked fish has been considered to be the same above and below the dam.

Survival

The simplest procedure to calculate survival to maturity among sea-run steelhead at Waddell Creek is to calculate the number of eggs deposited in a given season and then to total the numbers of sea-run fish of that year class returning to spawn for the first time. Survival calculated in this manner may be termed primary over-all survival: primary in the sense that it is calculated to first spawning, and does not include survival to subsequent spawnings, which may be termed secondary survival, and overall in the sense that it is calculated from egg to sea-run fish, without a breakdown into survival at intervening stages.

In calculating primary over-all survival, the first spawners among the fish comprising the total estimated runs into Waddell Creek (see Table 35) were divided into total age classes. In this division, the numbers of fish estimated to have jumped upstream over the dam and to have spawned below the dam, respectively, were segregated into first and repeat spawners and the first spawners assigned to total age classes according to the ratios of first and repeat spawners and age classes in fish checked through the upstream trap (Table 30). It was not necessary to assign ages to the repeat spawners, since they do not enter into the calculation of primary survival. The results of the division are shown in Table 57.

From Table 57 it was possible to assign all returning first spawners to the proper brood season (season in which they were produced), and to express them as a percentage of the number of eggs which produced them. ${ }^{35}$ The results are shown in Table 58.

From an examination of Table 58 it is seen that the percentage of survival varies from 0.017 to 0.028 for the four seasons for which returns are complete or practically complete, and from 0.017 to 0.029 if an additional season (1937-38), for which the number of five-year-old returning fish was not available but was calculated on the basis of the
average return of five-year-olds in the other four seasons, is included. In the former case the mean percentage of return is 0.021 and in the latter case it is 0.023 . Of course, these are so close to each other that the selection of one or the other would make very little difference, but for the purposes of the present report the latter figure will be used, especially since the partially assumed survival percentage for 1937-38 is in harmony with the figures for other seasons.

One of the striking features to be noted in Table 58 is the inverse correlation between the total egg production and the survival percentage. The fact that the same phenomenon is encountered among the silver salmon (see page 96 and Table 18), and also in general for both steelhead and silver salmon when the survival is calculated from the downstream migration rather than from the eggs produced, indicates strongly that the correlation is not due to chance but is real. The fact that there is a chronological sequence as well in the present instance might lead one to believe that specific or general improving environmental conditions, rather than the size of the egg production, were responsible for the steady increase in the survival rate, except for the fact that this chronological sequence does not prevail in the case of the silver salmon nor in the case of the survival following downstream migration.

In Table 58, the numbers of fish listed under the heading "Spawning run" are the total fish estimated to have spawned in Waddell Creek in each season, including fish of all ages and all life histories, and both marked and unmarked fish. They include fish which were checked upstream through the trap (the great majority of the fish), those which jumped upstream over the dam, and those which spawned below the dam. It was necessary to include all three groups for the reason that in calculating survival it is impossible to recognize the fish produced in one group from those produced by another group. Survival may also

TABLE 58
Waddell Creek, Steelhead: Primary Over-all Survival

Brood season	Spawning run		Total egg production	Returned as adult first spawners						Total	Percentage survival
	σ^{π}	아		$\begin{gathered} 2 \\ \mathrm{yr} . \end{gathered}$	$\begin{gathered} 3 \\ \mathrm{yr} . \end{gathered}$	4 yr.	5 yr.	6 yr.	7 yr.		
1933-34	219	267	1,654,239	13	131	121	15	--	--	280	0.017
1934-35	275	279	1,567,366	3	122	164	5	1	1	296	0.019
1935-36*	251	262	1,523,360	3	191	122	6	--	?	322	0.021
1936-37†	249	255	1,459,534	8	271	106	22	?	9	407	0.028
1937-38\$	200	228	1,422,641	58	199	137	(15)	?	?	(409)	(0.029)
1938-39	217	249	----	41	106	?	?	?	?	---	---
1939-40	249	243	--	53	?	?	?	?	?	---	---
1940-41	240	200	--	?	?	?	?	?	?	---	---
1941-42	211	238	----	?	?	?	?	?	?	---	---
Totals			7,627,140							1,716	0.022
Mean											0.023

* No returns possible for 7-year fish,
\dagger No returns possible for 6- or 7-year fish.
$\$$ No returns possible for ;5-, 6-, or 7-year fish, but the average (3.7 percent) return for 5 -year fish in previous seasons has been used.
be calculated on the basis of marked fish, and this is done on pages 206239 , but such survival dates from time of downstream migration (i.e., time of marking) and not from time of egg deposition.

In calculating the number of eggs produced by each spawning run, the number of eggs produced by each fish was calculated on the basis of the egg number-fish length relationship previously established and discussed on pages 149-150 and shown in Figure 27. The lengths of all fish checked through the upstream trap were, of course, known. Egg production for fish jumping upstream over the dam and those spawning below the dam was based on fish lengths when known. Egg production for the remaining fish was estimated on the basis of average egg production for fish checked upstream through the trap. This is shown in Table 59.

For purposes of estimating survival, it was assumed that the straying of surviving fish to and from Waddell Creek has been equal. For a discussion of the justification of this assumption see page 200.

The previous discussion of survival and the accompanying tables have included both marked and unmarked fish. Now considering primary survival among marked fish, we are able to check on the previous calculations and to increase our insight into the processes that take place for the following reasons: (1) possible errors resulting from straying are eliminated, (2) in addition to the age at time of migration to sea, the age at time of initial downstream migration is also known (the two are not always the same) for the surviving fish.

Survival of Marked Waddell Creek Steelhead

In Tables 60-68, tabulations have been made of all adult steelhead which were marked as juveniles on a downstream migration through the traps and were taken in the upstream trap as first spawners. The purpose of these tabulations is to calculate survival among marked downstream juvenile steelhead, so (1) marked fish which have spawned in previous seasons, (2) marked Scott Creek strays, (3) fish marked at various points in Waddell Creek in 1931-32, (4) fish tagged but not

TABLE 59
Waddell Creek, Steelhead: Estimate of Total Egg Production, by Seasons

Season	Fish checked upstream			Estimated dam jumpers			Estimated number fish spawning below dam			Total egg production in stream
	δ	아	Calc. egg production	δ	+	Calc. egg production	δ	q	Calc. egg production	
1933-34	166	223	1,375,093	33	9	50,946	20	35	228,200	1,654,239
1934-35	265	274	1,550,440	3	--	--	7	5	16,926	1,567,366
1935-36	202	248	1,455,473	42	6	26,538	7	8	41,349	1,523,360
1936-37	228	245	1,412,902	10	--	--	11	10	46,632	1,459,534
1937-38	165	208	1,295,301	10	--	--	25	20	127,340	1,422,641
1938-39	212	243	1,557,032	--	--	--	5	6	--	--
1939-40	214	228	1,153,840	25	5	--	10	10	--	--
1940-41	205	185	1,072,271	25	5	--	10	10	--	--
1941-42	165	212	1,237,458	30	10	--	16	16	--	--
Totals	1,822	2,066								

TABLE 60

		dell Cree	eelhead	ed Fish	ning (as		rs	rood	ar o	29					
								ason of	return	adult					
downstream		stream migrant	adult	1931-32	1932-33				-35		-36				
						δ	아	δ	¢	δ	아	δ	아	\bigcirc	¢
1930-31	No marking	1	1/1	?										?	?
1929-30	No marking	+	1/2		?									?	?
1930-31	No marking	1	1/2		?									?	?
1931-32	No marking	2	2/1		?									?	?
1930-31	No marking	1	2/1		?									?	?
1930-31	No marking	1	1/3			$?$	$?$?	?
1931-32	No marking	2	2/2			?	?							?	?
1930-31	No marking	1	2/2			?	?							?	?
1932-33	No marking	3	3/1	\%		?	?							?	?
1931-32	No marking	2	3/1	\sim		?	?							?	?
1931-32	No marking	2	2/3	z	-			?	?					?	?
1932-33	No marking	3	3/2		\%			?	?					?	?
1931-32	No marking	2	3/2		\%			?	?					?	?
1933-34	Ad-RP	4	4/1					0	0					0	0
1932-33	No marking	3	3/3							?	?			?	?
1933-34	Ad-RP	4	4/2							0	0			0	0
1933-34	Ad-RP	4	4/3									0	0	0	0
Totals				?	?	?	?	$0+$?	$0+?$	$0+$?	$0+?$	0	0	$0+$?	0+?

TABLE 61
Waddell Creek, Steelhead: Marked Fish Returning (as First Spawners), Brood Year of 1930-31

									on of	urn as						
Season when first marked downstream	Mark	as downstream	returning adult	1932-33				-35								
					$\widehat{ }$	아	$\widehat{ }$	¢	ठ	¢	ठ	¢	δ	ㅇ	δ	아
1931-32	No marking	1	1/1	$?$?	?
1930-31	No marking	+	1/2		$?$?										?
1931-32	No marking	1	1/2		?	?									?	?
1932-33	No marking	2	2/1		?	?										?
1931-32	No marking	1	2/1		?	?										?
1931-32	No marking	1	13				?									?
1932-33	No marking	2	2/2				?									?
1931-32	No marking Ad-	1	2/2				?	?								?
1933-34	RP	3	3/1	\%			5	3								3
1932-33	No marking	2	3/1	-			?	?								?
1932-33	No marking	2	2/3	$\begin{aligned} & \text { an } \\ & 0 \end{aligned}$?	?						?
1933-34	Ad-RP	3	3/2						2	7						7
1932-33	No marking	2	3/2						?	?						?
1933-34	Ad-RP	3	4/1						0	1					0	1
1934-35	Ad-LP	4	4/1						1	0					1	0
1933-34	Ad-RP	3	3/3								0	0			0	0
1934-35	Ad-LP	4	4/2								0	0			0	0
1934-35	Ad-LP	4	4/3										0	0	0	0
Totals				?	$?$	$?$	$5+?$	$3+?$	$3+?$	$8+?$	0	0	0	0	$8+?$	$11+?$

TABLE 62
Waddell Creek, Steelhead: Marked Fish Returning (as First Spawners), Brood Year of 1931-32

										of	n as						
Season when first marked downstream	Mark	as down- stream	Age as returning					193									
				\bigcirc	¢	δ	아	σ	아앙	δ	¢	δ	아	δ	아	δ	우
1932-33	No marking	1	1/1	?	?											?	?
1931-32	No marking	+	1/2			?	?									?	?
1932-33	No marking	1	1/2			?	?									?	?
1933-34	Ad-RP	2	2/1			42	14									42	14
1932-33	No marking	1	2/1			?	?									?	?
1932-33	No marking	1	1/3					?	?							?	?
1933-34	Ad-RP	2	2/2					15	22							15	22
1932-33	No marking	1	2/2					?	?							?	?
1934-35	Ad-LP	3	3/1					0	2							0	2
1933-34	Ad-LP	2	3/1					0	2							0	2
1933-34	Ad-RP	2	2/3							0	0					0	0
1934-35	Ad-LP	3	3/2							0	1					0	1
1933-34	Ad-RP	2	3/2							0	0					0	0
1934-35	Ad-LP	3	4/1							2	5*					2	5*
1935-36	Both P	4	4/1							0	0					0	0
1934-35	Ad-LP	3	3/3									0	0			0	0
1934-35	Ad-LP	3	4/2									1	4			1	4
1935-36	Both P	4	4/2									0	0			0	0
1935-36	Both P	4	4/3											0	0	0	0
Totals				?	?	$42+?$	$14+$?	15+?	$26+?$	2	6	1	4	0	0	60+?	50+?

[^39]TABLE 63
Waddell Creek, Steelhead: Marked Fish Returning (as First Spawners), Brood Year of 1932-33

										of	n as						
Season when first marked downstream	Mark	as downstream	Age as returning														
				$\widehat{0}$	+	ठ	+	δ	우		아	δ	아앙	\bigcirc	아	δ	아
1933-34	Ad-RP	1	1/1	0	1											0	1
1932-33	No marking	+	1/2			?	?									?	?
1933-34	Ad-RP	1	1/2			0	1									0	1
1934-35	Ad-LP	2	2/1			9	3									9	3
1933-34	Ad-RP	1	2/1			0										0	0
1933-34	Ad-RP	1	1/3					0	0							0	0
1934-35	Ad-LP	2	2/2					4	7							4	7
1933-34	Ad-RP	1	2/2					1	0							1	0
1935-36	Both P	3	3/1					5	3							5	3
1934-35	Ad-LP	2	3/1													6	6*
1934-35	Ad-LP	2	2/3							0	0					0	0
1935-36	Both P	3	3/2							2	0					2	0
1934-35	Ad-LP	2	3/2							0	2					0	2
1936-37	Ad-RP	4	4/1								0					0	0
1935-36	Both P	3	3/3									0	0			0	0
1936-37	Ad-RP	4	4/2									0	0			0	0
1936-37	Ad-RP	4	4/3											0	0	0	0
Totals				0	1	9	4	16	16	2	2	0	0	0	0	27	23

* One of these marked Ad + Both P (marked downstream both in 1934-35 and 1935-36).

TABLE 64
Waddell Creek, Steelhead: Marked Fish Returning (as First Spawners), Brood Year of 1933-34

										of	n as						
Season when first marked downstream	Mark	as downstream	Age as returning adult														
				\%	아	\bigcirc	우	ठ	q	ठ	+	ठ	+	ठ	\bigcirc	δ	안
1934-35	Ad-LP	1	1/1	0	1											0	1
1933-34	Ad-RP	+	1/2			0	0									0	0
1934-35	Ad-LP	1	1/2			0	1									0	1
1935-36	Both P	2	2/1			10	7									10	7
1934-35	Ad-LP	1	2/1			1	2									1	2
1934-35	Ad-LP	1	1/3					0	0							0	0
1935-36	Both P	2	2/2					12	7							12	7
1934-35	Ad-LP	1	2/2					0	3							0	3
1936-37	Ad-RP	3	3/1					0	0							0	0
1935-36	Both P	2	3/1					0	1							0	1
1935-36	Both P	2	2/3							1	0					1	0
1936-37	Ad-RP	3	3/2							0	0					0	0
1935-36	Both P	2	3/2							1	3					1	3
1937-38	Ad-LP	4	4/1							0	0					0	0
1936-37	Both P	3	3/3									0	0			0	0
1937-38	Ad-LP	4	4/2									0	0			0	0
1937-38	Ad-LP	4	4/3											0	0	0	0
Totals				0	1	11	10	12	11	2	3	0	0	0	0	25	25

TABLE 65
Waddell Creek, Steelhead: Marked Fish Returning (as First Spawners), Brood Year of 1934-35

										n of	urn as						
Season when first marked downstream	Mark	as downstream	Age as returning adult														
				ठ	아	ठ	ㅇ	$\widehat{ }$	9	$\widehat{ }$	¢	δ	ㅇ	δ	δ	δ	아
1935-36	Both P	1	1/1	0	0											0	0
1934-35	Ad-LP	+	1/2			0	0									0	0
1935-36	Both P	1	1/2			0	0									0	0
1936-37	Ad-RP	2	2/1			9	4									9	4
1935-36	Both P	1	2/1			5	7									5	7
1935-36	Both P	1	1/3					0	0							0	0
1936-37	Ad-RP	2	2/2					5	6							5	6
1935-36	Both P	1	2/2					6	8							6	8
1937-38	Ad-LP	3	3/1					1	0							1	0
1936-37	Ad-RP	2	3/1					0	1							0	1
1936-37	Ad-RP	2	2/3							0	0					0	0
1937-38	Ad-LP	3	3/2							0	0					0	0
1936-37	Ad-RP	2	3/2							0	0					0	0
1938-39	No marking	4	4/1							?	?					?	?
1937-38	Ad-LP	3	3/3									0	0			0	0
1937-38	Ad-LP	3	4/2									1	0			1	0
1938-39	No marking	4	4/2									?	?			?	?
1938-39	No marking	4	4/3											?	?	?	?
Totals				0	0	14	11	12	15	0+?	$0+$?	$1+$?	$0+$?	?	?	$27+?$	26+?

TABLE 66

			eelhead:		R	ni	s Fi	Spa	ers),	ood	ar of	5-3				
										of of	urn as					
Season when first marked downstream	Mark	age as downstream	Age as returning adult						-40					1942-43		
				σ^{*}	ㅇ	σ^{2}	¢	δ	아	δ^{\top}	아	δ	안		δ	아
1936-37	Ad-RP	1	1/1	0	0										0	0
1935-36	Both P	+	1/2			0	0								0	0
1936-37	Ad-RP	1	1/2			1	0								1	0
1937-38	Ad-LP	2	2/1			7	4								7	4
1936-37	Ad-RP	1	2/1			16*	20								16*	20
1936-37	Ad-RP	1	1/3					0	0						0	0
1937-38	Ad-LP	2	2/2					2	6						2	6
1936-37	Ad-RP	1	2/2					3	7					\%	3	7
1938-39	No marking	3	3/1					?	?					\%	?	?
1937-38	Ad-LP	2	3/1											\%	1	1
1937-38	Ad-LP	2	2/3							0	0				0	0
1938-39	No marking	3	3/2							?	?				?	?
1937-38	Ad-LP	2	3/2							0	0				0	0
1939-40	No marking	4	4/1							?	?				?	?
1938-39	No marking	3	3/3									?	?		?	?
1939-40	No marking.	4	4/2									?	?		?	?
1939-40	No marking	4	4/3											?	?	?
Totals				0	0	24	24	$6+?$	$14+$?	0+?	$0+$?	$?$	$?$?	$30+$?	$38+$?

* One of these marked Ad + Both P (D) (marked downstream both in 1936-37 and 1937-38).

TABLE 67
Waddell Creek, SteeIhead: Marked Fish Returning (as First Spawners), Brood Year of 1936-37

TABLE 68
Waddell Creek, Steelhead: Marked Fish Returning (as First Spawners), Brood Year of 1937-38

marked, and (5) all unmarked fish have been, excluded, since none of them is comparable to those marked on a downstream migration.

The data are arranged according to the returns in all seasons from marked fish of a given brood year, for males and females separately. The total number of marked first spawners resulting from a given brood year is shown in the extreme right-hand column of each table. In addition, the first spawners returning from fish marked in a given season, irrespective of brood year, have also been obtained from these data. These tabulations must be obtained from more than one table.

Only those freshwater plus ocean age combinations which have actually been encountered among Waddell Creek returning adult firstspawning steelhead during the seasons of 1933-34 through 1941-42 have been listed (three of these combinations, $1 / 3,3 / 3$, and $4 / 3$, have not been encountered among the marked fish; among the unmarked fish, only one has been found in each of these combinations, and the scale readings for the latter two of them are somewhat doubtful, so these three combinations do not play a significant role).

The first column shows the season in which the fish was first marked on a downstream migration. (Three fish among the marked first spawners made an upstream migration subsequent to the downstream migration on which they were first marked and then a second downstream migration, on which they were again marked. These fish thus carry the mark Ad-Both P and are individually noted.) Seasons during which no marking was carried on are shown for those age combinations for which returns have been obtained in other seasons.

The second column shows the mark given, or carries the notation "No marking".
The third column shows the probable age of the fish at the time that it was first marked on a downstream migration. It must be kept in mind that the mark given shows only the season in which the fish was marked, and not the age. In most cases, returning adults with different marks will have different life histories, but a few may have different marks but the same life history. For example, a fish marked in September of one season and one marked in October of the following season (i.e., in the following month) will have different marks, but could well have the same life histories. In the case of fish marked during the principal (spring) migrations those with different marks will have different life histories in those cases in which the fish went to sea in the same season in which they were marked. However, as was noted previously, a number of fish remain in fresh water for one season after their first downstream migration, i.e., migrate to sea in the season following the one in which they were marked. Such fish are shown in bold face type in the columns under "Season of return as adult".

The fourth column shows the age combination (life history category) of the fish as a returning adult.

The remaining columns show the season in which the fish returned as a first spawner. Similarly to the case of the first column, those seasons in which the upstream trap was not operated ("No Records") or in which no returns were possible because no marking had been carried on in the proper season are shown for those combinations for which returns have been obtained in other seasons. Such returns, which might have occurred if marking had been carried on and the upstream trap
had been operated, are indicated by a question mark, "?". A zero, "0", means that no returns were obtained, but that marking had been carried out and the upstream trap operated.

There are nine brood years, 1929-30 through 3937-38, for which at least partial returns could be expected, on the basis of the marking carried out, the seasons during which the upstream trap was operated (nine seasons, 1933-34 through 1941-42), and the life history categories which have been encountered among Waddell Creek adult first-spawning steelhead. At least partial returns were obtained for all but the 1929-30 brood year, for which returns for only three minor age combinations were possible. Complete returns were possible for only two brood years, 1932-33 and 1933-34, but nearly complete returns (complete except for minor age combinations) were possible for two other brood years, 1934-35 and 1935-36. The largest returns were obtained for still another brood year, 1931-32, despite the fact that returns for two major age combinations were not possible.

Altogether, returns were obtained for 383 marked first spawners. (One marked fish, male Ad-LP, 71 cm ., taken during the $1936-37$ season had all of the scales badly regenerated and was omitted from this series of tabulations. It is not known whether this fish was a first spawner or not. For all other marked fish the scales were sufficiently complete to determine whether or not the fish were spawning for the first time.) These 383 fish were composed of 187 (48.8 percent) males and 196 (51.2 percent) females. This is almost exactly the sex ratio among all 3,220 first spawners checked upstream through the trap (Table 28). Returns for the two complete brood years (1932-33 and 1933-34) (Tables 63 and 64) and for the four complete or nearly complete brood years (193233 through 1935-36) (Tables 63-66) also show a sex ratio

TABLE 69
Waddell Creek, Steelhead: Marked Fish Returning (as First Spawners), All Brood Years Combined

Probable age as downstream migrant	Age as returning adult	Number ठర	Number 우우	$\begin{gathered} \text { Number } \\ \widehat{\delta} \hat{\sigma}+\text { 아 } \end{gathered}$	Number of seasons*
1	1/1	1	2	3	5
1	1/2	3	3	6	5
+	1/2	0	1	1	5
2	2/1	77	32	109	5
1	2/1	28	46	74	5
1	1/3	0	0	0	5
2	2/2	38	48	86	5
1	2/2	11	22	33	5
3	3/1	11	8	19	5
2	3/1	7	11	18	5
2	2/3	1	0	1	5
3	3/2	4	8	12	5
2	3/2	1	5	6	5
4	4/1	1	0	1	5
3	4/1	2	6	8	5
3	3/3	0	0	0	5
4	4/2	0	0	0	5
3	4/2	2	4	6	5
4	4/3	0	0	0	5
Totals	--	187	196	383	--

[^40]of approximately $1: 1$. In the former case it is 52 (52.0 percent) males and 48 (48.0 percent) females and in the latter case 109 (49.3 percent) males and 112 (50.7 percent) females.

An analysis of the data (Table 69) shows that of the 383 marked adult first spawners, 220 (57.4 percent) had made their initial downstream migration as age 2 fish (in their second year), 116 (30.3 percent) as age 1 fish, and 45 (11.8 percent) as age 3 fish. There was one fish apiece in the + and 4 groups. This sequence, but not order of magnitude, is also true for each sex. It is seen that there were more males than females in the 2 group, whereas the reverse was true in the 1 and 3 groups. These sexual differences are probably real.

For purposes of comparison with the returning adults, Table 70 also shows the age at initial downstream migration of the 12,679 downstream stream fish which were marked and produced those adults. From this table it is seen that the ages at initial downstream migration of adult steelhead first spawners occur in quite different proportions from those of the stream fish producing them. This results both from differing survival rates among downstream stream fish of different ages and the fact that many of the downstream stream fish remain in the stream for an additional season, the percentage doing so varying considerably with age.

That many of the fish which migrate downstream do not go to sea in the same season, but remain in the stream until the following season, has been noted previously and is seen clearly from Table 71. Of the 383 fish under discussion, 237 (61.9 percent) migrated to sea in the same season, while 146 (38.1 percent) migrated in the following season. Of the 146 fish that migrated to sea in the following season, three made an upstream migration and a second downstream migration, while the remainder stayed in the stream below the dam, most likely in the lagoon in the great majority of cases.

In this connection, a striking difference in behavior is to be noted in the different age groups. Among the age 1 group, only 9 (7.8 percent) had migrated in the same season and 107 (92.2 percent) had migrated in the following season; among the age 2 group, 196 (89.9

TABLE 70
Waddell Creek, Steelhead: Age at Initial Downstream Migration of Marked Adult First Spawners and Marked Downstream Stream Fish, All Seasons Combined

Age	Adults						Stream fish	
	ઠた		아아		$\widehat{\text { ox }}+$ q¢		Number	Percentage
	Number	Percentage	Number	Percentage	Number	Percentage		
+	0		1	0.5	1	0.3	3,820	30.1
1	43	23.0	73	37.2	116	30.3	4,811	38.0
2	124	66.3	96	49.0	220	57.4	3,793	29.9
3	19	10.2	26	13.3	45	11.8	249	2.0
4	1	0.5	0	--	1	0.3	6	+
Totals	187	--	196	--	383	--	12,679	--

percent) had migrated in the same season and only 24 (10.1 percent) in the following season; among the age 3 group, 31 (68.9 percent) had migrated in the same season and 14 (31.1 percent) in the following season.

This sequence, but not order of magnitude, is also true for each sex. Among the males, 136 (72.7 percent) had migrated to sea in the same season and 51 (27.3 percent) in the following season, while among the females 101 (51.5 percent) had migrated in the same season and 95 (48.5 percent) in the following. Thus, a greater proportion of the fish had migrated to sea in the same season following their initial downstream migration among the females than among the males. Among the age 1 group, 9.3 percent of the males and 6.8 percent of the females had migrated in the same season and 90.7 percent of the males and 93.2 percent of the females in the following; among the age 2 group, 93.5 percent of the males and 83.3 percent of the females had migrated in the same season and 6.5 percent of the males and 16.7 percent of the females in the following; among the age 3 group, 78.9 percent of the males and 61.5 percent of the females had migrated in the same season and 21.1 percent of the males and 38.5 percent of the females in the following. It is seen, then, that within each group a greater proportion of the females than of the males had migrated in the following season.

Any definite quantitative explanation of the relation between downstream migration and actual entry into the ocean would involve data regarding the actual or proportionate numbers of marked downstream migrants that went to sea during the same season and during the following season, respectively. Such data are not available, and we know only the numbers that survived out of unknown numbers of such fish.

TABLE 71
Waddell Creek, Steelhead: Comparison of Fish Migrating to Sea in the Season of Their Initial Downstream Migration With Those Migrating in the Following Season, Among Marked Adult First Spawners, All Seasons Combined

Probable age as downstream migrant	Season of migration to sea*	ठす		우아		$\delta^{\top} \delta^{\text {a }}+$ 앙	
		Number	Percentage	Number	Percentage	Number	Percentage
+	Same Following	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	--	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} 0.0 \\ 100.0 \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{gathered} 0.0 \\ 100.0 \end{gathered}$
1	Same Following	$\begin{gathered} 4 \\ 39 \end{gathered}$	$\begin{gathered} \hline 9.3 \\ 90.7 \end{gathered}$	$\begin{gathered} 5 \\ 68 \end{gathered}$	$\begin{gathered} 6.8 \\ 93.2 \end{gathered}$	$\begin{gathered} 9 \\ 107 \end{gathered}$	$\begin{gathered} 7.8 \\ 92.2 \end{gathered}$
2	Same Following	$\begin{gathered} 116 \\ 8 \end{gathered}$	$\begin{gathered} 93.5 \\ 6.5 \end{gathered}$	$\begin{aligned} & 80 \\ & 16 \end{aligned}$	$\begin{aligned} & 88.3 \\ & 16.7 \end{aligned}$	$\begin{gathered} 196 \\ 24 \end{gathered}$	$\begin{aligned} & 89.9 \\ & 10.1 \end{aligned}$
3	Same Following	$\begin{gathered} 15 \\ 4 \end{gathered}$	$\begin{aligned} & \hline 78.9 \\ & 21.1 \end{aligned}$	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	$\begin{aligned} & 61.5 \\ & 38.5 \end{aligned}$	$\begin{aligned} & 31 \\ & 14 \end{aligned}$	$\begin{aligned} & \hline 68.9 \\ & 31.1 \end{aligned}$
4	Same Following	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	$\begin{gathered} 100.0 \\ 0.0 \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 0 \end{aligned}$		1	$\begin{gathered} 100.0 \\ 0.0 \end{gathered}$
Totals		187	--	196	--	383	--

* In relation to season of initial downstream migration.

However, it might be pointed out that the same results could be obtained whether the numbers of fish which went to sea in the season of their initial downstream migration and in the following season, respectively, were proportionate to the representation of the two categories among the adult first spawners, or greatly out of proportion to them. If they were proportionate to them, it necessarily means that after the fish within each age group had made their initial downstream migration the rate of mortality was the same in the fish that went to sea in the same season as in those that went to sea in the following season. On the other hand, if, for example, equal numbers of age 1 group downstream migrants migrated to sea in the same season and in the following season, but the ocean mortality was much greater than the freshwater mortality, there would be a much higher survival of the fish that migrated to sea in the season following their downstream migration, with results among the adults corresponding to those obtained. At the same time, among the age 2 group, many more fish might migrate to sea in the same season than in the following season, with results again corresponding to those obtained, despite higher ocean mortality.

Whatever the proportions of these categories among the downstream migrants, it is probable that the great majority of the fish in the age 1 and 2 groups are sexually immature and that their behavior in regard to time of migration to sea is not governed by sexual development. It is possible that the fish of the age 1 group have a strong tendency to remain in the lower stream and lagoon in order to make use of the extremely favorable growing conditions to be found there, while the fish of the age 2 group, having reached a size at which they can most favorably make use of the growing conditions (including kind and size of food) to be found in the ocean, migrate to sea in the season of their downstream migration. The shift back to a higher percentage remaining for another season among the age 3 group might then be accounted for by the attainment of sexual maturity among a greater percentage of this group than of the age 1 and 2 groups. A different approach to this phase of the discussion, one that would lay the stress on the fundamental biology of the species rather than on the environmental conditions, would be to say that it is in the nature of the species to migrate to sea as age 2 group fish and that deviations from such behavior occur only when either environmental conditions (favorable or unfavorable) or sexual development are strong enough to overbalance the fundamental behavior pattern. To a greater or less extent, this is probably what happens. When population pressure or other ecological factors cause some of the fish to migrate downstream as age 1 group fish, these fish still have a strong tendency to remain in fresh water into the following season, conforming to their fundamental behavior pattern, while those that migrate downstream as age 2 group fish have a strong tendency to migrate to sea during the same season.

The fact that among the downstream migrants the age 1 and 2 groups form by far the largest age groups, combined with the fact that the great majority of the age 1 group probably remain in fresh water until the following season, while the great majority of the age 2 group probably migrate to sea in the same season, results, of course, in the fact that the great majority of the downstream migrants migrate to sea as

TABLE 72
Waddell Creek, Steelhead: Marked Fish Returning (as First Spawners), All Brood Years Combined

Age at entry into ocean	Returning as adults					
	すす		아아		$\delta^{\text {® }}+$ + + 아	
	Number	Percentage	Number	Percentage	Number	Percentage
+	0	0.0	0	0.0	0	0.0
1	4	2.1	6	3.1	10	2.6
2	155	82.9	148	75.5	303	79.1
3	23	12.3	32	16.3	55	14.4
4	5	2.7	10	5.1	15	3.9
Totals	187	--	196	--	383	--

fish of the age 2 group. This is shown in Table 72, from which it is seen that of the 383 fish under discussion, 303 (79.1 percent) had migrated to sea as fish of the age 2 group, 55 (14.4 percent) as fish of the age 3 group, 15 (3.9 percent) as fish of the age 4 group, and 10 (2.6 percent) as fish of the age 1 group. In examining these percentages and others previously noted, it must constantly be kept in mind that the discussion deals with percentages among returning adults, and that these percentages did not necessarily prevail among the downstream marked migrants. This point has often been overlooked or not sufficiently stressed by various investigators who have discussed age at time of migration among salmonids. The same sequence and approximate order of magnitude for the different age groups migrating to sea prevails in the two sexes, although there may be a somewhat greater tendency for females to remain longer in fresh water.

A comparison of Table 69 (probable age as downstream migrant) with Table 72 (age at entry into ocean) shows strikingly the differences in the representation of the different age groups in these two groups. Although the age 2 group is dominant in both cases, it is much stronger among the latter group. The age 1 group represents 30.3 percent of the former group, but slumps to only 2.6 percent in the latter one. These examples show very clearly how easy it would be to reach erroneous conclusions regarding survival by considering the downstream migrants to be equivalent to seaward migrants.

Table 73 shows the number of fish in each life history category among the 383 marked adult first spawners. It is seen that the $2 / 1$ fish predominate (47.8 percent), followed strongly by the $2 / 2$ group (31.1 percent). The other categories are represented as follows: 3/1 (9.7 percent), 3/2 (4.7 percent), 4/1 (2.3 percent), $1 / 2$ (1.8 percent), 4/2 (1.6 percent), $1 / 1$ (0.8 percent), and $2 / 3$ (0.3 percent). It is to be noted that in both males and females the life history categories occur in the same sequence, but not in the same magnitude. In the $2 / 1$ group the males predominate, while in all other categories of importance the females predominate. These sexual differences, borne out by the much more extensive data for all first spawners, shown in Table 28, mean

TABLE 73

Waddell Creek, Steelhead: Marked Fish Returning (as First Spawners), by Life History Categories, All Seasons Combined

Age as returning adult	Number returning as adults						
	δ		아		$6+q$		
	Number	Order of rank	Number	Order of rank	Number	Percentage	Order of rank
1/1	1	8	2	8	3	0.8	8
1/2	3	5	4	6	7	1.8	6
2/1	105	1	78	1	183	47.8	1
1/3	0	--	0	--	0	--	--
2/2	49	2	70	2	119	31.1	2
3/1	18	3	19	3	37	9.7	3
2/3	1	8	0	--	1	0.3	9
3/2	5	4	13	4	18	4.7	4
4/1	3	5	6	5	9	2.3	5
3/3	0	--	0	--	0	--	--
4/2	2	7	4	6	6	1.6	7
4/3	0	--	0	--	0	--	--
Totals	187	--	196	--	383	--	--

that the males on the average mature at an earlier total age (freshwater and ocean years combined) than the females, as is shown more clearly in Table 74. The data for marked first spawners are in general agreement with those for all first spawners checked upstream through the trap (Table 28).

Table 74 shows the total age at maturity among the 383 fish under discussion. It is seen that 190 (49.6 percent) or about one-half matured at 3 years of age, 156 (40.7 percent) or approximately two-fifths at 4,28 "(7.3 percent) at $5,6(1.6$ percent) at 6 , and $3(0.8$ percent) at 2 . The sequence is somewhat different in the two sexes. Among the males the ages occur in the following sequence: 3 (57.8 percent), 4 (35.8 percent), 5 (4.8 percent), 6 (1.1 percent), and 2 (0.5 percent). Among

TABLE 74
Waddell Creek, SteeIhead: Marked Fish Returning (as First Spawners), by Ages, All Seasons Combined

Age as returning adult	Returning as adults					
			¢		$\delta+$ ¢	
	Number	Percentage	Number	Percentage	Number	Percentage
2	1	0.5	2	1.0	3	0.8
3	108	57.8	82	41.8	190	49.6
4	67	35.8	89	45.4	156	40.7
5	9	4.8	19	9.7	28	7.3
6	2	1.1	4	2.0	6	1.6
7	0	--	0	--	--	--
Totals	187	--	196	--	383	--

TABLE 75
Waddell Creek, Steelhead: Marked Fish Returning (as First Spawners), by Season of Marking

Season of marking	Mark	Number marked	Number returning as adults					Number returning as adults in each season									
							First	Second			Third						
			$\widehat{ }$	아	$\sigma^{*}+{ }_{\text {c }}$	Per- centage		δ	우	$\delta^{*}+$ ¢	δ°	¢	$\sigma^{\lambda}+q$	δ	안	$\delta^{2}+q$	
1933-34	Ad-RP	2,454	65	51	116	4.7		8	47	18	65	17	33	50	1	0	1
1934-35	Ad-LP	1,013	24	37	61	6.0	7	10	6	16	13	22	35	1	9	10	
1935-36	Both P	3,116	42	36	78	2.5	6	15	10	25	19	15	34	8	11	19	
1936-37	Ad-RP	2,744	34	38	72	2.6	5	9	4	13	22	27	49	3	7	10	
1937-38	Ad-LP	3,352	22	34	56	1.7	4	9	4	13	11	25	36	2	5	7	
Totals		12,679	187	196	383	3.0	--	90	42	132	82	122	204	15	32	47	

* Number of seasons during which upstream trap was operated following season of marking.

TABLE 76
Waddell Creek, Steelhead: Secondary Survival of Marked Fish, by Seasons

TABLE 77
Waddell Creek, Steelhead: Marked Fish Returning (as First Spawners), by Season of Marking and Age

Season of Marking	Mark	Total number marked	Marked fish by ages											
			+		1		2		3		4		Survival Percentage	$1+2$ Percentage
			Number	Percentage										
1933-34	Ad-RP	2,454	3	0.1	687	28.0	1,652	67.3	110	4.5	2	0.1	4.7	95.3
1934-35	Ad-LP	1,013	6	0.6	509	50.4	470	46.4	27	2.7	1	0.1	6.0	96.8
1935-36	Both P	3,116	724	23.2	1,481	47.6	820	26.4	88	2.8	3	0.1	2.5	74.0
1936-37	Ad-RP	2,744	1,142	41.6	1,146	41.6	447	16.3	9	0.3	--	--	2.6	57.9
1937-38	Ad-LP	3,352	1,945	58.0	988	29.4	404	12.1	15	0.4	--	--	1.7	41.5
Total		12,679	--	--	--	--	--	--	--	--	--	--	--	--

the females the ages occur in the following sequence: 4 (45.4 percent), 3 (41.8 percent), 5 (9.7 percent), 6 (2.0 percent), and 2 (1.0 percent). Analyzing Table 74 from a different viewpoint, we see that males predominate among the age 3 group, while females predominate in all of the other groups. The numbers are too small in the age 2 group to be considered in this connection, but among the other age groups the predominance of one sex or the other is in all probability real.

An analysis of the same 383 marked first spawners according to the season of marking, rather than the brood year or age, yields some very interesting results. From Table 75 it is seen that the returns varied from 6.0 percent for the 1934-35 marking to 1.7 percent for the 1937-38 marking. The most striking feature of the returns is the inverse correlation between the number of fish marked and the number returning. In considering the significance of this phenomenon, (1) the age composition of the fish at time of marking and (2) an estimate of the total downstream migration during the season of marking should be considered. An analysis of the age composition of the fish at time of marking and the resulting survival to first spawning is shown in Table 76. We see that there is also a strong positive correlation between age at time of marking (initial downstream migration) and survival to first spawning. Since size of fish is correlated positively with age, there is also a positive correlation between size at time of marking (initial downstream migration) and survival to first spawning. Positive correlation with age (= size) at initial downstream migration is understandable. However, the survival pattern is not simple, but complex, depending upon behavior of the different ages considered as units following initial downstream migration (proportion of each age going to sea in the same season and in the following season, remaining to spawn in the stream or going to sea without spawning, returning after varying periods of time spent in the sea, etc.).

Table 77 shows the age composition of the fish marked in each season. By combining the percentage of occurrence of the 1 and 2 age groups in each season, we obtain an approximate positive correlation between age ($=$ size) at initial downstream migration and survival to first spawning. It is possible, and perhaps probable, then, that the inverse correlation between number of fish marked and the number surviving to first spawning is only a chance one, dependent upon age ($=$ size) composition of the fish given a certain mark.

If the inverse correlation between number of fish marked and number surviving has any significance, one would logically expect it to be so because the number of fish marked was also positively correlated with the number of fish in the total downstream migration. An inverse correlation between number of fish in the total downstream migration with the number surviving to first spawning is more difficult to understand than a positive correlation between age and survival, but an explanation is possible. The most plausible explanation seems to be that the greater the concentration of fish, the more likely are predators to be attracted to them, and the proportionately greater are the inroads made on the fish.

A further analysis of Table 75 shows that in no instance has a marked fish returned for first spawning later than the third season following marking. Therefore, there is every reason to expect that the
returns for the last marking, that of 1937-38, were complete, since the upstream trap was operated for four seasons following. This analysis indicates that probably in most California coastal streams in which it is desired to carry out marking of stream juvenile steelhead and secure survival rates in terms of returning first-spawning, sea-run adults, returns should be sought for three seasons following season of marking, but need not be watched for beyond that. For each marking fewer fish have returned in the third season following marking than in either the first or second season. With the exception of the 1933-34 marking, for which the largest number returned in the first season, the largest number of fish have returned in the second season following marking. From the marking of 1934-35, which yielded the greatest returns, 26.2 percent of the fish returned in the first season, 57.3 percent in the second season, and 16.4 percent in the third, while from the marking of 1937-38, which yielded the smallest returns, 23.2 percent returned in the first season, 64.3 percent in the second, and 12.5 percent in the third. Thus, it is seen that the pattern of return is much the same for the returns from the two markings which exhibited the greatest difference in rate of survival.

A comparison of Table 76 with Table 20 for the silver salmon seems to indicate basic similarities as regards survival. The average return from the number marked at the same age (1) is much the same for both species (2.4 percent for steelhead and 2.3 percent for silver salmon). Although an inverse correlation between the number of fish marked and the number returning does not follow in sequence through the five years for the silver salmon, as it does in the case of the steelhead, it is still true that the lowest return was obtained from the largest number marked and the second highest return from the smallest number marked. When survival is based on the estimated total number of downstream migrants, including both marked and unmarked fish, it is seen (Table 22) that an inverse correlation does exist for the four years for which data are available. In other words, it appears that in the silver salmon the number of fish marked is roughly correlated with the total downstream migration, that the number of adults returning has a true relationship (inverse correlation) to the number in the downstream migration, and that this relationship (inverse correlation) exists between the number of marked downstream migrants and the number of marked adults returning only to the extent that the marked downstream migrants form a portion of the total downstream migration. (A possible explanation of the inverse correlation has already been given.) In the case of the silver salmon the situation is easier to analyze than in the case of the steelhead, since the downstream migrants (except for a few unmarked fish of the season) in the former are all of one age class and all migrate to sea in the same season that they migrate downstream. Thus, the mark given represents not only the season of marking but also the age class. In the case of the steelhead, as we have seen, several age classes migrate "down during one season and are given the same mark and, conversely, fish of the same age class migrate down in different seasons and are given different marks. Furthermore, a large number of the downstream migrants do not migrate to sea until the following season, and some migrate upstream and make a second downstream migration. In the case of the steelhead, when an estimate
is made of the total downstream migration it is found that an inverse correlation does exist between the number of downstream migrants and the number of returning adults, with certain variations. It is also found that the number of fish marked is roughly correlated with the total downstream migration, which accounts for the approximate inverse correlation found between the number of fish marked and the number of marked adults returning. The variations just mentioned which occur in the case of the steelhead are brought about by the varying proportions of age classes, and consequently sizes of fish, in the total downstream migrations of different seasons. In other words, the phenomenon of inverse correlation of number of fish in the downstream migration to the number of adults returning operates, but is modified by the size composition of the downstream migration. Now, the size composition of the fish marked on the downstream migration is not identical with the size composition of the total downstream migration, and so some variation in the degree of inverse correlation may be expected in the two groups. The fact that a rough inverse correlation does exist between the number of fish marked on the downstream migration and the number of marked fish returning indicates (1) that there is a rough correlation between the number of fish marked and the total downstream migration, (2) that there is a rough correlation between the size-age composition of the fish marked downstream and of the total downstream migration, and (3) that the size-age composition of both the fish marked downstream and the total downstream migration is approximately the same.

From the discussion of the comparable section for silver salmon (page 97) it has been seen that in both the salmon and steelhead there is rough correlation between the season of marking and the survival, when fish of the same age (1) are compared. In the same discussion it was also noted that there appears to be no correlation between the mark given and the survival among either the salmon or the steelhead. From Table 76 it is seen that the same mark used in different seasons for fish of the same age resulted in both high and low survivals.

In the preceding pages we have determined the survivals from eggs deposited to returning adult first spawners (primary over-all survival) for the stream as a whole and from downstream migrants to adults returning to the trap for marked fish. In order also to determine the survival from eggs deposited to downstream migrants it is necessary to know the total number of downstream migrants, including those that went over the dam uncounted and those that were produced below the dam.

In the case of the steelhead, all of the young fish do not migrate to the ocean at the same age at which they migrate downstream, so the total number of downstream migrants can not be calculated simply by applying the ratio of marked to unmarked fish among the adults of a given brood year to the marked downstream migrants of the same brood year, as was done for the silver salmon. The calculation of the total number of downstream migrants must therefore be made by a less direct method. This method is illustrated by Tables 78 and 79.

Table 78 shows the stream history and the survival from time of downstream migration for the marked adult first spawners. In this table
the adults are grouped according to age as stream fish at the time of migration to the ocean and then regrouped according to age at time of downstream migration and marking at the dam. (In the case of the marked adults the age at which they had entered the ocean is known from scale readings, and the age at which they had migrated downstream past the dam is known from the combined interpretation of scale readings and marks used.) It is seen that of the 10 adults that had entered the ocean at age 1,10 percent had migrated downstream at age + and 90 percent had migrated downstream at age 1 , and so on for the other age groups. To calculate survival in the marked fish the adults are regrouped in column 8 of the table on the basis of age at time of downstream migration and are then shown in column 9 as percentages of the total number of downstream migrants of those ages marked at the dam.

In the case of the unmarked fish only the age at which they had entered the ocean is known. The age at which they had migrated downstream is not known. However, it is assumed that the unmarked fish entering the ocean had migrated downstream in the same proportions as the marked fish of corresponding ages. There are no observational or theoretical considerations to indicate that such an assumption is questionable. Therefore, in Table 79 the unmarked adults (taken at

TABLE 78
Waddell Creek, Steelhead: Stream History and Survival From Time of Downstream Migration Among Marked First Spawners

Stream history					Survival			
To ocean		Downstream			Downstream			
Age	Number	Age	Percentage	Number	Age	Number stream fish	Number adults	Percentage survival
1		+	10.0	1	$\}+$	3,820	1	0.+
		1	90.0	9	$\}$	4,811	116	2.4
	303	1	35.3	107				
		2	64.7	196	\}	3,793	220	5.8
	55	2	43.6	24				
		3	56.4	31	\}	249	45	18.1
4	15	3	93.3	14				
		4	6.7	1	$\} 4$	6	1	16.7
Totals	383			383		12,679	383	

the trap) are arranged as were the marked fish in Table 78 as to age at time of entry into the ocean and then regrouped as to age at downstream migration in proportion to the known percentages for the marked adults of similar stream history.

To calculate the number of downstream migrants that produced the unmarked adults it is only necessary to use the survival percentages for the marked fish. The number of unmarked downstream migrants $(217,849)$ is then added to the number of marked downstream migrants $(12,679)$ to obtain the total production $(230,528)$ of downstream fish which produced the adult first spawners taken at the trap.

This number of downstream migrants was derived from an estimated $7,627,000$ eggs (Table 58). Survival from eggs deposited to downstream migrants was therefore $230,528 \div 7,627,000$ or 3.0 percent.

The survival figures obtained for Waddell Creek should approach fairly closely the "natural" survival and mortality for the stream, since no angling has been carried on and since the amount of poaching is thought to have been negligible. As has been noted previously, there is no commercial fishery for steelhead in California, but there is a considerable sport fishery in the northern part of Monterey Bay. Since the

TABLE 79
Waddell Creek, Steelhead: Stream History and Survival From Time of Downstream Migration Among Unmarked First Spawners

Stream history					Survival			
To ocean		Downstream			Downstream			
Age	Number	Age	Percentage	Number	Age	Number stream fish	$\begin{aligned} & \text { Numb } \\ & \text { er } \\ & \text { adults } \end{aligned}$	Percentage survival
1	341 \{	+	10.0	34	$\}+$	149,880	34	0.+
		1	90.0	307	$\} \quad 1$	40,667	976	2.4
2	$1,895\{$	1	35.3	669				
		2	64.7	1,226	$\} \quad 2$	25,328	1,469	5.8
3	558 \{	2	43.6	243				
		3	56.4	315	\} 3	1,956	354	18.1
4	$42\{$	3	93.3	39				
		4	6.7	3	\} 4	18	3	16.7
Totals	2,836			2,836			2,836	

* Assumed, on basis of Table 78. \dagger Calculated.
fish caught in this fishery are largely ripening fish, undoubtedly a large percentage of the fish would otherwise have returned to their parent stream to spawn, and so the fishery affects the "natural" mortality and survival rates. Just what influence this fishery has on the individual streams is not known. Two steelhead which were marked at Scott Creek in 1938-39 (AdRV) were taken off Capitola on October 21 and 31, 1939, but the total number of marked fish caught is not known. The number of Waddell Creek fish caught in this fishery probably is not large.

Another possible source of "unnatural mortality" is the marking and other handling of the fish, both stream fish and adults. All evidence points to the conclusion that this is a negligible source of mortality. This evidence is based on (1) holding experiments conducted with marked fish at Waddell Creek, (2) holding experiments conducted with marked fish at other localities in California (especially with steelhead at the Fall Creek State Fish Hatchery on the Klamath River), (3) experiments conducted with the same lot of hatchery fish given different marks at Scott Creek, and (4) general observations on the behavior and mortality of marked fish liberated at Waddell Creek.

One factor that may influence the calculation of survival is the presence in unknown numbers of the offspring of stream fish in the downstream juvenile migrations. If the latter do not participate in the

TABLE 80
Calculated and Actual Survival for Sea-run Steelhead, If Offspring of Stream Fish Take Part in Downstream Migration But Do Not Go to Sea

Eggs
to downstream

calculation \quad| Number of sea-run downstream taken from |
| :---: |
| preceding calculation |

Categories in boxes are those whose numbers are known. Plus, minus, and check signs show whether survival to stage in bold face type is too great, too small, or correct.
downstream migration, of course no error will result. But if the offspring of stream fish participate in the downstream migration to an appreciable extent they will affect the calculated survival rate for offspring of sea-run fish, whether they themselves go to sea and return as sea-run fish or not. If the offspring of stream fish participate in the downstream migration but do not go to sea, they will have no effect on the calculated survival from eggs to adults, will decrease the calculated survival from downstream migrants to adults, and will increase the calculated survival from eggs to downstream migrants. If the offspring of stream fish participate in the downstream migration and go to sea and return as adults, they will increase the calculated survival from eggs to adults, and also from eggs to downstream migrants, but will have no effect on the calculated survival from downstream migrants to adults. Actually, there will be an error in the latter case as well, for the calculated numbers of both the downstream migrants and the adults will be too high in terms of the eggs from which these fish were produced, although the survival from downstream migrants to adults will be correct.

Tables 80 and 81 show the quantitative effects for the possible situations described in the preceding paragraph. In the tables, the ratio of eggs produced by stream fish to eggs produced by sea-run fish is arbitrarily taken to be $1: 100$, and the survival rates for the fish resulting

TABLE 81
Calculated and Actual Survival for Sea-run Steelhead, If Offspring of Stream Fish Take Part in Downstream Migration and Go to Sea and Return as Adults

[^41]from both groups of eggs are arbitrarily taken to be the same. Actually, there appears to be no way of knowing either the numbers present or the survival rate, since the offspring of stream fish were not distinguished from those of sea-run parents (except as scattered individual fish) among the downstream migrants and returning adults during the experiments. However, the direction, although not the magnitude, of the effects on the calculated survivals will be the same, whatever the numbers of stream fish in the migrations and whatever their survival rate.

As outlined above, there appears to be no way of knowing whether offspring of stream fish are present or absent in the downstream and upstream migrations nor their numbers and survival rates if they are present. However, a picture of the situation as it is thought to exist is here presented, on the basis of various observations and more or less indirect evidence for Waddell Creek and other streams.

Of the fish resulting from eggs deposited from sea-run steelhead, a large proportion migrate downstream and thence to sea, either in the same season or the following one, as previously discussed. Others, composed of both males and females, mature sexually in the stream and spawn. Probably a few stream males fertilize the eggs of some sea-run females (it is definite that they are capable of doing so), while it is doubtful that any-or more than a negligible number-of stream females are fertilized by sea-run males. Of the fish resulting from the spawning of stream fish which were the offspring of sea-run parents, some probably go to sea and others remain to spawn in the stream, but whether in the same proportions as the offspring of sea-run parents or not is not known. Of the stream parents that were the offspring of sea-run fish, some probably then go to sea and return as sea-run fish, while others remain in the stream for additional spawnings. In addition, in Waddell Creek and other coastal streams there are probably one or more populations (races, strains) of resident fish which are largely nonmigratory (especially insofar as going to sea is concerned). In Waddell Creek, such a population exists above the main falls in the East Branch, which are impassable to searun steelhead. Whether or not any of the members of such populations migrate to sea and return as sea-run fish is not known. Whether or not any of the members of such populations participate in spawning with sea-run fish or stream fish that are the offspring of sea-run parents also is not known, but probably some do, especially with stream fish that are the offspring of searun parents. Probably at least some of the offspring of such "crosses" go to sea, while others remain to spawn in the stream without going to sea, but in what proportions is not known.

Although the spawning seasons for both sea-run and stream steelhead are quite long, even in such a small stream as Waddell Creek, the great bulk of the sea-run fish and stream fish that are the offspring of sea-run fish spawn at a different time (earlier) than the resident fish. This is determined as much or more by stream conditions, especially temperatures, as by any inherent factors in the populations. That is, the majority of the resident fish are in the upper reaches of the streams, where cooler temperatures prevail, while the majority of the sea-run fish and offspring of sea-run fish are in the lower reaches of the streams, where the water is warmer. Thus, even though the members of the different
populations would otherwise interbreed, there is a strong tendency for them to be kept apart in spawning both from the standpoint of time and spawning localities.

The interbreeding of the different populations, of minor extent but varying in amount from year to year, probably further accentuates the variability in the life history pattern of the steelhead that occurs not only within one year class but also from one year class to another. Thus, there is a constant interplay of the forces of inheritance and environment. In streams in which stocking is being carried on, especially stocking with fish from other streams, the variability of the life history pattern is further accentuated through the addition and at least partial integration of the stocked fish.

From the above discussion it is clear that we can not think of the total steelhead population in a stream or stream system as a static thing, to which simply numbers are added or subtracted through fishing, stocking, natural propagation, etc., but as a dynamic whole in a constant state of flux.

In the discussion of the preceding pages of the present section, we have discussed primary over-all survival from egg to downstream migration and from downstream migration to return as adults. In preceding sections we learned something of the survival from egg to hatching and from hatching to emergence from the gravel, on the basis of data derived from certain experiments, work done in other streams, and general observations (not strictly quantitative) on the emergence of fish from the gravel at Waddell Creek. In summing up, it may be stated that the percentage of eggs fertilized is high and constant, while the percentages hatching and emerging from the gravel (the two may be quite different) probably vary considerably from season to season as well as within a season. These percentages are probably influenced most of all by the amount of silting due to floods and by the destruction of the redds through their re-utilization by newly arrived spawners. Under favorable conditions the percentages of eggs hatching and fish emerging from the gravel may both be quite high, but even when they are low the number of fish emerging from the gravel is vastly greater than the number surviving to time of downstream migration. Among the fish making their initial downstream migration, some go to sea in the same season and some in the following season. The proportion behaving in each manner is correlated primarily with age and secondarily with sex. Of those that go to sea in the following season, some make an upstream migration and then a second downstream migration before going to sea, while others spend the time in the lagoon near the mouth of the stream. Whether the fish go to sea in the same season or the following season, the survival from time of initial downstream migration to adult first spawning is correlated positively with age (and therefore size) at time of downstream migration, varying from almost zero survival for fish migrating down at age + to 18.1 percent survival for those migrating at age 3 . The normal survival from time of initial downstream migration to adult first spawning for any year class, migrating downstream over the course of several years, is probably in the neighborhood of between 3 and 4 percent. There apparently also exists a negative correlation between the numbers of fish migrating to sea and the rate of survival. It probably operates on the principal that
the greater the numbers, the greater proportionately are the inroads made by predators. If it is a generally operative principle, it is undoubtedly modified by the age composition of the migration to sea, and the latter probably exercises a greater influence than does the number of fish. In general, it appears that survival to various stages of life history follows essentially the same pattern in the various species of trout and salmon and that usually local conditions (amount of silting, character of bottom, size of spawning run, and spawning runs of other species of salmonids present) play a more important role than do the factors peculiar to the species involved.

So far, the discussion of survival has dealt only with primary survival, i.e., survival to first spawning. It is also of interest and practical significance in fisheries management to consider secondary survival, i.e., survival following spawning. Here again we shall deal with survival among sea-run fish, since it is only for them that we have quantitative data. ${ }^{36}$

From a viewpoint of fisheries management, we desire to know what percentage of sea-run steelhead survive to spawn more than once under normal and optimum conditions, in order to know what efforts should be expended to enable spent adults to reach the sea. If the number of fish that would return to spawn for a second time or more is sufficiently large to warrant such efforts, they could be directed toward (1) greater protection of spent fish in the streams, by (a) maintenance of flow and screening of diversions in streams in which diversions and dams exist, (b) protection against predators, and (c) legislation, and (2) greater protection by more careful handling at egg collecting stations.

From Table 57 it is seen that the percentage of fish returning to spawn for a second time or more varies considerably from season to season. Among the fish taken in the upstream trap, it has varied from 2.6 (1934-35) to 24.6 (193738) percent for the males and from 5.1 (1934-35) to 34.4 (1941-42) percent for the females. Averages for the nine years are 13.9 percent for males, 20.0 percent for females, and 17.1 percent for males and females combined. In other words, in the spawning run approximately one fish in seven among the males, one fish in five among the females, and one fish in six among males and females combined is returning to spawn for a second time or more. The percentage of females returning to spawn for a second time or more is higher than that of the males in seven out of the nine years, so the higher secondary survival among females is apparently real (the sex ratio among the first spawners has been shown to be approximately 1:1). At first thought, this may appear to be somewhat surprising, since it might be expected that the spawning and redd building act would be harder on the females than the males and since among the first spawners the males on the average are younger than the females. However, the males are believed to serve more than one female and so in the end not only exhaust themselves more but also remain in the stream longer, thus lessening their chances of survival. At least theoretically, an excess of males over females in a given season, including repeat spawners, should

[^42]increase the number of male repeat spawners in the following season, and a reverse situation should have the reverse effect. At Waddell Creek, the difference in sex ratio in any season probably has not been great enough to prove this theory, if it is true. In support of this theory, it might be pointed out that the two seasons of greatest excess of females over males (1933-34 and 1938-39) were followed by seasons in which the lowest percentages of repeat spawners were obtained among the males, and that the one season of marked excess of males over females (1940-41) was followed by the second highest percentage of repeat spawners among the males. At the same time, it will be noted that the 1934-35 and 1939-40 seasons were also the ones with the lowest percentages of female repeat spawners, and that in general seasons with a high percentage of repeat spawners for one sex are also seasons with a high percentage of repeat spawners for the other sex, and that seasons with a low percentage of repeat spawners for one sex are also seasons with a low percentage of repeat spawners for the other sex. It appears, then, that environmental conditions existing at the time of first spawning, or occurring between the time of first spawning and second spawning, exercise a greater influence than does the sex ratio at first spawning, although the sex ratio, in line with the theory advanced, may be a contributing factor.

What are the factors that have caused poor or good survival of first spawners at Waddell Creek, where fishing and diversions of water have played no part or at most a very minor role? A plausible explanation is readily found for the two low survivals. In 1933-34 the disease called furunculosis was extremely severe, and may well have accounted for the small number of repeat spawners in the following season. In 1938-39 the precipitation was light and water conditions very poor, and these conditions may well have resulted in the small number of repeat spawners in the following season.

Pathology

Diseases

The occurrence of disease among trout and salmon under natural and artificial conditions was discussed in the comparable section on silver salmon (pages 101-102).

Some mortality, especially among adults, has resulted at Waddell Creek during the course of the experiments from some form or strain of furunculosis, which is caused by a bacterium, Bacillus salmonicida. J. H. Wales of the department made cultures of the bacteria from kidney blood of dead and dying adult steelhead in Waddell Creek in February and April, 1934. Frederic Fish of the U. S. Fish and Wildlife Service also examined adults at Waddell Creek and tentatively confirmed the identification of the disease. Although the symptoms caused by the disease at Waddell Creek are not entirely typical of those present among salmonids in the British Isles, it appears that the disease organism is at least closely allied to the form found there, and so will be referred to as "furunculosis" in the present paper.

Furunculosis as manifested at Waddell Creek is not evident among the adult steelhead in the early fish, but appears around February or March, perhaps associated with higher water temperatures. Some of the
fish show boils and lesions along the sides of the body, and bleeding at the vent, while others die without exhibiting external signs of the disease. The kidneys have an abnormal appearance in most of the fish examined.

As stated previously, the relationship of the form of furunculosis present in Waddell Creek to that found in the British Isles, and also to other strains along the Pacific Coast, is not yet entirely clear. Neither is it known whether the disease is indigenous to the Pacific Coast or was introduced from some other area. Snyder (1914) noted that "The dead bodies of large steelheads were occasionally seen in Uvas, Arroyo Seco, the Nacimiento Creeks" (tributaries of the Pajaro and Salinas rivers, tributary to Monterey Bay), but the cause of death is not known. Outbreaks of the disease occurred regularly in the steelhead held in the tanks at the Scott Creek Egg Collecting Station at least since the spring of 1932, appearing about the same time as at Waddell Creek.

Wales and Berrian (1937) found that fingerlings of Scott Creek steelhead and silver salmon, Klamath River steelhead, eastern brook trout from Mt. Whitney Hatchery, and brown trout from Mt. Shasta Hatchery were all susceptible to one strain of furunculosis (from eastern brook trout from Mt. Shasta Hatchery). This strain was introduced into the food of these fish, which were held together in a pond at the Big Creek Hatchery, on August 14, 1936. During the course of the disease, which ran approximately 70 days, the losses ranged from 98 percent for the eastern brook trout to 50 percent for the brown trout. Although the different lots were not equally susceptible, the authors correctly point out that differences due to age, fin rot, or some other predisposing influence may have played a part.

At Waddell Creek many of the adults have succeeded in spawning before succumbing to furunculosis, but some mortality has occurred among unspawned steelhead, particularly during the 1933-34 season, when 161 dead adults in all were found. It is estimated that 17 females died without spawning during this season. In all other seasons mortality is believed to have been very much less, although variations in water conditions prevented uniformity in searching for fish. Estimates of the numbers which died without spawning or spawned only partially were made for each season and considered in calculating egg production and survival.

Abnormal mortality among adults, such as that caused by furunculosis in 1933-34, of course results in abnormally low numbers of repeat spawners in subsequent seasons. Thus, in 1934-35 the number of repeat spawners was the lowest on record, a further indication that mortality in 1933-34 was correctly assessed as being the heaviest during the course of the experiments.

The extent of losses from furunculosis among the stream steelhead is not known exactly, but is not believed to have been nearly as severe as among adults. Observations on the stream have not shown large numbers dead in the stream at any time. Only occasional fish among the downstream migrants have possessed red spots on the body (usually at the bases of the fins) or shown other external signs of disease. Particularly in 1933-34 many of the downstream fish bled
abnormally when a pectoral fin was clipped off in marking; it is possible that furunculosis played a part in this, but this is not known definitely.

It was pointed out in the comparable section on silver salmon that during the 1933-34 season an abnormally large number of dead fish, including juvenile silver salmon, adult and stream steelhead, sculpins, and sticklebacks, were found, but that absence of external signs of disease or injury made assessment of mortality to different causes very difficult. It was also noted that during the same season an abnormally large number of other animals, mostly rodents, was found dead in the stream, but that their relation to the dead fish was not known.

Fungus (Saprolegnia parasitica) is present in all or practically all trout and salmon streams; it is a secondary infection which gains a foothold on breaks in the skin caused by mechanical injury or disease. Under normal conditions it does not cause much damage to salmonids in their natural environment.

As a rule many of the downstream migrants, especially yearlings and older fish, possess from a few to many cysts under the skin on the sides of the body, but otherwise appear to be in good condition. These cysts, which appear in the form of blackish spots, are formed by encysted strigeid larvae (Trematoda).

The upstream stream steelhead also not infrequently possess cysts. For example, in 1934-35 out of 28 upstream fish examined (December 3February 23, size range $93-254 \mathrm{~mm}$.) 19 possessed cysts, especially on the caudal fin.

Freshwater copepods are found attached to many of the downstream migrants, but apparently cause no serious damage. Apparently these copepods are specific, being found much more frequently on the steelhead than on the salmon migrating downstream at the same time. The species found in Waddell Creek has been identified as Salmincola californiensis Dana by Charles B. Wilson. In the stream fish it is found most commonly attached to the bases of the fins, especially the pectorals and dorsal. Occasional specimens may be found attached to almost any part of the fish, including the ventrals, adipose, head, branchiostegal membranes, and gills. Usually not more than one or two are found on a fish. On adults which have remained in the stream for some time following spawning, copepods may be found in much larger numbers. Steelhead which have summered over in Waddell Creek have been found with copepods swarming in the mouth and on the gills. Their prevalence in the mouths of such fish evidently results from the cessation of feeding by the fish. Circumstantial evidence is strong that these copepods die when the fish reach salt water, since no adult steelhead (or salmon) returning from the ocean with these parasites have been encountered. Another species of freshwater copepod, Salmincola falculata, has been taken from an adult steelhead from Shackleford Creek, tributary of Scott River, in Northern California (identification by Charles B. Wilson).

Marine copepods ("sea lice") probably occur on adult fish entering the stream, but have never been found on any of the fish by the time that they have reached the dam.

Nematodes (unidentified) were sometimes extruded along with eggs from adults during the course of spawning operations at the Scott Creek Egg Collecting Station. These probably also occur in the fish at Waddell Creek, but have not been recorded from there. They are not known to do particular damage to the fish.
Diseases or parasites other than those noted above have not been observed in the steelhead at Waddell Creek, but have been noted among fish in other California coastal streams, particularly in association with unfavorable environmental conditions. For example, during periods of exceptionally hot weather (water temperatures reaching 80-85 degrees F.) mass mortality of varying severity occurs almost every year among the juvenile steelhead in portions of the Eel River system in Northern California. Many of the affected young steelhead turn a pale yellow, due to loss of black pigment, and stand out clearly in the water. Parasites commonly found on these fish are the following four (identifications by J. H. Wales): Ichthyoptherius sp.; bacterium in the mouth (not identified) ; fin rot (one or more bacteria, not identified) ; and Lernaea sp. (anchor parasite). Losses occurring in July, 1938, were particularly severe and were described in detail by Wales (1938). It is of interest that furunculosis has not been observed in connection with these outbreaks.

Two other instances of Lernaea attacking Salmo gairdneri in natural waters or reservoirs in California are known to the present writers. In July, 1943, C. E. Holladay and the writer collected infested specimens at the head of Stevens Creek Reservoir, Santa Clara County. Previously A. C. Taft had observed Lernaea to be common on trout in Little Rock Reservoir, Los Angeles County. (The parasite attacks many other species of fishes in natural waters in California.)

Lampreys, which sometimes cause damage when they attach themselves to fish, do not occur in Waddell Creek.

As in the adult silver salmon, fish that were blind or partially blind in one or both eyes, as evidenced by opaqueness of the eye, were fairly common among the adult steelhead but were met with only rarely among the juveniles. Consideration is here given only to fish in which no mechanical injury to the eye was apparent. The writers believe that such opaqueness often, if not usually, is the result of fish scraping the eye after entering fresh water, e.g., in leaping falls, passing through log jams, spawning, or being handled in nets at traps. This condition has been noted frequently at various egg collecting stations, especially when the fish had been handled in dip nets made of seine material with prominent knots.

The records at Waddell Creek indicate that the diseases encountered, including the external parasites, have not been associated with size of fish, within an age class.

At Waddell Creek there has been no known loss of steelhead because of high temperatures or lack of oxygen.

Teratology

Deformities are rare among trout and salmon in their natural environment, and this general rule has held good at Waddell Creek. Of particular interest are abnormalities of the fins, because of their relation to marking programs.

Although abnormal or naturally missing fins were watched for in all seasons among the downstream migrants, it is possible that a few were missed. No fish with fins completely missing were recorded, however, and only on rare occasion one with an atrophied or partially missing fin. The occurrence of salmonids with missing fins in other streams and the relation of naturally missing fins to marking programs has been discussed in the comparable section on silver salmon.

The occurrence of missing and deformed fins among adult fish was somewhat greater than among juveniles, principally due to injuries to these fins that had taken place at sea. Several fish with the adipose or other single fins missing were encountered. Since in each case the possibility existed that the fish was one in which another fin had been missed in the course of marking at Waddell or Scott creeks, or a hatchery fish whose fin had been destroyed by disease (this applies particularly to the dorsal being destroyed by Gyrodactylus or fin rot) or bitten off by another fish, no record of such fish is presented in this paper.

Deformities of the body, like abnormalities in the fins, are rare among salmonids in their natural environment, Occasionally steelhead with deformed upper or lower jaws have been taken among the juveniles and the adults. Trout with various deformities are much more common among hatchery fish, but such fish rarely survive to return as sea-run spawners.

Food

One of the greatest difficulties in analyzing the food of steelhead in coastal streams lies in the fact that usually the investigator is not able to distinguish individuals of sea-run stock from those of resident stock. Idyll (1942), studying steelhead, ${ }^{37}$ Cutthroat Trout (Salmo clarki), and brown trout $25.4-50.8 \mathrm{~cm}$. ($10-20$ inches) long in the Cowichan River, British Columbia, found that fish formed an insignificant proportion of the food of the steelhead, but were an important item in the food of the brown trout and an exceedingly important item in the food of the cutthroat trout. Among the fish of the size listed, individuals consuming fish were as follows: of 104 steelhead, 4 (3.8 percent) ; of 37 cutthroat trout, 29 (78.3 percent) ; and of 67 brown trout, 39 (58.4

[^43]TABLE 82
Waddell Creek, Steelhead: Foods Consumed by 22 Stream Fish *
$\left.\begin{array}{l|c|c}\hline & \text { Class of food } & \begin{array}{c}\text { Total number } \\ \text { present }\end{array}\end{array} \begin{array}{c}\text { Percentage of } \\ \text { total }\end{array}\right]$

* Taken August 9, 19, 1933. Average length. 4 inches; maximum, 6.9 inches; minimum, 2.6 inches.
percent). If such differences exist between species and are significant, the possibility exists that differences, although perhaps of not equal magnitude, also exist between migratory and nonmigratory races or strains of steelhead in the same stream. In the present state of our knowledge it is necessary to consider foods eaten by fish listed as Salmo gairdneri by the authors on an equal basis, unless the author specifically notes that the fish which he studied were nonmigratory.

Several data on the food of steelhead in Waddell Creek are available.
Table 82 is based on data from Needham (1934a).
Of the 557 Caddisflies eaten, only one was eaten in the adult stage, at the surface of the water. All the rest were taken as larvae or pupae below the water surface, where they normally live in their immature stages.

Shepherd (1928) found that 55 steelhead from Waddell Creek had eaten the items listed in Table 83.

It will be seen from this table that Caddisflies, as in the case of the fish cited by Needham, form the dominant food. Of the 1,615 Caddisflies eaten, all but two were in the larval stage. It is of interest that 71 percent of all the insects found in the 55 stomachs were larvae belonging to the genus Notidobia, larvae living in small cornucopia-shaped cases. As Shepherd (loc. cit.) states: "Their great abundance may be accounted for in the following manner: (1) The larvae have a general distribution and are very abundant along the whole length of Waddell Creek; (2) the larvae are typically bottom feeders and as a result may easily be taken into the mouths of the fishes; (3) the larvae are protected by a type of portable case which may easily be swallowed; (4) ordinarily the larvae are gregarious, feeding in groups, either in the shallow or deep water."

TABLE 83
Waddell Creek, Steelhead: Foods Consumed by 55 Stream Fish

Class of food	Total number present	Percentage of total number of organisms	Percentage of total number of insects $(2,135)$
Trichoptera (Caddisflies)	1,615	43.5	75.6
Diptera (True flies)	393	10.6	18.4
Hemiptera (True bugs)	22	0.6	1.0
Homoptera (Leafhoppers)	10	0.3	0.5
Coleoptera (Beetles)	24	0.6	1.1
Plecoptera (Stoneflies)	39	1.1	1.8
Ephemeroptera (Mayflies)	24	0.6	1.1
Odonata (Dragonflies)	1	+	+
Hymenoptera (Ants, bees, wasps)	6	0.2	0.3
Corrodentia (Psocids)	1	+	+
Arachnida (Water mites)	7	0.2	
Isopoda (Isopods)	1,046	28.0	
Amphipoda (Amphipods)	424	11.4	
Nemathelminthes (Roundworms) (probably parasitic)	91	2.5	
Salmon eggs	35	--	
Total	3,738		

* Fish taken October 16, 1926 (2), July 2, 1927 (12), July 4, 1927 (12), December 27, 1927 (5), January 7, 1928 (10), January 8, 1928 (13), and January 9, 1928 (1). Average length, 16.9 cm.; maximum, 41.7 cm .; minimum, 10.1 cm . (The 41.7 cm . fish may have been a sea-run individual; the next largest fish was 25.2 cm . long.)

TABLE 84
Waddell Creek, Steelhead: Foods Consumed by 28 Upstream Stream Fish, 1934-35

Fish number	Length in mm .	Salmon eggs	Diptera (true flies)	Ephemeroptera (mayflies)	Neuroptera (dobson flies)	Plecoptera (Stoneflies)	Trichoptera (Caddisflies)	Isopoda	Diplopoda	Debris	Empty
5	146	--	--	--	--	--	1	--	--	--	--
6	143	--	--	--	--	--	25	--	--	--	--
7	118	--	--	--	--	1	11	--	--	--	--
8	115	--	--	19	--	2	9	--	--	+	--
9	111	--	--	--	--	--	1	--	--	--	--
10	142	--	6	1	--	--	7	--	--	--	--
11	134	--	--	1	--	--	1	--	1	--	--
12	128	--	--	--	--	--	14	--	--	--	--
13	206	3	--	--	--	--	3	--	--	--	--
14	103	--	1	2	--	1	16	--	--	--	--
15	127	+	--	--		--	--	--	--	--	--
16	139	5	--	--		--	6	--	--	--	--
17	141	--	--	--	--	--	35	--	--	--	--
18	102	+	--	1	1	--	1	--	--	+	--
19	131	--	--	--	--	--	+	--	--	--	--
20	200	--	--	--		--	--	--	--	--	X
21	254	--	--	--		--	4	--	--	--	--
22	115	--	--	--	--	--	--	1	--	--	--
23	171	+	--	--	--	--	+	--	--	--	--
24	119	--	--	--	--	--	1	--	--	+	--
25	124	5	--	--	--	--	--	--	--	--	--
26	129	--	--	--	--	--	+	--	--	--	--
27	126	+	-	--	--	--	--	--	--	--	--
28	141	+	--	--	--	--	--	--	--	--	--
29	179	--	--	--	--	--	--	--	--	--	X
30	252	--	--	--	--	--	--	--	--	--	X
31	251	12	--	--	--	--	6	--	--	..	--
32	93	--	--	1	--	--	1	1	--	--	--
Number of times item occurred		9	2	6	1	3	20	2	1	3	3
Number of each item		$25+$	7	25	1	4	$141+$	2	1		

TABLE 85
Analysis of Food of Steelhead From the Cowichan River System, British Columbia, Arranged According to Size of Fish and Types of Organisms Eaten

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Length In cm.} \& \multicolumn{11}{|c|}{Aquatic} \& \multicolumn{5}{|c|}{Terrestrial} \& \multirow[b]{2}{*}{Fish} \& \multirow[b]{2}{*}{Fish Eggs} \\
\hline \& \[
\begin{aligned}
\& \text { Ј } \\
\& \text { 首 }
\end{aligned}
\] \& \begin{tabular}{l}
ت \\
0 \\
0 \\
0 \\
0 \\
\(\#\) \\
\hline
\end{tabular} \& \& \& \& \[
\begin{aligned}
\& \text { आy } \\
\& \text { 20 } \\
\& \frac{0}{2} \\
\& \frac{0}{2}
\end{aligned}
\] \& \[
\begin{aligned}
\& \stackrel{\pi}{\pi} \\
\& \tilde{0} \\
\& 0 \\
\& \hline 0
\end{aligned}
\] \& \& \& g
0
0
0
0
0 \& \& \& \& \[
\begin{aligned}
\& \mathscr{5} \\
\& 0 \\
\& 0 \\
\& 0 \\
\& \text { E } \\
\& 0
\end{aligned}
\] \& \& \& \& \\
\hline \multirow[t]{3}{*}{0-5} \& \multirow[t]{3}{*}{12 A} \& 6 \& 2 \& 193 \& 15 \& 2 \& -- \& -- \& -- \& -- \& -- \& -- \& 4 \& -- \& -- \& -- \& -- \& -- \\
\hline \& \& 2.71 \& 0.9 \& 86.5 \& 6.7 \& 0.9 \& -- \& -- \& -- \& -- \& -- \& -- \& 1.8 \& -- \& -- \& -- \& -- \& -- \\
\hline \& \& 33.3 \& 8.3 \& 91.6 \& 91.6 \& 16.6 \& -- \& -- \& -- \& -- \& -- \& -- \& 16.6 \& -- \& -- \& -- \& -- \& -- \\
\hline \multirow[t]{3}{*}{5-10} \& \multirow[t]{3}{*}{\(\begin{array}{rrr}3 \& \\ \& \text { B } \\ \& \text { B } \\ \& \text { C }\end{array}\)} \& 1 \& 2 \& 23 \& 6 \& 32 \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \\
\hline \& \& 1.6 \& 3.1 \& 36.0 \& 9.4 \& 50.0 \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \\
\hline \& \& 33.3 \& 33.3 \& 100.0 \& 100.0 \& 100.0 \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& -- \& - \& -- \& -- \\
\hline \multirow[t]{3}{*}{10-15} \& \multirow[t]{3}{*}{48} \& 379 \& 500 \& 11 \& 61 \& 11 \& -- \& -- \& 2 \& -- \& 10 \& 4 \& -- \& 10 \& -- \& 3 \& 16 \& -- \\
\hline \& \& 37.1 \& 48.9 \& 1.0 \& 5.9 \& 1.0 \& -- \& -- \& 0.2 \& -- \& 1.0 \& 0.3 \& -- \& 1.0 \& -- \& 0.2 \& 1.5 \& -- \\
\hline \& \& 85.5 \& 31.4 \& 18.5 \& 27.0 \& 12.5 \& -- \& - \& 2.5 \& -- \& 9.0 \& 8.0 \& -- \& 6.0 \& -- \& 6.0 \& 4.0 \& -- \\
\hline \multirow[t]{3}{*}{15-20} \& \multirow[t]{3}{*}{55} \& 346 \& 37 \& 13 \& 40 \& 40 \& 2 \& 8 \& 3 \& 13 \& -- \& 12 \& 7 \& 196 \& 6 \& 7 \& 3 \& -- \\
\hline \& \& 48.4 \& 4.9 \& 1.7 \& 5.1 \& 5.1 \& 0.2 \& 1.0 \& 0.4 \& 1.7 \& -- \& 1.6 \& 0.8 \& 27.6 \& 0.8 \& 0.8 \& 0.4 \& -- \\
\hline \& \& 82.7 \& 25.0 \& 11.5 \& 34.0 \& 34.0 \& 3.8 \& 5.7 \& 5.7 \& 3.8 \& -- \& 17.3 \& 7.6 \& 28.7 \& 3.8 \& 5.6 \& 3.8 \& -- \\
\hline \multirow[t]{3}{*}{20-25} \& \multirow[t]{3}{*}{30} \& 223 \& 5,574 \& 25 \& 23 \& 13 \& 8 \& -- \& 1 \& 88 \& -- \& 203 \& 6 \& 238 \& 22 \& 4 \& 1 \& -- \\
\hline \& \& 3.4 \& 85. 1 \& 0.5 \& 0.3 \& 0.2 \& 0.1 \& -- \& -- \& 1.3 \& -- \& 3.1 \& \& 5.3 \& 0.3 \& -- \& -- \& -- \\
\hline \& \& 86.6 \& 60.0 \& 36.6 \& 13.3 \& 16.7 \& 23.3 \& -- \& 3.3 \& 10.0 \& -- \& 30.0 \& 16.7 \& 36.7 \& 3.3 \& 13.2 \& 3.3 \& -- \\
\hline \multirow[t]{3}{*}{25.5-30.5} \& \multirow[t]{3}{*}{32

B
C} \& 727 \& 2,994 \& 6 \& 16 \& 26 \& 2 \& -- \& -- \& 58 \& 6 \& 22 \& -- \& 748 \& -- \& 13 \& 4 \& --

\hline \& \& 16.0 \& 66.0 \& 0.1 \& 0.3 \& 0.5 \& -- \& _- \& -- \& 1.2 \& 0.1 \& 0.4 \& -- \& 14.3 \& -- \& 0.3 \& -- \& --

\hline \& \& 78.1 \& 37.5 \& 12.8 \& 25.0 \& 18.7 \& 3.0 \& -- \& -- \& 12.5 \& 9.0 \& 25.0 \& -- \& 31.0 \& -- \& 27.3 \& 6.0 \& --

\hline
\end{tabular}

TABLE 85
Analysis of Food of Steelhead From the Cowichan River System, British Columbia, Arranged According to Size of Fish and Types of Organisms Eaten

$\mathrm{A}=$ total number of organisms eaten,
$B=$ percentage of total number eaten,
$\mathrm{C}=$ percentage of stomach containing this organism.

It will be noted that although in the case of the fish cited by Needham all forms other than insects formed only 2.1 percent of all items eaten, in the case of the fish cited by Shepherd isopods (pill bugs) formed 28.0 percent of all the organisms and amphipods 11.4 percent. This difference emphasizes the fact that conclusions regarding the food of steelhead in a given stream must be based on adequate sampling, which takes into account the time of year, size of fish, sexual development of fish, locality in the stream, and method of capture and preservation. In regard to the latter point, it is not improbable that mayflies are represented in the food of the Waddell Creek steelhead much more strongly than is indicated by Shepherd's analysis, which is based on fish caught by angling and not preserved immediately. This statement is based on the great abundance of mayflies at Waddell Creek and their tendency to be digested quickly. The 35 salmon eggs were eaten by 14 fish caught on January 7 and 8, 1928; the maximum number of eggs in a single stomach was five. Since all of these fish were caught on Tyee (salmon egg clusters), it appears possible that at least some of the eggs were preserved ones used for bait. Shepherd makes no statement in this regard.

Chapman and Quistorff (1938) examined the stomach contents of 819 steelhead 32 to 240 mm . in length collected from various portions of the north central Columbia River drainage in 1937 (May 14 to October 2) and 1938 (May 1 to October 29). The organisms contained formed a wide variety, comprising 11 orders of insects, two orders of arachnids, annelid worms, crustaceans, mollusks, and fish, as well as some vegetable matter. However, insects formed the great bulk of the foods eaten. Among the insects, the nymphs and larvae of stoneflies, mayflies, dragonflies, and caddisflies, "although everywhere abundant in the streams", were not well represented in the stomachs. A considerable amount of the insect food was composed of purely terrestrial forms which had fallen into the water. Only five fish, none of which was a salmonid, were found in the 819 stomachs, despite the abundance of various small fishes in the streams.

The stomach contents of 27 stream steelhead taken in the upstream trap at Waddell Creek during the 1934-35 season are listed in Table 84.

It will be seen from this table that caddisflies, as in the cases of the fish cited by Needham and by Shepherd, were the principal food eaten and formed over 50 percent of the items. Mayflies, which were entirely absent from the fish taken in August, 1933, appear as the second most numerous insects in the upstream fish, and salmon eggs (which are not available in August) also form an item of some importance. The majority of eggs eaten probably had been washed out of the spawning beds or dislodged from them by other spawning fish. Eggs of whatever species of salmonids are spawning at the time are generally found in the stomachs of various species of trouts in all parts of the world.

Idyll (loc. cit.) found no appreciable change in the type of food as size of fish increased for the Cowichan River steelhead. Insects were distinctly dominant for every size group, true flies (particularly Simuliidae) being eaten in the greatest numbers, although caddisflies were found in a larger number of stomachs. The foods eaten by these fish are shown in Table 85 (Table I of Idyll).

Idyll (loc. cit.) also presents data on the winter food of steelhead. These data are reproduced in Table 86. Salmon eggs, mainly from silver salmon spawnings, constituted the principal food during this period (October to February), although insects were still important. No fish had been consumed.

A comparison of the data in the preceding tables indicates essential harmony of results. Insects are the most important summer food, caddisflies and true flies predominating among the aquatic foods. In some streams and at certain times of the year mayflies and stoneflies are also of some importance, perhaps, as noted, out of proportion to their representation in the tables. During the winter salmonid eggs are of definite importance. Other observations indicate additional seasonal changes, with terrestrial organisms contributing considerably more to the diet in the summer months than in the winter months.

The data presented in the preceding tables do not indicate other fish to be an item of importance, but it is known that under certain conditions steelhead do consume fish. Various authors have found fish to be present in considerable quantities in the stomachs of "rainbow trout" from interior waters of the United States, particularly in larger fish. A steelhead 165 mm . long (female), taken in the downstream trap at Waddell Creek on December 4, 1934, contained four steelhead, $47,53,57$, and 60 mm . long. A downstream migrant steelhead six inches long, taken at Benbow Dam on the South Fork of Eel River, contained nine fry, four of which were silver salmon one to one and one-fourth inches long, and the other five fish too digested to be identifiable. Another from the same locality, 135 mm . long, taken on April 28, 1939, contained a "small salmon in throat."

It is of interest that none of the steelhead listed in this section had eaten sculpins or sticklebacks. The present writers believe that these fishes do not form an important part of the steelhead diet, although they may be eaten occasionally.

The food organisms found in the lagoons of California streams are considerably different from those found in the streams proper, and the diet of the steelhead resident in the lagoons is also quite different. Needham (1940) presented data on the foods consumed by 14 out of 100 yearling steelhead held in a cage (dimensions: $3 \times 3 \times 4$ feet) in the

TABLE 86
Winter Food of Steelhead From the Upper Cowichan River, British Columbia

Class of food	35 steelhead $(20-35.5 \mathrm{~cm}$)		
	A	B	
Trichoptera (larvae, pupae, adults)	47	7.4	C
Simuliidae (larvae, pupae, adults)	26	4.1	34.3
Chironomidae (larvae, pupae, adults)	10	1.6	11.3
Plecoptera (nymphs, adults)	4	0.5	22.7
Arachnida	3	0.4	5.6
Gastropoda	11	1.7	5.6
Salmonid eggs	529	84.0	5.6
A $=$ total number of organisms eaten; B percentage of total number eaten; C percentage of stomachs containing this organism.			

middle of Waddell Creek lagoon during the spring of 1933. These are shown in Table 87. Needham also presented data on foods present in Waddell Creek lagoon and compared them with those eaten by the trout in the experimental cage. As he points out, such a comparison may not be truly representative of foods consumed under natural conditions, since the fish were confined and dependent upon organisms entering the cage. The data do show that steelhead in the lagoon will eat the organisms indicated and make growth (0.93 inches in 91 days, February 28-May 30, 1933).

Conditions in Waddell Creek lagoon are similar to or paralleled by conditions in lagoons of other Pacific Coast streams. The crustaceans and fishes common in Waddell Creek lagoon, or their close relatives, are generally distributed in brackish water along the Pacific Coast.

Studies by Needham (1934b, 1940) indicate that Waddell Creek compares favorably with other streams as regards its supply of bottom organisms. However, an expression of the adequacy of such organisms to support a certain trout population is impossible at the present time, for we do not fully know (1) the amount of natural foods of various kinds required to produce a given weight of trout, (2) the amounts of the same food organisms consumed by fishes other than trout, and (3) the relation of so-called "available" or "potential" foods to the foods actually consumed.

In Waddell Creek and all or practically all other salmon and trout streams other fishes which are competitors of the salmonids are present. Both sculpins and sticklebacks are competitors of trout. An examination of a number of sculpin stomachs at Waddell Creek has shown that many of the food items are also eaten by steelhead. Munro and Clemens (1937) have shown the food of Cottus asper and of Three-spined Sticklebacks to include many items consumed by trout. Further studies in regard to the foods consumed by sculpins and sticklebacks in comparison with the importance of sculpins and sticklebacks as foods for salmonids are needed.

Evidence indicates that the composition of the foods actually eaten by trout in a given locality may be different from that of the so-called "available" or "potential" foods (Needham, 1938, p. 142; Chapman and Quistorff, 1938, p. 2; and others). These differences probably result from (1) the degree of accessibility of the different potential food organisms and (2) selectivity practiced by the trout. Of the more important items, mayflies and stoneflies are usually represented more

TABLE 87
Foods Consumed by 14 Yearling Steelhead Held in Cage
In Waddell Creek Lagoon, Spring of 1933 *

Class of food		Number
Gammarus confervicolis	122	Percentage
Corophium spinicorne	0	93.8
Exosphaeroma oregonensis	5	0.0
Miscellaneous	3	3.8
Totals	130	2.3

[^44]strongly on the stream bottom than they are in the stomachs, while the reverse is true for caddisflies. It is the belief of the present writers that considerable selectivity is practiced by steelhead in their choice of food. The data for the three species of trout in the Cowichan River (Idyll, loc. cit.) suggest that the fish may discriminate among potential food organisms and that definite selection may therefore take place.

Adult steelhead, like the Pacific salmons, do not commonly eat during their spawning migration in fresh water. Examinations by the writers of stomachs of steelhead from various California streams, as well as findings by other workers (e.g., Chapman and Quistorff, 1938), support this view.

Feeding in fresh water following spawning is not typical, but has been noted in the case of some Waddell Creek fish, although the stomachs of only a few individuals have been examined. A spent male, 56 cm . in length, taken in good condition in the downstream trap on June 16, 1937, contained seven caddisfly larvae. A spent female, 49 cm . in length, taken in the downstream trap on July 10, 1937, had eaten two steelhead, 81 and 86 mm . in length, and one silver salmon, 80 mm . in length. A spent male, 40 cm . in length, taken in the downstream trap on April 28, 1939, was listed as having its stomach "full of young fish; one tail had not yet disappeared"; it is assumed the "young fish" listed by the field observer were salmonids. The stomachs of a few dead spent adults have also been examined and found to be empty.

Very little is known of the food of steelhead in the sea, although because of similarities in morphology it is probably not grossly different from that of silver salmon.

Summing up, it is not improbable that throughout the life history of the steelhead its food in its general character is similar to that of the silver salmon: juveniles in fresh water live very largely upon insects, both aquatic and terrestrial, smaller individuals in salt water depend heavily upon marine invertebrates (and those in brackish water, especially in lagoons, on brackishwater crustaceans), and the larger fish in salt water are chiefly piscivorous.

PREDATORS

Inasmuch as one of the main purposes of the Waddell Creek project was to study a stream under as nearly as possible natural conditions, hesitation was felt in killing suspected predators, because of the danger of upsetting the biological balance. However, it is believed worth while to make evaluations of the effects of various possible predators on the basis of incomplete data and observations on other streams.

Predators in Fresh Water

In previous sections of this paper it was stated that tremendous losses occurred soon after the fish had emerged from the gravel, and that these losses were caused principally by fishes. Under normal conditions, in Waddell Creek and other California streams the greatest numbers of juvenile silver salmon and steelhead are probably eaten by juvenile steelhead. Freshwater sculpins (Cottus) are probably an important predator in most Pacific Coast streams; at Waddell Creek and probably in most other streams the species which causes the greatest damage
is Cottus asper. During the period immediately following emergence from the gravel some young fish may also be eaten by juvenile silver salmon of older year classes; this has not been noted in Waddell Creek but has been reported from another stream (Pritchard, 1936b). Other predators on fish of such small size are limited in Waddell Creek and most other California streams to the Dipper and to garter snakes. Usually these two are not sufficiently numerous to be the principal cause of loss at this stage. A few are consumed by crayfish and giant water bugs.

As the young salmon and trout grow, the percentage of loss declines, but they become attractive as food to an increasing number of predators. When they are too large to be taken by the Dipper, the smaller garter snakes, and many of the steelhead, they are taken in varying amounts by fish-eating birds (kingfishers, blue herons, and others). In some cases, striped bass may make serious inroads into the seaward migrants. The losses caused by each of these depend upon a variety of factors, including the size of the populations of trout and salmon and the predators, the abundance of other foods for the predators, the character of the stream and the particular portion of the stream, and climatic and water conditions. Some of the predators are able to secure fish in appreciable quantities only when the latter are confined to drying pools or some spot like the traps at Waddell Creek. Figure 32 shows the common food interrelations at Waddell Creek.

Sea-run steelhead and silver salmon, except individuals dying after spawning or from old age, disease, or injury, are subject to very little predation from any source once they have entered fresh water. It is probable that less than 1 percent of the run of either species is normally taken by predators in any stream in California.

Fishes

(a) Steelhead. Because of the nature of the program at Waddell Creek, it was not possible to make a detailed study of the predation of steelhead on other steelhead and silver salmon. However, from scattered data it is known that it is not uncommon for stream steelhead to prey upon both of them. The numbers and sizes consumed depend upon the size and composition of the populations of both species, the time of year, the abundance of other food, and other factors.

A steelhead 165 mm . long, taken in the downstream trap on December 4, 1934, contained four steelhead, 47, 53, 57, and 60 mm . long.

A downstream migrant steelhead six inches long, taken at Benbow Dam on the South Fork of Eel River, contained nine fry, four of which were silver salmon one to one and one-fourth inches long, and the other five fish too digested to be identifiable.

Nine out of 32 upstream juvenile steelhead taken during the 1934-35 season contained several to 12 or more silver salmon eggs apiece. Most of these eggs probably had been washed out of the spawning beds.

Idyll (1942) found that salmonids formed only a small proportion of the food of steelhead ${ }^{38} 25.4-50.8 \mathrm{~cm}$. (10-20 inches) long from the Cowichan River, British Columbia.

[^45]As a general rule, adult steelhead do not feed in fresh water. Apparently a few resume feeding while still in fresh water after spawning, but the inroads into the salmon and trout populations made by such fish cannot be considered important.
(b) Silver Salmon. As in the case of the steelhead, it was not possible to make a detailed study of the predation of silver salmon on other silver salmon and steelhead. During their first year of life the silver salmon are so nearly of the same size as other silver salmon and steelhead of the same age class that they probably rarely eat them. In their second year of life at Waddell Creek and in most other California streams the silver salmon migrate to sea before the bulk of the silver salmon and steelhead of the following year class have emerged from the gravel, and so probably consume comparatively few fish of the season.

The preceding statements do not mean that silver salmon are not fish eaters when they have the opportunity to be so. Pritchard (1936b) studied pink salmon predators at McClinton Creek, British Columbia, from February to June in the springs of 1931 and 1933. The stomachs of 385 yearling silver salmon (including 76 which were empty) 2 to $61 / 4$ inches long contained a total of 1,027 pink salmon fry (average 2.7 per stomach, maximum 13), 10 chum salmon fry, and 35 silver salmon fry and fingerlings. None of the stomachs contained other food. These results were corroborated by examination of 1,523 additional stomachs from a mixture of silver salmon and cutthroat trout, of which over 90 percent were young silver salmon.

Pritchard correctly points out that the results of the analyses may be more extreme than those which would be obtained under natural conditions, since the pink salmon fry were concentrated along the screens and in the pen of a counting fence. On the basis of stomach examinations and general observations on the numbers of the different predatory fishes in the stream, Pritchard assessed the absolute damage caused to the young pink salmon in the stream, from greatest to least, in the following order: silver salmon, cutthroat trout, Dolly Varden Trout (Salvelinus malma spectablis), and sculpins (Cottus sp.).

We are led to conclude that in Waddell Creek and other California streams, silver salmon cannot be considered serious predators on silver salmon or steelhead. In those streams in which king salmon are also present, silver salmon yearlings may do considerable damage, since the king salmon hatch earlier than do the steelhead and silver salmon and since many of them migrate to sea as fish of the season, about the same time as do the yearling silver salmon.

With extremely rare exceptions, adult silver salmon do not feed in fresh water and therefore are not predators.
(c) Sculpins (Cottus). Two species of freshwater sculpins are present in Waddell Creek and a number of other California coastal trout and salmon streams: Cottus asper and C. aleuticus. The former is the larger and more abundant species.

These species appear to be of considerable interest in a discussion of salmon and trout predators, first, because it appears that they may make considerable inroads into the populations of these fishes and affect survival rates noticeably, and second, because a practicable method of control appears to exist.

One of the things discovered upon start of operation of the traps was the existence of a definite annual downstream migration of the two species, and to some extent an upstream migration. The downstream migration takes place in connection with high water during the winter and spring months, and is evidently a spawning migration, since most of the fish are large and sexually mature. The extent of the upstream migration that would occur under natural conditions is not known, since the sculpins are not leapers and so had only partial success in passing through the fishway into the upstream trap. At first some of the upstream migrants were put upstream, but when it became apparent that most of them could not enter the upstream trap it was decided to "go the whole hog" and kill them.

That this downstream migration, with the upstream migration stopped, was steadily diminishing the population of sculpins above the dam seems evident from Table 88. Tabulations for the two species separately (Tables A37 and A-38 of the Appendix) show that more than 90 percent of the downstream migrants were the larger Cottus asper.

It seems, then, that low dams (\pm three feet high) across the lower parts of streams might prove an effective way of eliminating the sculpin populations above such dams. Dams of this height would not stop adult salmon and steelhead if they were constructed without an apron. Nearby Scott Creek seems to be an example of a stream in which the elimination of sculpins above a dam actually took place. This dam was built for egg taking purposes about 1908. Extensive seining and observations during the 1930's revealed no sculpins above the dam, while they were plentiful below it. An old-time resident told Shapovalov that sculpins were abundant above the site of the dam before the dam was built.

There remains the possibility that such dams might cause an unnatural concentration of sculpins below them. Elimination of sculpins below the dams might be accomplished through chemical treatment of

TABLE 88
Waddell Creek: Sculpins Checked Through Downstream Trap, by Four Week Periods (Cottus asper and Cottus aleuticus)

Period	$\begin{gathered} \underset{\sim}{2} \\ \underset{\Omega}{2} \end{gathered}$	$\begin{gathered} \text { n} \\ \underset{\sim}{\tilde{1}} \end{gathered}$	$\begin{gathered} \stackrel{\sim}{\Gamma} \\ \\ \end{gathered}$		$\begin{aligned} & \infty \\ & \stackrel{N}{\Omega} \\ & \underset{\Omega}{2} \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{\infty} \\ \stackrel{\infty}{\sigma} \end{gathered}$	$\begin{gathered} q \\ \underset{\sim}{2} \\ \stackrel{y}{2} \end{gathered}$	¢ ¢ ¢	$\stackrel{\text { T }}{\text { ¢ }}$	들
Oct. 1-Oct. 28	--	--	--	--	--	--	1	--	--	1
Oct. 29-Nov. 25	--	23	--	--	--	--	--	--	--	23
Nov. 26-Dec. 23	92	18	--	--	21	--	--	--	--	131
Dec. 24-Jan. 20	124	618	199	26	34	11	2	10	1	1,025
Jan. 21-Feb. 17	2,075	771	258	163	38	20	19	19	15	3,378
Feb. 18-Mar. 17	944	278	108	86	25	26	8	7	5	1,487
Mar. 18- Apr. 14	94	99	41	43	9	16	5	13	6	326
Apr. 15-May 12	20	24	37	17	13	1	8	4	2	126
May 13-June 9	8	5	4	1	--	7	1	1	1	28
June 10-July 7	--	1	2	1	--	6	--	--	--	10
July 8- Aug. 4	--	--	2	--	12	2	--	3	--	19
Aug. 5-Sept. 1	--	--	--	--	1	2	1	4	--	8
Sept. 2-Sept. 30	--	--	2	--	2	--	--	--	--	4
Totals	3,357	1,837	653	337	155	91	45	61	30	6,566

Figure 32. Waddell Creek food interrelationships.
the streams below them at low water. Elimination of sculpins below the dams should not be attempted until the populations above had been eliminated through the downstream migrations.

The upstream migrations of sculpins in Waddell Creek are shown in Table A-39 of the Appendix. The upstream migrations occur generally later in the season than the downstream migrations. The average size of the upstream migrants is definitely less than that of the downstream migrants.

Stomachs of sculpins taken from the downstream trap have revealed considerable numbers of young trout and salmon. That confinement of the fishes in the trap aided the sculpins in capturing their prey is probable. At the same time, on various occasions sculpins have been observed to rise to the surface of the pool below the dam and seize freshly liberated downstream migrant salmon and trout. Fish at least as large as 111 mm . long have been observed to be taken by sculpins in this manner. It is possible that such trout and salmon had been temporarily weakened by measuring, marking, and scale-taking operations. Under natural conditions sculpins probably more often secure salmon and trout by sudden darts when their prey is close to the bottom of the stream, since sculpins are not capable of sustained rapid swimming away from the bottom.

Sculpins from the downstream trap have also contained salmon and trout eggs. Most of these eggs probably had been washed out of the spawning beds. C. asper, being the larger and more abundant species,
probably does the greater damage. Sculpins continue to feed during sexual maturity.

Pritchard (1936b) examined the stomachs of 165 sculpins (Cottus sp.) from McClinton Creek, British Columbia, from February to June in the springs of 1931 and 1933, and found them to contain: 175 pink salmon fry (maximum in single stomach, 8) 2 chum salmon fry, and 10 silver salmon fry and fingerlings; only one stomach contained other materials (insects), and 98 out of the 165 were empty. These data are presented in Table 89. Concentration of the salmon along the screens and in the pen of a counting fence probably aided the sculpins in capturing them. Munro and Clemens (1937) record silver salmon fry and steelhead eggs from the stomachs of (C. asper from British Columbia.

Measurements were made of nearly all of the downstream and upstream sculpins taken in all seasons except 1933-34, and of some of those taken in 1933-34, but are not presented in this paper.

Some of the sculpins taken in the traps were marked or tagged, but the returns were not sufficient to warrant discussion at this time.

It is believed by the writers that a concentration of sculpins below the dam during the 1933-34 season may have contributed to the poor survival of the year class (1932-33) migrating downstream at that time, although disease (see pages 239-242) or some other factor may have been of greater importance.
(d) Three-spined Stickleback. The food of the stickleback at Waddell Creek was not studied. In view of its small size, it is doubtful that

TABLE 89
Stomach Contents of Sculpins Taken at McClinton Creek, British Columbia
(After Pritchard, 1936b)

	Cottus sp.	
	1931	1933
Size	$1^{3 / 4}$	$-7^{\prime \prime}$
$1^{3 / 4}-7^{\prime \prime}$		
Number examined	81	84
Number empty	59	39
Number containing:		
1 pink salmon fry.	7	13
2 pink salmon fry	3	12
3 pink salmon fry	3	9
4 pink salmon fry	5	6
5 pink salmon fry	1	2
6 pink salmon fry	--	1
7 pink salmon fry	--	--
8 pink salmon fry	1	2
Total pink salmon in stomachs	55	120
Average number per stomach	0.7	1.4
Total chum salmon fry	2	--
Total silver salmon fry and fingerlings	8	2
Stomachs containing insects	--	1

this species is a serious predator on even small trout and salmon. However, it is considered at this point because of its reputation in this regard in certain quarters, as noted by Kincaid (1919): "The damage done by the Stickleback is out of proportion to his size as he is able to kill the fry of larger fish, notably the salmon, for which reason the Stickleback is known locally as the Salmon Killer." Kincaid does not cite supporting evidence for his statement and it is the belief of the writers that it cannot be accepted without adequate data. Munro and Clemens (1937) found no fish remains in 61 stickleback stomachs from British Columbia.
(e) Striped Bass. Under certain conditions striped bass which have entered a stream may consume large quantities of seaward migrant trout and salmon, as shown by Shapovalov (1936). In that paper the writer described the stomach contents of 47 striped bass seined by A. C. Taft and himself in the upper end of Waddell Creek lagoon on April 26, 1935. The larger of these fish (37 to 49 cm. long) had been feeding largely on silver salmon and steelhead fingerlings and sculpins (Cottus), while the smaller bass (20 to 31 cm . long) had been feeding almost entirely on small crustaceans (Gammarus, Exosphaeroma, and Corophium), sticklebacks (Gasterosteus), and gobies (Eucyclogobius).

Shapovalov (loc. cit.) also reported on a collection of young trout and salmon from the stomachs of six striped bass taken in the Coos Bay region, Oregon, in April and June, 1930 and 1931. These striped bass contained $10,11,14,15,20$, and 22 trout and salmon fingerlings, respectively. The salmon were practically all silver salmon 100-140 mm . long, evidently seaward migrants.

It is evident from the foregoing that striped bass may cause serious depredations, especially when they are in a position to intercept all seaward migrants, as were the 47 fish seined from the narrow upper end of Waddell Creek lagoon in 1935. It is also possible, although no data are at hand, that striped bass may consume numbers of trout and salmon that have entered salt water.

The effect of the presence of striped bass on survivals at Waddell Creek is not evident, since in 1935 they were seined out about the time of the beginning of the seaward migrations and in other seasons they may have entered the lagoon without being noticed, because of the depth and the murky condition of the water, although a watch was kept for them. It is known that some striped bass have entered Waddell Creek in various years, as shown by the following record:
1927. Unknown number of striped bass of second, fifth, sixth, seventh, and eighth age groups seined in Waddell Creek in May (Scofield, 1931).
1931. Two dozen striped bass of approximately the same size composition as those taken in 1935 seined in Waddell Creek lagoon by A. C. Taft and J. H. Wales on November 24th. One large, dead striped bass found at the same time.
1932. Two one-year-old striped bass 113 and 114 mm . long seined in Waddell Creek lagoon by J. H. Wales and Leo Shapovalov on April 26th.
1934. One dead striped bass 260 mm . long found in Waddell Creek lagoon by Leo Shapovalov on March 23d.
1935. Forty-seven striped bass 20 to 49 cm . long seined in upper end of Waddell Creek lagoon by A. C. Taft and Leo Shapovalov on April 26th, but first noticed during the early part of March. A few fish escaped the seining.
1938. The field observer, J. H. Cook, caught a 13 -inch striped bass in the surf several hundred yards north of the mouth of Waddell Creek in July (?), and afterwards caught two other small striped bass in the surf along the beach near Waddell Creek.
1939. Several striped bass were reported to be present in the upper end of Waddell Creek lagoon in late June. Report not verified.
1941. Anglers caught numerous striped bass in the surf from the beach adjacent to Waddell Creek during the first two weeks of April. One fish is reported to have weighed 16 pounds.

Reptiles

The only aquatic or semiaquatic reptiles found at Waddell Creek are the Pacific Pond Turtle (Clemmys m. marmorata) and garter snakes (Thamnophis).
(a) Pacific Pond Turtle. During the nine seasons of operations only seven Pacific pond turtles were recorded as being taken from the downstream trap, and only very occasionally has an individual been observed in the stream. The seven from the trap were taken between April 8-14 and August 26-September 1. Not more than two were taken in any one season. The Pacific pond turtle is largely a scavenger and bottom feeder and probably is rarely, if ever, a trout or salmon predator. Most individuals probably hibernate during the greater portion of the salmonid spawning season and for this reason, if no other, eat very few eggs.
(b) Garter Snakes. Garter snakes in general have been accused of extensive depredations on young trout and salmon by anglers. Fitch (1941) stated that the feeding habits of the different species vary widely, and that some commonly enter water, while others are largely terrestrial.

During the nine seasons of operations, 160 garter snakes were taken from the downstream tank, with the seasonal number varying from 1 to 45. The earliest garter snake was taken April 1-7 and the latest October 22-28. During the same time of year garter snakes were often observed in and about the stream. During the period October through March garter snakes usually hibernate in the Waddell Creek area. The occurrence of garter snakes in the downstream tank during the various seasons is shown in Table A-40 of the Appendix.

According to known distributional records and information recently supplied by Mr. Jay M. Savage, Stanford University (personal communication to Shapovalov, February 28, 1954), the Common Garter Snake (Thamnophi s sirtalis infernalis) and the Coast Aquatic Garter Snake (T. couchi atratus) are known to occur at Waddell Creek, while a third, the Coast Terrestrial Garter Snake (T. elegans terrestris),
although not recorded from there, almost certainly is present. Mr. Savage states that the first two are aquatic forms, while the latter is a terrestrial type.

Unfortunately, an attempt to identify the species taken in the trap was not made until the season of 1941-42, and in that season only one individual was taken. This individual, taken in the trap on June 10, 1942, was probably T. c. atratus. However, there is considerable doubt regarding the identity of the other individuals taken during the various seasons.

As stated previously, many, if not most, of the salmonids taken by garter snakes are those from drying portions of a stream. At Waddell Creek, the depredations of garter snakes are probably not of major proportions, both because garter snakes are not very abundant and because dropping stream levels do not isolate many pools.

Birds

The fish-eating birds of some importance at Waddell Creek are the Western Belted Kingfisher, California Heron, and Dipper. Birds present but whose fish-eating propensities in this area are not well known are the Common Loon, Pacific Loon, Red-throated Loon, American Egret, Blackcrowned Night Heron, American Bittern, Red-breasted Merganser, Southern Bald Eagle, and Caspian Tern. None in this group is present in sufficient numbers to be a serious factor. The American Osprey and American Merganser, which may be serious predators in other California salmon and trout waters, are absent from the Waddell Creek area or are rare visitants. Fish-eating birds which have not been observed to take fish from fresh water in this area, such as the California Brown Pelican, are omitted from consideration.

Of the above birds the only species large enough to attack and eat searun steelhead and silver salmon are the California Heron and Southern Bald Eagle, and possibly the American Egret and American Bittern. Altogether, the adult fish killed by all birds form probably less than 1 percent of the runs.

Orr (1942) has given an account of the birds of the Waddell Creek area, but does not discuss their foods.
(a) Western Belted Kingfisher. The Western Belted Kingfisher is undoubtedly more adept at catching trout and salmon than any of the other birds present at Waddell Creek, with the possible exception of the Dipper. Very likely an individual bird consumes a considerable number of trout and salmon during the course of a year. However, the number of birds along Waddell Creek is not believed to be large, probably not numbering over a dozen. The Western Belted Kingfisher appears to show a decided preference for the lower, more open portions of the stream over the upper portions in the redwood forest. It is the writers' opinion that the complete elimination of this bird from Waddell Creek would not affect the survival of either steelhead or silver salmon to an appreciable degree.
(b) California Heron. The population of California Herons in the Waddell Creek drainage was not large, numbering probably less than half-a-dozen birds. Some time prior to the start of the experiments in 1933 some California Herons, which then roosted in a large tree beside

Waddell Creek in its lower portion, were shot. Since the start of the experiments never more than two birds were seen on any single occasion.

Because of its size, the California Heron is capable of consuming large numbers of fair-sized fish, but it is probably rarely that such an occasion presents itself at Waddell Creek or in other streams unless isolated pools have formed.

In the majority of instances in which California Herons have been observed in the Waddell Creek area they have been in areas not inhabited by trout and salmon, such as the marshy areas around the lagoon and the grassy fields. It is probable that the California Heron finds frogs, rodents, and other foods preferable to or easier to obtain than trout or salmon.

Both at Waddell Creek and at Scott Creek an occasional unspent adult fish with a deep, round hole at the nape, but otherwise in good condition, has been taken in the upstream trap. These holes are believed to have been made by the bills of California Herons.
(c) Dipper. The Dipper has often been accused by anglers of extensive depredations on trout, not only because of the fish consumed, but also because of a habit of catching fish and leaving them on exposed stones. One angler told Shapovalov of seeing 22 small trout laid out on a stone by a Dipper (not at Waddell Creek). Shapovalov has also seen a single bird consume 15 small trout that had died in a hatchery in the Sierra Nevada and had been thrown into the adjacent stream. To secure these trout the bird had to dive to the bottom of a fairly deep pool.

In favor of the bird it may be said that it is known to feed extensively on other foods, such as aquatic insects, and that it is not usually abundant. By its own size the Dipper is limited to fish of small size. There is no way of estimating the effect of the Dipper on the trout and salmon populations at Waddell Creek, but the writers do not believe it to be serious.
(d) Southern Bald Eagle. Southern Bald Eagles have been seen in the Waddell Creek area on various occasions, but they may be classed as only occasional visitors. As regards adult steelhead and silver salmon, these birds probably very largely consume spent dead or dying fish. Southern Bald Eagles probably are not a factor of consequence to the salmon and trout populations of any streams in California.

Mammals

The only terrestrial fish-eating mammal found at Waddell Creek is the California coon. Coons eat considerable quantities of adult steelhead and silver salmon, but the writers believe that the fish consumed are very largely dead or dying spent individuals, and that it is doubtful that coons have an appreciable adverse effect on the salmon and trout populations of the stream or of other streams.

As coons eat the fish, they peel the skins back from head to tail until the empty skin is left like a glove turned inside out. During the 1933-34 season, when the adult steelhead were tagged, it was often necessary to turn the skins right side out to locate and remove tags.

Crayfish

The species present in Waddell Creek has been identified by W. L. Schmitt of the U. S. National Museum as Astacus klamathensis, which is found also in the Columbia, Smith, and Klamath rivers. ${ }^{39}$ Its origin in Waddell Creek remains obscure. It may be endemic, since there are early records of crayfish in neighboring streams. On the other hand, various individuals have informed Shapovalov of transplantings of crayfish made by different persons in neighboring streams during the past 40 or so years, so the species may have been introduced. This view is supported by the statement of Rathbun (1884, page 813) that A. nigrescens was "the only species found in the vicinity of San Francisco" at that time. Mr. Theodore Hoover, owner of the property, had not seen crayfish in the stream until some were taken in the trap. The rapid increase of the species in Waddell Creek during the course of the experiments indicates either a comparatively recent introduction or a tremendous population increase. During the first five seasons of operations (1933-34 through 1937-38) Shapovalov made repeated trips along the stream, wading the length of the lower portions many times, but saw only one or two small individuals. During the same five seasons not over two were taken in the downstream trap. In 1938-39 three were taken in the downstream trap, in 1939-40 there were 77, in 1940-41, 276, and in 1941-42, 471. At the close of the experiments they were quite common in sections of the stream where very few were seen during the first five seasons. The numbers taken in the downstream trap in each season by four-week periods are shown in Table A-41 of the Appendix.

The significance of the downstream migration has not been determined. Crayfish with eggs have been recorded from October 8-14 through December 31-January 6. One with two young (11 and 14 mm . long) was taken during the week of March 4-10, 1942.

Crayfish have sometimes been accused of predation on young salmon and trout. At Waddell Creek, however, many hours of observation (by several observers) failed to indicate such predation.

Crayfish were found rather to subsist largely on organic detritus stirred up from the stream bottom, and occasionally on carrion. They sometimes caught small steelhead and silver salmon in the trap, although they were never seen to stalk them there. It is probable that the confinement of the trap aided the capture. Crayfish probably capture some diseased and injured fish in the stream, but it is doubtful that they are capable of catching healthy fish.

Insects

At Waddell Creek, two species of giant water bugs (family Belostomatidae) are present and may occasionally prey on young trout and salmon when the opportunity presents itself. However, their fish depredations probably play a minor role in the economy of the stream.

It is of interest that both species, a very large one, Lethocerus americanus (Leidy), and a small, oval one, Abedus hungerfordi De Carlo (identifications by Robert L. Usinger of the University of Cali fornia), migrate downstream, especially during the spring and summer months. Table A-42 of the Appendix shows this. In the table the two

[^46]species have been lumped together, since the field notes did not distinguish the species in all instances, but probably 90 percent of the total is represented by the smaller species, Abedus hungerfordi. The males of this species, but not those of the larger one, carry the eggs on their backs. The significance of the downstream migrations is not known to the present writers, and the cause of the apparent decline in numbers of migrants during the course of the experiments is not apparent.

In the comparatively limited confines of the downstream trap the giant water bugs occasionally seize and eat a small trout or salmon, but it is doubtful that they have an opportunity to do so in the open stream, unless the fish are sick or injured.

The giant water bugs just discussed represent the two common species in California.

Predators at Sea

As has been seen in the sections on "Survival", considerable losses occur among both silver salmon and steelhead between the time that they leave fresh water and the time that they return as adults. Little is known of the life of salmon and trout at sea, and so little of the proportionate toll taken by predators, disease, and lack of food. The latter cause of mortality, if and when a factor of importance, probably occurs only soon after the fish have entered salt water.

It is not improbable that the major mortality in the ocean is caused by predators, of which there are some capable of preying on salmon and trout of all sizes.

Sea lions have been accused of extensive depredations on steelhead and salmon by sportsmen and commercial fishermen. The extent of such depredations is difficult to determine, largely because of the difficulty in securing stomachs of sea lions at the proper time of the year. Individuals swimming in the water are difficult to shoot, and many of those that are shot sink or cannot be recovered because of difficulties in reaching them.

It must be recognized that because of their size and agility sea lions are capable of catching large, fast-swimming fishes. Therefore, if they are partial to salmon and steelhead, they may be expected to cause extensive depredations, because of their large numbers along the northern and central California coasts. ${ }^{40}$ Whether they actually favor salmon and steelhead as a food over other forms of marine life is a moot point. Many individuals have reported seeing sea lions catch salmon and steelhead along the coast, particularly near piers and wharves. Observers have reported that occasionally the sea lions on catching a large fish have not eaten it, but have tossed it into the air and gone to another fish, as in play. Uncertainties in identification of the fish involved help to make it difficult to analyze the significance of such reports.

Circumstantial evidence that sea lions feed on salmon and steelhead lies in the appearance of the sea lions near the mouths of California

[^47]streams during the time of entry of the salmon and steelhead. From one to half-a-dozen sea lions may usually be seen at the mouth of Waddell Creek (and other streams of comparable size) during the times that the salmon and steelhead are entering. During these periods the animals come very close to shore, swimming through the breakers. At Waddell Creek they have been seen to approach within 50 yards of the mouth of the stream. It is not known whether the same individuals are seen during the course of the steelhead and silver salmon spawning season, or whether they are replaced by others.

A considerable number of the silver salmon and steelhead taken in the upstream traps at Waddell Creek and at Scott Creek have had scars in the form of a "V" or "W" or some portion of a "V" or "W," or an inverted "V" or "W," on their sides. Usually these scars, the lines of which are several inches long, are well healed. It has been suspected that these scars were made by sea lions, but this has not been proved. During portions of several seasons a graphic record was made of all scars on silver salmon and steelhead taken in the traps at Waddell Creek and at Scott Creek; it is hoped to analyze this record at some future time.

Further knowledge regarding the extent of depredations by sea lions would be of particular interest in the case of Waddell Creek in view of the fact that the largest Steller sea lion rookery in California is located only a little over three miles away, at Año Nuevo Island. The herd there numbers 2,500 animals at times, and up to 200 California sea lions have also been counted at this rookery. According to Bonnot, Clark, and Hatton (1938) the sea lion population along the entire coast of California at the time numbered on the average approximately 5,600 Steller sea lions and 1,600 California sea lions. Bonnot (1951) listed 9,000 as the approximate number of sea lions along the coast of California.

An accurate picture of the relationship of sea lions to salmon and steelhead could be obtained only by examining stomachs taken from animals not only in the open sea or on land but also off the mouths of salmon and steelhead streams during the period of the spawning runs.

The Harbor Seal (Phoca vitulina) is occasionally to be seen off the mouth of Waddell Creek. Its relationship to steelhead and silver salmon is not known, but is not believed to be of importance.

RECOMMENDATIONS FOR MANAGEMENT

Proper recommendations for the management of any species should consider that species in relation to its total environment, including the human beings who will be concerned with its utilization. The demands of various segments of the population for its sporting or commercial utilization, the funds, facilities, and personnel available to conservation agencies, and expected changes in these factors must all be considered. To be able to formulate such recommendations, however, it is first necessary to know the basic facts about the biology of the species concerned. To gather these basic facts and present them in usable form has been the main function of the present study.

The problems that concern the steelhead have been well presented by Taft (1933). Intensive fisheries for both the adult and immature
steelhead create too great a drain on the species. In many of our coastal streams the immature fish face the additional difficulty of low water during the dry summer season. Such streams can support only limited numbers of fish of angling size.

By contrast, immature silver salmon (and king salmon) are subjected to relatively little fishing. The adult salmon, however, must withstand, in addition to the sport fishery, an extensive commercial fishery. The numbers of seaward migrants must be great enough to maintain these fisheries with adequate numbers of adults.

Detailed studies such as the present one, although yielding much indispensable information, cannot alone provide direct answers to all problems of management. For example, no matter how definitely, correctly, and completely we know the biology of the steelhead, we cannot on that basis alone answer positively what the bag limit should be. Knowledge of the biology of the fish is essential to an understanding of what effect certain regulatory measures will achieve, but such regulations must also be made on the basis of the factors previously outlinedenvironment, demand, and management resources-and anticipated changes in these factors.

Although specific management practices will be proposed in this section, it must be realized that even if put completely into effect they will not create complete management. The Department of Fish and Game does not have control over the land, except in some limited phases. Many of the problems encountered and many of the ill effects on the fishes have resulted from the methods of land and water use now in effect. Deforestation through lumbering and pasture clearing has caused erosion along the streams, greater floods, higher water temperatures, and lower water in the summer months. Grazing has had approximately the same effects. Many new dams have impeded or blocked the runs of spawning fishes, destroyed spawning areas, diverted the natural flow of the streams, increased water temperatures, and caused fluctuation of the water. Control over these factors lies largely outside the province of the Department of Fish and Game.

One other fact must be realized to evaluate correctly the measures and recommendations proposed and now in effect, namely, that sometimes different management methods will give the same results. For example, the maintenance of the population of silver salmon in a given stream may be expected to be achieved either by a given season and bag limit, or a larger bag limit but shorter season, other things being equal. The choice must in this case depend upon the desires of the angling public. Similarly, in another instance a population may be maintained with a certain season and bag limit, and natural propagation, or with a more liberal season and bag limit, and intensive stocking. In this case also the choice must depend upon the desires of the angling public, plus the funds, facilities, and personnel available to conservation agencies.

Of the five species of Pacific salmons found along the Pacific Coast, only the king salmon and silver salmon occur in significant numbers in California. Although the king salmon is still much the more important, the silver salmon may be expected to become increasingly important in the future with the construction of still more dams and diversions. The silver salmon is more commonly found in the smaller streams and
tributaries near the coast, which are less subject to human interference and development than the large stream systems, like the Sacramento-San Joaquin and Klamath, that are favored by the king salmon. The elaborate water utilization plans for these stream systems will ultimately cut off most of the present king salmon spawning areas.

Present trends point toward a vast development of the northern areas of the world: Siberia, Canada, and Alaska. It is to be expected that many phases of this development will adversely affect the salmon fisheries of those areas in the manner that has taken place in the United States, with the result that the salmon fisheries of California will assume a relatively more important position.

From this long view of the present and future place of the salmon and trout fisheries in California, we may now proceed to an examination of specific measures to be applied in a management program. A sound program of management should include wise conservation legislation, good enforcement of this legislation, improvement of the physical and biological habitat, pollution control, and fish rescue and artificial propagation, when and if necessary. These various phases of management are treated below.

Regulation

Regulations governing the taking of salmon and steelhead should be designed to provide the maximum sustained yield, that is, the widest use of the resource possible without causing depletion. Regulations formulated for any given area should also consider adjacent areas, for if the regulation of adjacent areas is not coordinated, there is danger of an undue burden being placed on one or more of them. This applies especially to seasons. If the trout season opens at different times on two nearby streams, anglers naturally concentrate on one and then the other. Quite naturally, too, the more regulations there are the more confusing and irritating it is to the angler and the more difficult is made the work of the law enforcement officer. A multiplicity of local regulations also hinders studies of the effects of management policies. In general, therefore, regulations should be as uniform as is consistent with basic biological requirements.

The California Fish and Game Commission (like the Oregon Game Commission and the Washington Game Commission) has the power to promulgate regulations governing game fish. Such regulations are formulated annually. Additional laws and regulations concerning game fish are enacted by the state legislatures in all three states.

The take is variously regulated by means of bag limits, size limits, season limits, closed areas, and restrictions on angling gear and methods. One very important fact which must be considered is that only the take of the individual angler is restricted; the total annual take of game fish is not directly limited in any body of water. Under such conditions angling regulations will remain a management tool of limited effectiveness in the maintenance of the steelhead and salmon fisheries.

Since steelhead are taken by anglers as sea-run adults and also as fish which have not yet migrated to salt water, and since the latter are very difficult to distinguish from resident rainbow trout, it is inevitable
that the freshwater regulations governing the species are quite complex. Comparatively little fishing for steelhead exists in offshore waters, and so regulations governing such angling are relatively simple.

It is the general practice in California (and also in Oregon and Washington) to set up a winter season for the sea-run adults and a summer season for the immature and resident fish.

The daily bag limit in the three states during the winter season is mostly two or three fish. Oregon and Washington also have weekly and seasonal limits, while California does not.

Oregon and Washington both employ minimum size limits during the summer season, while California does not, using other means (such as closed areas and closed seasons) to protect the immature steelhead and salmon.

In California, the laws pertaining to steelhead and salmon angling had grown so complex that in January, 1948, the Fish and Game Commission, on the recommendation of the Bureau of Fish Conservation, revised them. These greatly simplified regulations have remained essentially unchanged since then.

The present offshore sport fishing regulations for salmon and trout provide a yearlong open season in the northern part of the State and a season extending from February 15 to November 15 in the southern part with a daily bag limit of three fish in the aggregate in the north and two fish in the south; one undersize salmon may be included in this daily bag limit.

The river fishery regulations provide a winter season and a summer season for taking trout and salmon. The winter season is designed to regulate the fishery for the adult steelhead and salmon. It varies to some extent for different groups of streams, with the longest season for any group extending from November 1st to the last day of February and the largest bag and possession limit consisting of three trout or salmon in the aggregate. Fishing in tributary streams other than those listed in the regulations is prohibited.

The summer season is designed to regulate the fishery for juvenile steelhead and salmon. In northern California steelhead and salmon waters it extends from the end of May through October, with a bag and possession limit of not more than 15 trout and salmon in the aggregate, nor more than 10 pounds and one fish in the aggregate in the round, provided that irrespective of weight at least three such fish in the aggregate may be included in the daily bag and possession limit.

Although these existing regulations are generally satisfactory, some changes are desirable. It is especially important that the summer season in the coastal steelhead and salmon waters, if permitted at all, open not earlier than the end of May. Quite a number of coastal streams are now open during May, which is one of the principal periods of seaward migration of the young steelhead. Most of these fish are under six inches in length. They are too small to provide much pleasure for the true sportsman, yet large enough to take good care of themselves and insure the survival of a sizable proportion as spawning fish a year or two years later. A closed season until the end of May protects large numbers of stream steelhead that have not completed spawning, as well as a certain number of spent sea-run steelhead returning to the ocean. It also affords
great protection to the young silver salmon. Most anglers do not distinguish young silver salmon from young steelhead and are unaware that their catches during the early part of May often contain from 30 to 50 percent young silver salmon. The seaward migration of these fish, practically all of which are under six inches in length, is heaviest during the month of May. Protection of this migration not only insures better angling for the adult silver salmon in the autumn, but also helps to preserve the important commercial fishery for this species.

It is also very important that at least the lagoons and tidal waters of all coastal steelhead streams and in some instances additional portions of their lower reaches be closed at all times except during the winter season for adult fish. It is in these portions of the streams that young steelhead make their most rapid growth before entering the sea.

Study is being given to the following possible changes:
(1) Closure of the summer season and bag limit on September 30th instead of October 31st and opening of the winter season on October 1st instead of November 1st.
(2) Extension of the winter season through March 31st instead of the last day of February.
(3) Extension of angling during the winter season to some major tributary streams.
(4) Abolition of or changes in size limits for ocean-caught
salmon. Just what would be accomplished by these changes?
(1) The closure of the summer season on September 30th would greatly curtail the take of young steelhead which had migrated to the lower reaches of the streams in the spring and remained there throughout the summer, making rapid growth. In certain years of late rainfall large numbers of such steelhead have been taken in October, especially in the Eel River.

The September 30th closing date would also provide a considerable measure of protection for the so-called "half-pounders," the young steelhead weighing usually from one to two and one-half pounds. The writers believe that these fish are inadequately protected by present regulations. They usually make their appearance in the lower Eel River in August (sometimes even in July) and from then until November 1st may be taken legally at the rate of 10 fish weighing one pound each plus one fish of any size.

Under the proposed regulation these fish could still be taken at this rate through September 30th, but would be protected in October.

From October 1st to the last day of February, inclusive, they could still be taken along with the large fish, so long as the total number of fish did not exceed three. It is hard to believe that a greater daily bag limit may be allowed without causing depletion, unless the taking of small fish be prohibited entirely.
(2) A study of the merit of extending the winter season through March 31st has been proposed because of the possibility that certain segments of the runs are not now contributing to the fishery. In other words, if the late running fish which ascend the streams in March also produce fish which are late running, a resource is not being utilized.

Shapovalov (1954) has shown that in California such an extended winter season would expose 94 percent of all male steelhead and 89 percent of all female steelhead to angling, whereas under the present
general open season 71 percent of the males but only 53 percent of the females are exposed to angling. From the viewpoint of total age, the youngest fish run first during the season and are followed in succession by progressively older fish. Thus, the present general open season of November through February, especially in the first three months, exposes mainly males and younger fish, while an extension of the season through March would expose an additional group in which females and older fish predominated.

Unfortunately, the two most critical factors bearing on an extension of the steelhead season have not been determined: (1) the proportion of the total run which is being harvested by anglers each year in various types of streams is not known; (2) it is not known if the progeny of fish running in March return to spawn primarily in March, like their parents, or scatter throughout the season.

While it is possible that the offspring of steelhead which run in March also return as adults primarily in March, it appears more probable that they do not, in view of the preponderance of females in March. These late-running fish may be important out of all proportion to their numbers in maintaining the runs, since survival of eggs and fry is probably highest from late spawners because of reduced loss from floods and in view of the preponderance of females.

Efforts should be directed toward obtaining the answers to the two problems outlined above, but it will take several years to get the answers. Until we are sure of the facts, it seems wise to take no chance of jeopardizing our valuable steelhead resource. Therefore, the writers recommend against any general extension of the winter steelhead season at the present time.
(3) Consideration should be given to the extension of the winter season to include some major tributaries which are now closed. The purpose of closing the tributaries for adult fish during the winter season has been to protect the fish on their spawning grounds. The theory of such regulation is correct, but the writers do not believe that in practice sufficient fish would be taken in some major tributaries now closed to warrant keeping them closed. Extension of the winter season open areas, if carried out judiciously, might prove to be the most effective way of increasing the harvest to the maximum allowable without injury to the resource.
(4) Consideration should be given to changes in the ocean size limit, or to abolition of minimum size limits altogether. Any changes should be made only after careful study, since they could have unforeseen consequences. For example, scale examinations of samples of king salmon caught some 30 years ago and recently indicate that the taking of the larger fish (and therefore the fish of the older year classes) has changed the populations so that now the dominant age at maturity is three years instead of four years.

With the existing size limit, many undersized salmon are caught in the ocean fisheries, both commercial and sport. Except for the single undersized salmon allowed in a daily sport bag limit, such fish are generally released by a flip or violent jerk of the line, which often seriously injuries the mouth parts of the fish. Subsequent examination
in streams has shown that many such fish survive these injuries, but it is not known how many die and the whole question of minimum size limits needs further evaluation from this standpoint.

In conclusion, it may be pointed out that regulations are the one form of management which requires no monetary expenditure, except for enforcement. It is obvious that good enforcement of sensible regulations is essential.

Physical Habitat Improvement

Physical habitat improvement is perhaps the most obvious type of management, other than artificial propagation, in that it produces visible results which can be measured at least partially, e.g., in terms of miles of spawning stream opened by removal of a dam or other barrier.

Certainly, it appears sensible to effect all reasonable physical habitat improvement before indulging in other forms of management, if there must be a choice. In northern California, desirable physical habitat improvement includes principally (1) stream clearance (removal of log jams and debris clogging stream channels); (2) removal of unused dams and reduction of natural barriers; (3) maintenance and improve ment of stream flows; (4) uniting of flows at mouths of small tributary streams, generally making entrance and exit for fish to and from these streams more accessible; (5) opening channels from streams and pools cut off from the main streams at low water; and (6) screening of water diversions.

There can be but little doubt that improvement of the type outlined above would aid materially in the conservation of salmon and trout in the coastal streams by improving shelter and spawning grounds, making spawning grounds more accessible to adults, facilitating egress of juvenile seaward migrants from tributaries to the main streams, and assisting fingerlings in their ascent of small tributaries when the water in the main streams becomes too warm. However, the activation of such a program remains a complex matter.

The principal obstacles to the carrying out of such a program appear to be (1) private ownership of property and (2) lack of man power. Some of the streams in which improvements would be desirable lie on National Forest land, in State Parks, or on municipally-owned property, but others are on privately-owned land. The matter of personnel from the Department of Fish and Game working ons private property involves (1) the question of the propriety of the State's making improvements to private property, and (2) possible damage suits, for example, in the case of damage to property from material from \log jams that had been broken up. Despite these obstacles, it is believed by the writers that such improvements would bring so much good to the angling public and to the commercial fisheries, that improvements even on private property would be justified and that releases to preclude damage suits could be arranged.

In years of deficient runoff, late summer flows in the lower reaches of some of the north coast streams, including the Eel River, are not satisfactory. Occasionally large numbers of adult fish, especially king salmon, which have made their entrance from the ocean are unable to ascend upstream and are vulnerable to natural mortality and illegal snagging and spearing.

Possibilities of improving the conditions described above through the construction of dams from which releases would be made during the lowwater periods should be explored. For example, the U. S. Corps of Engineers has found that it would be physically possible to provide a minimum flow of up to 300 second-feet in the Eel River at Scotia by the construction of a dam on the South Fork of Eel River near Rattlesnake Creek. Obviously, most such dams cut off some spawning grounds, and in each instance the improvement in flows must be weighed against loss of spawning area.

Physical improvement of streams through the opening of mouths of tributaries into the main streams, uniting of side channels with the main stream, and improving entrances of small tributaries into main streams may be termed the "annual" type of stream improvement, in that much of the work must be repeated each year. Such work is not spectacular, but is well worth while and is not costly.

The above type of work may be carried out in part by the same men who do the fish rescue work, or by regular stream improvement crews. Two men working together form an efficient team that can perform all but the heaviest work, if provided with the proper equipment.

There are but few water diversions in the north coast area and so screening does not present a major problem there. In Trinity and Siskiyou counties, however, diversions are more numerous and adequate screening of them to prevent loss of young salmon and steelhead is highly desirable. For many years unsatisfactory laws formed a major block to an adequate screening program. These laws were revised by the 1951 Legislature and the screening of diversions in these two counties is now about 75 percent complete. The Department's present program in Trinity and Siskiyou counties has been described by Wales (1948) and Wales, Murphey, and Handley (1950).

One of the most important things that could be done for the improvement of the coastal trout and salmon waters would be the prohibition of cutting of trees within a certain distance of any stream, say 50 feet to 50 yards, and the recommendation is here made that legislation to this effect be sought. Such legislation would not only be of help to important fisheries, both commercial and sporting, but would also be of great importance in preventing erosion, thus effecting flood control at the source, and in maintaining a more esthetically pleasing appearance of our streams for the many thousands of sportsmen and vacationists.

The possibility of environmental improvement through the installation of stream improvement devices that are suitable to California's coastal streams from the points of view of durability and creation of desired effect should be explored further. These devices should probably be of the kind that cause the stream to create holes by a digging action. An experimental program to determine the most suitable types of such devices and to study their mechanical action and influence on fish was started at Waddell Creek in 1940. The program was discontinued shortly after the start of World War II, due to lack of man power, and since the results achieved were inconclusive, will not be reported upon at this time.

In summary, physical habitat improvement in northern California salmon and steelhead waters offers definite possibilities which should be immediately and thoroughly explored and exploited when found to
be feasible. The general stream clearance and barrier removal program should be continued. Some of the specific situations would require the expenditure of considerable sums, but might produce results worth much more. Certainly, it seems wise to increase the carrying capacities of the streams to the practicable maximum before spending large sums on other forms of management to increase the numbers of fish.

Biological Habitat Improvement

By biological habitat improvement is meant the improvement of the biological environment for the fishes which it is desired to maintain. It means the control of predators and competitors, and the maintenance of an adequate food supply. Among predators are included animals both within and outside the waters: other fishes and snakes, birds, mammals, and invertebrates. Competitors are composed chiefly of other fishes. These may be competitors for food, for spawning grounds, or simply for space. Predators may affect the adults, the immature fish, or the eggs.

Biological habitat improvement in salmon and steelhead waters has received relatively little study, but several leads which have been uncovered should be followed up. Success in each case is by no means certain, but the potentialities are so great that thorough investigation should not be neglected. Witness the rough fish control programs that have been made possible by the chemical treatment of lakes and reservoirs.

One promising lead was discovered recently when it was found in the course of studies made by the Department in Prairie Creek (Briggs, 1953) that apparently oligochaete worms are causing considerable damage to eggs of salmonids in the spawning gravels. If a means of control could be found, the survival among the eggs might be increased appreciably.

Contrary to the hopes of some sportsmen, there appears to be little reason to expect that much can be accomplished through the introduction of the smaller food organisms or of plants. In general, such organisms spread rapidly and easily by natural means, and the absence of desirable organisms in a body of water usually means that environmental conditions are not suitable for them or comparable forms.

The introduction of fishes, and mammals such as beaver, is easier to accomplish, but is a very complex matter, with manifold ramifications within the field of ecological relationships, and must be studied carefully. It is the belief of the writers that in the coastal streams generally the native salmon and trout should be preserved, and that exotic species of fishes should not be introduced, unless new and very conclusive evidence points in their favor. In nearly all cases the introduction of exotic species of fishes where a valuable game or commercial fishery for native species has existed has yielded unsatisfactory or doubtful results. If a native game or commercial fishery has produced unsatisfactory results, it will usually be found either that various man-introduced factors have produced depletion, or that natural environmental conditions are responsible for the unsatisfactory conditions. Conse quently, the introduced species are liable to be affected in the same manner by the depletion-creating factors or the adverse environmental
conditions. The remedy then obviously lies in improving such factors and conditions for the native species, as discussed in other portions of this section.

The improvement of existing stocks through selective breeding and the introduction of various strains or races is a somewhat different matter, and offers some promise, particularly in the case of the steelhead. Some work along these lines has already been started by the California Department of Fish and Game.

The elimination or control of undesirable species offers more promise than the introduction of desirable species, but like the latter is a matter involving complex ecological relationships and therefore possibly unforeseen results.

The role of birds as predators on salmon and steelhead should be determined more exactly. An important start on one phase of this subject was made in 1938 and 1939 by Elden H. Vestal of the Department's staff, who made a study of the feeding habits and other phases of the life history of mergansers, the "fish ducks" of local residents, in the Eel River drainage.

The control of undesirable species of fishes, the so-called "rough fish" or "scrap fish," might be executed by several means. Rough fish could be removed on a large scale by seining, trapping, or chemical treatment, if it is decided that it is desirable to reduce their numbers or to attempt to eliminate them. It might also be possible to control certain of the species (e.g., lampreys, sculpins, suckers, and some Cyprinids) by erecting barriers in the streams high enough to bar their upstream migration, but low enough to permit steelhead and salmon to jump them. Lampreys appear to constitute a very real menace to salmon and steelhead in certain instances and should receive further study.

The introduced sunfishes and brown bullhead are probably undesirable elements in stream systems such as the Eel and Klamath, but there appears to be no economically justifiable way of eliminating them from the entire systems. Where they are found locally there is a possibility of eliminating them entirely, if the effort is deemed justifiable.

The matter of predators has been discussed in the preceding section, in which it was pointed out that other fishes are usually the most serious predators. The possibilities for the control or elimination of undesirable species of fish predators have already been noted. The greatest danger in making a great issue of predators in general, as is done by many anglers in California, lies in diverting attention from other causes of depletion, such as diversion of water, deforestation, and overfishing, which alone could cause depletion, even if no predators existed or if all predators were eliminated.

Pollution Control

Strenuous efforts and constant vigilance should be maintained in order that all forms of pollution in the salmon and trout streams be prevented. Any violations of the pollution laws should be vigorously prosecuted and the conditions immediately remedied. In general, industrial pollution is not a major problem in the coastal area, being confined to isolated instances, principally from wineries, creameries, tanneries, dumps, sawmills, and millponds. Pollution from mining silt is of considerable importance in the Klamath River watershed; efforts
are now being made and should be continued to give the utmost possible protection to salmon and trout. Pollution from sewage is not a general problem, but has had ill effects in some cases; a number of communities are now installing sewage disposal systems. Great dis regard for proper disposal of slashings and unwanted logs from lumbering operations is still practiced. The \log jams thus created block spawning fish, destroy spawning grounds, and so change the character of the stream bottom that fish food organisms are destroyed. In his 1938 survey of the Eel River system, Shapovalov (1939c) found that practically every stream whose watershed had been logged off contained \log jams. Conversely, these were rarely found in streams flowing through virgin timber.

Fish Rescue

The fish rescue work in the north coast area has been very worthwhile and should be continued and expanded to provide as complete coverage as possible. It should be improved by planning a regular stocking program for each rescue crew, this program to be based on need for stocking, rather than on simply accessibility of the waters being stocked. At least one man with each crew should have had fish rescue experience in that area during a previous year. This is highly important for both the fish rescue and the stream improvement.

Although the numbers of steelhead and salmon rescued in the north coast area are impressive in themselves, they take on added significance from the viewpoint that it is to be expected that their survival is higher than that of hatchery fish of comparable size.

Artificial Propagation

It is difficult to break old concepts and to think along new lines. But when the evidence points strongly in favor of a change of thought, then it is fair and necessary to do so.

For many years it has been the popular conception that artificial propagation of trout and salmon and the stocking of streams were the complete solution to the problem of maintaining the fisheries of a stream or stream system. It is the writers' belief, however, that stocking alone cannot hope to maintain fishing at its present level in the coastal streams. Moreover, the writers believe that the amount of natural propagation is so great that even with a very favorable survival rate artificially propagated fish would not form more than a minor part of the total production. Shapovalov (1939a, 1939b) made the statement that "probably... if no fish cultural work had ever been done on the Eel River the quality of fishing and the size of the spawning runs would be at least 90 percent of what they are today". This statement was based on careful field observations which showed no apparent differences between stocked and unstocked streams, either in the number of fish present or the quality of the fishing. It has been shown definitely that adult silver salmon, steelhead, and king salmon return to the stream which they left on their seaward migration as young fish; consequently, if stocking of the type that had been carried on for many years (small fingerlings planted mostly in midsummer) were producing results that gave the stocked streams a marked advantage over the unstocked streams, the spawning runs in them should have been noticeably larger, but this was not the case. The quoted statement was in a
sense speculative in that it attempted to show what would have taken place had not something else been done. Additional support for the statement now appears from the fact that since the almost complete abandonment of stocking in the Eel River system in 1939 the runs, as judged by the counts of adults at Benbow Dam on the South Fork of Eel River, have not shown a downward trend (Table 90). Of course, change of the opening date of trout season from May 1 to the end of May, a limited amount of stream improvement work, and a greatly expanded fish rescue program, all in effect since 1938, have to varying and unknown extents contributed to the maintenance of the runs.

The indicated inefficiency of stocking as carried on in the Eel River system should by no means be interpreted to mean that all artificial propagation is useless. The experimental programs at Waddell and Scott creeks have shown that although extremely small returns may be expected from fish in their first year of life, on the average approximately 2 to 5 percent of yearling steelhead and silver salmon allowed to descend to sea at their normal migration time may be expected to return as adults, and that survival among older and larger steelhead is considerably higher, increasing with the size and age of the fish. Therefore, some stocking of aged fish may be desirable in the coastal streams, especially in heavily fished streams. In such case, emphasis should be placed on planting yearling fish in barren sections of streams above falls and other barriers and the planting of areas in which adverse climatic conditions or very small spawning runs have caused subnormal natural propagation. In other words, artificial propagation should be considered an aid to natural propagation, rather than a replacement of it.

The most hopeful solution to the problem of maintaining successful and varied angling in the coastal area of California as a whole appears to be to provide summer fishing by planting aged trout in heavily fished bodies of water, often those blocked to sea-run fish, and to have the winter fishing for adult salmon and trout depend largely upon natural propagation, aided by habitat improvement, fish rescue, and specialized

TABLE 90
South Fork of the Eel River (at Benbow Dam): Adult Fish Checked Upstream Through Fishway

Year	King salmon	Silver salmon	Steelhead
1938^{*}	6,051	7,370	12,995
1939	3,424	8,629	14,476
1940	14,691	11,073	18,308
1941	21,011	13,694	17,356
1942	10,612	15,037	25,032
1943	7,264	13,030	23,445
1944	13,966	18,309	20,172
1945	12,488	16,731	13,626
1946	16,024	14,109	19,005
1947	13,160	25,289	18,225
1948	16,312	12,872	13,963
1949	3,803	7,495	13,715
1950	14,357	12,050	15,138
1951	12,476	11,441	13,774
1952	7,256	3,711	19,448

[^48]stocking. Under such a program summer fishing in the streams in which a winter fishery is to be maintained should be limited in the ways recommended previously in this report.

SUMMARY

The Steelhead Rainbow Trout, Salmo gairdneri gairdneri Richardson, and Silver Salmon, Oncorhynchus kisutch (Walbaum), are two of the most important fishes found along the Pacific Coast of North America. Despite the existence of considerable published information about them, quantitative life history data have been lacking. To secure such data, so necessary for sound regulatory, stocking, and other manage ment programs, a program of study was initiated at Waddell Creek, a typical coastal stream in Santa Cruz County, California, in 1932.

The plan of the experiment was to study the steelhead and the silver salmon in their natural habitat.

Waddell Creek was chosen as a representative California coastal stream under more or less natural conditions, large enough to possess a full biota and small enough to be dammed at reasonable cost, and so situated that it could be kept under observational and legal control as a unit, with the general public excluded.

The information gathered at Waddell Creek was complemented by other types of data (especially egg counts) secured at nearby Scott Creek, where a State egg collecting station was located. "Homing" and "straying" between the two streams were also studied.

The basic physical portion of the Waddell Creek experiments consisted of a dam and two-way trap for counting and examining upstream and downstream migrants. This trap has been described in detail by Taft (1936).

The dam and trap were constructed during the summer of 1933 approximately 7,250 to 9,250 feet above the mouth of the stream (the distance depending upon the varying location of the mouth) and 3,300 feet above the uppermost limit of tidewater.

A yearly "season" from October 1 of a given year to September 30 of the following year was chosen for the purpose of the studies. At Waddell Creek and neighboring streams the spawning seasons, hatch ing seasons, periods of emergence from gravel, and principal upstream and downstream migrations of both juvenile and adult steelhead and silver salmon are completed within this period.

All adult fish entering the trap were sexed and measured and scale samples were taken from them for life history determination. The number of adults of each life history category in each season was thus determined. This was the first and most important step in determining the population fluctuations from season to season.

The second and more difficult step was the determination of the number of juvenile fish of each age moving from the stream to the ocean in each season. During high water only a portion of the water could be strained through the trap and thus only a portion of the downstream migrants could be captured. The percentage of such fish taken in the trap was calculated through the marking of trapped migrants by the removal of alternate pectoral fins and the adipose in
each season from 1933-34 through 1937-38 and the recovery of returning adults. The total number of migrants in any one year was then calculated in accordance with the proportion of marked to unmarked fish of the same life history.

Waddell Creek is located in central California, entering the Pacific Ocean approximately two-thirds of the way from San Francisco to Monterey Bay. In its general characteristics it is typical of the great majority of California coastal streams of like size. Moreover, in miniature it is almost a replica of the larger stream systems, such as the Klamath and the Eel. This fact is of great importance in that the habits and ecology of the trout and salmon in the small streams and large ones are basically similar. Consequently, the conclusions regarding the proper management of these fishes derived from the present study are applicable, at least in the broader aspects, to the coastal streams in general.

Waddell Creek is near the southern border of the humid coast belt. The headwaters of most of the streams in this belt are subject to a great deal of precipitation during the winter months. The headwaters portion of Waddell Creek has a mean annual rainfall of between 55 and 60 inches, while the watershed near the coast receives about 30 . More than one-half of the rain falls during December, January, and February.

Because of the distinct wet and dry seasons, there are tremendous fluctuations in the flow of most of the coastal streams.

Like nearly all California coastal streams, Waddell Creek terminates in a drowned mouth or lagoon, which is subject to tidal action when not closed by a sand bar. Some streams have characteristically "large" lagoons, while others have "small" lagoons. The mouths of only a few of the larger California streams (Klamath River, Eel River, Noyo River) regularly stay open during the summer months. At Waddell Creek the permanent closing date varied from May 11 to October 25 and the permanent opening date from October 27 to December 29.

Waddell Creek has its source in the redwood belt of the Santa Cruz Mountains, at an altitude of 1,500 to 2,300 feet. Several small tributaries unite to form two main branches, which in turn create the main stream. The length from mouth to source is approximately 12 miles. The hydrographic basin has an area of 26 square miles.

The distance from the uppermost limit of tidewater to the junction of the East Branch with the West Branch is 14,500 feet. Upstream migrants can ascend the West Branch an additional 14,000 feet, and the East Branch an additional one mile. Natural falls bar their ascent at these points.

The current of Waddell Creek is rapid to moderate throughout its course. Cascades and deep pools typify the upper reaches of the stream, which flow through the Transition Life Zone, characterized here by a forest of redwood and Douglas fir. The redwoods extend to within a mile of the coast at this point. The lower portions are broader and contain fewer deep pools. Gravel and small rubble beds, interspersed with stretches of sandy bottom or coarse rubble, are abundant. The stream banks are lined by red alder, big-leaf maple, buckeye, madrono, California laurel, and, in the lowermost portion, by willows.

The lowermost portion of the stream flows through the Upper Sonoran Life Zone. Here several patches of cultivated grassland and crop fields are scattered through a valley, which is about 2,000 feet wide at its broadest point and extends inland about 6,000 feet. The hillslopes are populated mostly by chaparral, pines, and Douglas fir. The predominant sandstone formation is covered with a loose, diatomaceous shale.

Immediately above the lagoon the stream flows through a small area of marshland. The lagoon is bordered by shifting sand dunes.

Some changes from the primitive condition of the area have taken place as a result of human usage. Part of the redwood forest was logged off by 1870 and is now covered by a second growth. The early lumbering operations have resulted in the creation of several semipermanent log jams and temporary accumulations of logs, which have hastened erosion of the stream banks, with consequent increase in silting during flood stage.

In common with the other coastal streams from San Francisco to Monterey Bay, Waddell Creek contains no strictly fluvial fishes. The species regularly found in flowing (fresh) water, besides the steelhead and silver salmon, are the Prickly Sculpin (Cottus asper), the Aleutian Sculpin (C. aleuticus), the Three-spined Stickleback (Gasterosteus aculeatus), and the Tidewater Goby (Eucyclogobius newberryi). The only introduced species in Waddell Creek is the Striped Bass (Roccus saxatilis), which in some years enters the lagoon from the ocean but apparently does not spawn in the drainage. Lampreys do not enter Waddell Creek.

Several species of aquatic or semiaquatic birds are regularly associated with the stream, but none is found in great abundance.

The only mammal known to have a direct relationship to the salmon and trout in Waddell Creek is the California Coon (Procyon lotor psora), which eats dead or weakened spent adult steelhead and salmon. No beaver or mink are present.

The assemblage of native aquatic invertebrates in Waddell Creek is quite varied and is rather typical of the invertebrate life in other coastal streams. Nearly all of the aquatic invertebrates have some relation to the trout and salmon and most of them are eaten by these fishes to a greater or less extent. The introduced (?) crayfish Pacifastacus klamathensis apparently increased greatly in abundance during the last three years of the studies (1940-42).

Silver Salmon

In Waddell Creek, and over their range as a whole, silver salmon spawn mostly within the period November-January. The earliest fish was taken in the upstream trap during the week ending November 25, and the latest during the week ending March 24 . However, 81 percent of the fish were taken during the six weeks December 10-January 20, and 96 percent during the nine weeks December 10-February 10.

During the nine seasons of operation of the upstream trap, 1933-34 through 1941-42, 2,218 adult silver salmon were taken. The seasonal runs varied from 84 (1937-38) to 583 (1934-35).

Scale examinations and marked fish returns indicated that all adults return either as males in the season following downstream migration
(age $1 / 1$, one growing season in ocean) or as males and females in the second season following downstream migration (age $1 / 2$, two growing seasons in ocean). Other workers have reported that the great majority of silver salmon adults fall into the above age categories, but have noted some exceptions. The $1 / 2$ age class is everywhere the dominant one in the fishery.

At Waddell Creek, the $1 / 1$ fish (all males) formed 18.3 percent of the total runs, $1 / 2$ males 39.5 percent, and $1 / 2$ females 42.2 percent. These data are in agreement with expected returns, assuming a $1: 1$ sex ratio among migrants entering the ocean and an equal mortality among males and females in the ocean, since some of the males return to spawn after only one growing season at sea, while all of the females spend two seasons at sea. They are also in essential agreement with data obtained at Scott Creek and at Benbow Dam on the South Fork of Eel River in northern California.

The mean fork lengths of the respective groups were 40.6, 64.7, and 63.9 cm . ($16.0,25.5$ and 25.1 inches). There is a slight, but consistent, tendency for males to attain a larger size than females. In general, the average size attained by fish of one sex in a given season is proportionate to the average size attained by the other sex.

A demarcation line of 49 cm . (19.3 inches) separated 99.1 percent of $1 / 1$ fish from $1 / 2$ fish correctly and appears to have general application.

Over the range of the silver salmon, size of fish does not appear to be correlated with size of stream.

There is no correlation between the mean length attained by the grilse (age $1 / 1$) of a given brood season and the two-year-ocean (1/2) fish of the same brood season. There is also no correlation between the average size of the downstream migrants of a given brood season and the adults of the same brood season. Thus, the growth made during the last growing season outbalances previous growth in determining average size.

Males predominate in the early portions of the run, while females predominate in the latter portion. Since the sexes and age categories are associated, it follows that changes in the representation of the age categories also occur throughout the run.

There is a correlation between the general period of the spawning run and the general period of rainfall. Silver salmon (and steelhead) ascend both on rising and falling stream levels, but cease movement during peak floods. They move upstream mainly during the daytime. The factors influencing fluctuations in upstream movement are "probably multiple with complex inter-relationships" (Chapman, 1941).

Maturation of silver salmon (and other species of Pacific salmons) is accompanied by changes in body form and coloration.

Silver salmon ascend practically all accessible streams within their range flowing into the Pacific Ocean, from the largest to the very smallest. They do not ascend streams for as great distances as do king salmon, red salmon, or steelhead, usually not proceeding upstream in large numbers more than 150 miles even in the larger rivers. In Waddell Creek, they consistently spawned lower than the steelhead, with individual exceptions.

Females choose the redd sites, as is the case with other species of salmon and trout. The site selected is typically near the head of a
riffle (which is also the lower end of a pool) composed of medium and small gravel. Usually the site chosen is close to the point where the smooth water "breaks" into the riffle. The nature of the redd site insures a good supply of oxygen.

In its general features the spawning of silver salmon is similar to that of other species of salmon and trout. The female digs the nest. One or more males, one of which usually becomes the mate, may accompany her, but do not participate in the digging. In digging the nest the female turns partly on her side and with powerful and rapid movements disturbs the bottom materials until a roundish depression, at least as deep and as long as the fish, has been formed. A portion of the eggs is then deposited, simultaneously fertilized by the male, and then covered with gravel by the female. The female may dig several pits to complete spawning, probably normally depositing a few hundred eggs in each one. Probably at least 97 percent of the eggs spawned lodge in the pit and are properly buried. To complete spawning may take a week or more.

Probably the over-all percentage loss of eggs as a result of damage by subsequent spawners is not large. Superimposition probably causes more damage to silver salmon than to steelhead redds, since most of the steelhead in California streams spawn after the salmon.

The rapid burial of eggs precludes any but an insignificant proportion of eggs being eaten by fishes.

All silver salmon die after first spawning. Death results from physiological changes independent of the rigors of spawning.

The calculation of numbers of eggs produced by Waddell Creek silver salmon was based on the numbers produced by Scott Creek silver salmon of known lengths. Measurements of the eggs were carried out according to a method which in essence consisted of dividing the actual total volume of eggs from one fish by the average measured volume per egg for that fish. The total number of eggs contained in these fish was plotted in 200 -egg intervals against fish length in $1-\mathrm{cm}$. intervals and a regression line fitted to the points by the method of least squares. Since the relationship is curvilinear, the regression line was determined on a logarithmic scale and later transposed to a linear scale. Its equation is Number of Eggs $=0.01153 \mathrm{x}$ Length ${ }^{2.9403}$. The correlation ratio, ?, for the relationship between eggs produced and fish length is 0.682 . Other workers have found a correlation between number of eggs and size of fish for various species of salmonids, including other species of Pacific salmons.

The number of eggs left in silver salmon after spawning was found to be so small that it was decided not to subtract any number in calculating the eggs deposited by Waddell Creek fish which had completed spawning, but to use the total egg production figures obtained for Scott Creek silver salmon of the same lengths and expressed by the abovecited regression line. However, allowance was made for fish which died without completing spawning in each season.

Although quantitative data for Waddell Creek silver salmon are not available, there is every indication that the percentage of eggs fertilized is very high and rather constant.

The embryology of the silver salmon is in general similar to that of the other Pacific salmons and of trout. The number of days required
for the eggs to hatch varies from about 38 at an average water temperature of 51.3 degrees F . to about 48 at an average temperature of 48.0 degrees F. At the temperatures prevailing in Waddell Creek, the usual hatching time is from 35 to 50 days.

Chemical conditions have some effect on the rate of development of salmon and trout eggs, but probably do not play a significant role within the limits found in Waddell Creek and in the great majority of other coastal streams.

The percentage of silver salmon eggs which hatch probably varies widely under natural conditions, and in Waddell Creek and other coastal streams free from mining is likely dependent principally upon the amount and character of silting caused by floods occurring between fertilization and hatching. Such silting smothers the eggs, i.e., deprives them of the oxygen necessary for development. Mining silt has a similar effect.

Under normal hatchery conditions the hatch is between 80 and 90 percent of silver salmon eggs taken.

In Waddell Creek, serious losses probably occur only in the case of exceptional floods. Utilization of areas used by earlier spawners has been noted on various occasions, but no quantitative estimate of the amount of loss can be made, although it is not believed to form a large percentage of all the eggs deposited.

There is no quantitative basis for estimating the average percentage of silver salmon emerging from the gravel in Waddell Creek, but the writers believe that under favorable conditions it is probably between 65 and 85 percent of the eggs deposited. Again, silting is probably the principal factor determining the survival rate from hatching to emergence from the gravel.

Silver salmon fry start emerging from the gravel two to three weeks after hatching and require in addition two to seven weeks to complete emergence, with peak emergence occurring within three weeks of hatching. Shallow burial, loose gravel, absence of silt, and high temperatures all speed emergence, while the opposite conditions retard it. It is probable that most fish emerge at night.

As the young fish emerge from the gravel they take up residence in the shallow gravel areas, especially at the sides of the stream, where they feed avidly and grow rapidly. At first they tend to congregate in schools, but as the fish grow these schools break up and the fish spread up and down the stream. Following the peak of emergence there is a marked decline in the numbers of fry, caused by mortality rather than emigration. At Waddell Creek predatory fishes are believed to make the greatest inroads.

As the fish grow, they gradually move into deeper water and eat coarser food. Around July or August they move into the deeper pools, often those with overhanging logs. It appears that about this time the fish cease feeding or at least greatly diminish it, since the growth rate slows down. High stream temperatures may be the influencing factor in the cessation of feeding in late summer.

During the period of heavy rainfall and lowest temperatures, December through February, feeding continues to be light and growth negligible.

Following the period of maximum precipitation the fish start making extremely rapid growth (March). Rising temperatures and an abundance of aquatic food organisms likely influence the fish to resume heavy feeding.

Toward the end of March or sometime in April, approximately a year following emergence from the gravel, the fish begin to migrate to the ocean. There is an inverse correlation between average amount of growth made to time of migration and the number of migrants (= total stream population of age 1 fish).

During the nine seasons of operation of the trap, 18,362 juvenile silver salmon were checked on their downstream migration. Of these, 18,256 were age 1 fish and only 106 age + fish.

All scales of adult silver salmon taken at Waddell Creek show the fish to have migrated to the ocean at age 1, so the juveniles go to sea in the same season in which they migrate downstream.

The great majority of the fish in the spring migration had started growth of the new season, even in the early part of the migration.

Nearly all of the downstream migrants passing through the trap were taken during April and May. Observations in various streams indicate that there is little downstream migration prior to this and that few fish are swept downstream by high water. Over 95 percent migrated downstream during the nine-week period April 8-June 9 at age 1 and at an average size of from 103 to 117 mm . (4.1 to 4.6 inches). In all seasons the peak of the migration was reached not earlier than the week of April 22-28 and not later than the week of May 20-26.

The migration as a whole occurs later or earlier in some seasons than in others. The "early" seasons are those with generally low stream levels during the migration period for the same dates on which in late seasons stream levels were generally high.

There is a general decrease in the average size of the age 1 fish migrating in the spring (the same phenomenon occurs among the steelhead of a given age class). The hypothesis is advanced that the fish are influenced in starting their downstream migration by both size and environmental factors, with the larger fish from all portions of the stream migrating first.

The migrating fish move down in schools; those seen were composed of some 10 to 50 individuals. General observations indicate that most fish move downstream in the night or twilight, although some may move down during the day.

The sex ratio among the returning adults indicates that approximately a $1: 1$ sex ratio exists among the downstream migrants.

General color notes taken during the 1933-34 season indicate that the parr marks were prominent in the earliest migrants of the spring migration (March). As the season progressed, the fish became more "silvery," with parr marks barely visible.

The extremely rapid growth made in the sea is well known; it is shown in Figure 21.

Little is known regarding the movements of silver salmon in the sea. Marked salmon from Waddell Creek have been caught off Fort Bragg, 200 miles to the north. There is some evidence that silver salmon (and
other anadromous salmonids) remain within the limits of the continental shelf, which along the California coast extends approximately 100 miles from the shoreline.

Probably the young salmon, on first migrating to the sea, remain fairly close to the shoreline. Very little is known regarding how soon and to what extent they begin to spread out, but after a few months they begin to be taken at various points at sea, sometimes in large numbers away from the mouth of any stream possessing a run of consequence.

Evidence indicates that the migrations of the various Pacific salmons take place in the form of mass movements. Although little is known of the extent to which silver salmon from different streams mix while at sea, it is fairly certain that masses of fish from different streams visit some of the same areas at sea.

It is the opinion of the present writers that evidence obtained through various marking experiments has established as a fact the existence of "homing" among anadromous salmonids. Briefly, young salmonids which descend from fresh water return to their "parent stream" to spawn.

The extent of homing and straying among silver salmon between Waddell Creek and Scott Creek, $43 / 4$ miles apart, was studied. Figures for the six seasons of marking (1933-34 through 1938-39) and the seven seasons for which returns were possible (1934-35 through 1940-41) show that 314 (85.1 percent) fish marked at Waddell Creek returned there and 55 (14.9 percent) strayed to Scott Creek. Of those marked at Scott Creek, 41 (73.2 percent) returned there and 15 (26.8 percent) strayed to Waddell Creek. (The percentage of straying is considerably larger than among steelhead.)

It appears that the rate of straying from a given stream is fairly constant for a given year class, but may vary considerably from year class to year class, and consequently from the total run entering in one season to the total run entering in another season. From this it appears that by the time adults first start returning (as $1 / 1$ males) the amount of straying that will result has already been determined and is more dependent upon conditions existing up to that time than on conditions existing at the time of entry into the streams for spawning. The hypothesis is advanced that conditions existing at the time of seaward migration determine the amount of straying which will take place one and two seasons later, since there is a tendency toward (1) a positive correlation between size of downstream migration and rate of straying and (2) a negative correlation between average size of fish at downstream migration and rate of straying. In other words, the greater the number of downstream migrants and the smaller their size, the greater is the amount of straying. The significance of these tendencies has not been established.

Over-all survival (survival to maturity from eggs produced) varied from 0.02 to 0.30 percent for the six seasons for which complete returns were possible, with a mean of 0.13 percent. A striking feature was the inverse correlation between total egg production and survival (the same phenomenon was encountered for the steelhead).

The percentage of survival from time of downstream migration (secondary survival) varied from 0.6 to 5.4 , with a mean of 2.3 , on the
basis of marked adults returning to the trap. (The average return to the trap from the number marked at the same age (1) was 2.4 percent for steelhead.)

The calculated percentage of survival from eggs deposited to downstream migrants (primary survival) for the four brood seasons (1933-34 through 1936-37) for which figures were possible was fairly constant, varying from 1.16 to 1.56 , with a mean of 1.35 . These figures indicate that within the limits of conditions encountered during the above four seasons the number of downstream migrants is approximately proportional to the number of eggs deposited.

The estimated percentage of survival from downstream migrants to returning adults for the stream as a whole varied markedly, from 0.98 to 7.72 , with a mean of 4.95 , for these four brood seasons. An inverse correlation between the number of downstream migrants and the percentage of return as adults was found. The over-all survival for these four brood seasons was 0.06 .

The calculated survivals, which are based partly on unmarked fish of unknown origin, may be affected by straying from and to Waddell Creek.

As a rule, disease is not prevalent among trout and salmon in their natural environment. In 1933-34 a disease believed to be furunculosis caused abnormal mortality among juvenile silver salmon and other fishes at Waddell Creek.

Deformities are also rare among salmon and trout in their natural environment. Only a very few fish with naturally missing fins were encountered at Waddell Creek.

In general, young silver salmon in fresh water live very largely on insects, both aquatic and terrestrial; smaller individuals in salt water depend heavily upon marine invertebrates; larger fish in salt water are chiefly piscivorous. Probably in most California streams the food of the young silver salmon is similar to that of steelhead of the same size.

Steelhead

Both over its range as a whole and in individual streams, the spawning season of the steelhead extends over a much longer period of time than does that of the silver salmon. In general, the bulk of the fish enter the streams and spawn in the winter or spring, but it is probable that in the larger rivers, such as the Sacramento, Eel, Klamath, and Columbia, some steelhead enter from the sea in all or nearly all months.

Roughly, steelhead may be divided into those of the spring run (fish in general entering and migrating upstream on dropping stream levels, while quite green, and spawning in the following season) and those of the fall run (fish in general entering on rising stream levels, with sexual products in various stages of development, but spawning within the same season). Spring-run fish do not occur in Waddell Creek or in most other California streams.

In the section on silver salmon it was pointed out that Waddell Creek and most other California streams are closed by sand bars at their mouths during a portion of the annual dry season, as a result of which the entry of the first fish of the spawning run is dependent upon the breaking of the bar with the start of the rainy season. The same consideration, of course, applies to the steelhead. As with the silver salmon,
at Waddell Creek (and Scott Creek) some steelhead have entered the stream with the first opening of the bar, whenever that has occurred. The earliest fish was taken in the upstream trap during the week end-ing- October 28, and the latest during the week ending July 21. However, 96 percent of all fish were taken during the 22 weeks December 3 -May 5 . Within any of these 22 weeks steelhead may be expected in most California steelhead streams, depending upon seasonal weather and water conditions. Some steelhead enter northern California streams earlier than do any of those running into Waddell Creek and its neighbors, but even in those streams the spawning season takes place about the same time as in the southern ones.

At Waddell Creek there are two peaks, occurring during the weeks ending January 6 and March 17, respectively. These peaks so far apart result because fish of different sex-life history categories run at different times.

It is of interest that 38.7 percent of all fish were taken after February 28, the usual closing date of the winter steelhead season in California. At Benbow Dam on the South Fork of the Eel River 24.2 percent were taken after the end of February, and at Sweasey Dam on the Mad River (both in northern California) 53.1 percent.

During the nine seasons of operation of the upstream trap, 1933-34 through $1941-42,3,888$ adult steelhead were taken. The seasonal runs varied from 373 (1937-38) to 539 (1934-35). (These are the same seasons in which the smallest and largest numbers of salmon were taken in the trap.) There was less fluctuation in the size of the seasonal runs than in the case of the silver salmon.

Steelhead of many life history categories made up the runs in Waddell Creek. Unlike silver salmon, steelhead migrate to sea at various ages and over a long period within a season, spend varying amounts of time in the ocean and return over a fairly long period within a season, are capable of spawning more than once, sometimes spawn before their first journey to sea, and may even remain in fresh water for their entire lives.

Despite the great number of life history categories, on the average only the following four exceeded five percent of the run: 2/1 (29.8 percent), $2 / 2$ (26.5 percent), $3 / 1$ (10.5 percent), and $2 / 1 \mathrm{~S} .1$ (8.1 percent). Together, these four categories formed 75 percent of the run.

First spawners composed 82.8 percent (range 70.0-96.1 percent) of all adults, second spawners 15.0 percent, third spawners 2.1 percent, and fourth spawners 0.1 percent. (At Scott Creek two fish spawning for the fifth time have been recorded.)

Survival beyond first spawning is a function of total age, as well as of number of spawnings. No steelhead with a total age of more than seven years were encountered.

It is believed that on the whole the composition of the runs in Waddell Creek is representative of that in many other Pacific Coast streams under natural conditions. In general, (1) at least 59 percent of the fish (at Waddell, at least 70 percent) are spawning for the first time (excluding fish that have spawned prior to initial entry into salt water); (2) fish spawning for a second time may form an important contribution, constituting as high as 36 percent of the total run; (3) fish spawning for the third time form a very minor part of the total run; (4) fish
spawning for the fourth and fifth times form a negligible portion of the run; (5) fish of a total age of over six years form a negligible portion of the run; (6) no fish more than seven years old have been encountered; (7) probably $2 / 1$ and $2 / 2$ fish predominate among normal populations, with $3 / 1,1 / 1,3 / 2$, and $2 / 1 \mathrm{~S}$.I occasionally contributing significantly.

The rate of growth is so much greater in the ocean than in fresh water that it is obvious the ocean growth in general determines the size of fish of a given sex and life history category in a given season.

Generally, males tend to reach a larger size than females among fish spending two years at sea before spawning, while females tend to reach a larger size than males among fish spending one year at sea.

Growth is resumed following spawning among all life history categories. The greatest increase is made by the smallest fish.

As in the case of the silver salmon, the size attained by one sex of a given life history category is paralleled by the size attained by the other sex. This fact, coupled with other data, indicates that conditions in the ocean may vary sufficiently from season to season to affect markedly the size of steelhead from a given stream. The summer of 1941 appears to have been a very poor one for growth of both steelhead and silver salmon.

The repeat spawners of a given life history category are markedly smaller than first spawners of the same year class which have spent the same number of seasons in fresh water and in the ocean.

Waddell Creek steelhead achieve approximately the same length as silver salmon of the same life history categories.

It appears that the size of steelhead is not correlated with the size or latitude of the home stream.

In all seasons but one a comparatively small number of steelhead succeeded in jumping over the dam at extreme flood stage. Among such fish males were in excess of females out of all proportion to the sex ratio among fish checked through the upstream trap.

Among both first and second spawners, males predominate in the life history categories forming the fish of the lesser total ages, while females predominate in those forming the fish of the greater total ages.

Survival following spawning is higher among females than among males. The lower survival among males probably results because the males serve more than one female, and so are exposed not only to prolonged physical exertion, but also to the dangers of being stranded by lowering flows and the closing of the bar at the stream mouth.

The sex ratio for the steelhead runs as a whole was one male to 1.1 females. It is evident that some unnatural factors are operating at egg collecting stations and other places where females greatly exceed males, sometimes six to one.

Females are represented to some extent among all categories of steelhead grilse.

As in the case of the silver salmon, males predominate in the early portions of the steelhead runs, while females predominate in the latter portions.

Since the sexes and life history categories are associated, it follows that changes in the representation of the life history categories also occur throughout the run. Of the principal categories, the $2 / 1$ fish of
smaller size predominate in the early part of the run, $2 / 2$ fish reach a peak at midseason, and the larger grilse, composed of the $3 / 1$ fish and the larger $2 / 1$ fish, appear strongly in March or the latter part of February and thenceforth increase in relative abundance during the remainder of the season.

As in the case of the silver salmon, the writers believe that in Waddell Creek and similar small streams there is a definite relationship between ascension of the streams by spawning steelhead and flow of water, which so far it has proved impossible to show quantitatively, because of the existence of several variables. Steelhead, like silver salmon, ascend both on rising and falling stream levels, but cease movement during peak floods. In general, they appear to be less exacting than silver salmon as regards the conditions under which they will spawn or ascend an obstacle in a stream, such as a fishway.

Steelhead (like silver and king salmon) move upstream mainly in the daytime. Fluctuations in movement during the daytime likely are caused by factors which are "probably multiple with complex interrelationships" (Chapman, 1941).

The changes in body form and coloration which are associated with maturation in sea-run steelhead are of the same character as those in the silver salmon, but usually much less marked.

The spawning of steelhead is very similar to that of silver salmon. It has been described in detail by Needham and Taft (1934). The female chooses the redd site, digs the pit, and covers the eggs. One or more males, one of which becomes the mate, may accompany the female. A female 60 cm . (23.6 inches) long dug six or seven pits to complete spawning, averaging a deposition of from 550 to 1,300 eggs in each. The completed redd was approximately 12 feet long and 5 feet wide (60 square feet). Spawning can be completed within 12 hours, but is believed often to take a week or more.

The writers believe that 97.5 percent would express a minimum average for the number of eggs buried in the redds by steelhead.

It is probable that although the losses resulting from damage to redds by subsequent spawners may be severe in individual nests, the percentage loss for all eggs deposited in Waddell Creek was small.

Spawning sea-run steelhead are very often accompanied by stream trout, which may eat loose eggs, but whose primary purpose in being present probably is to participate in the spawning activities.

The calculations of numbers of eggs produced by Waddell Creek steelhead were based on the numbers produced by Scott Creek steelhead. The relationship between fish length and number of eggs produced was determined from 562 measurements of the amount (volume) of eggs and the size (volume) of individual eggs obtained from manually spawned fish of known lengths. Measurement of the eggs was carried out according to the method described for the silver salmon. Since only about 90 percent of the number of eggs contained in a fish are obtained in ordinary hatchery spawning, to obtain the total number of eggs the calculated number was multiplied by 1.1.

The total number of eggs was plotted in 400-egg intervals against fish length in $2-\mathrm{cm}$. intervals and a regression line fitted to the points by the method of least squares. Since the relationship is curvilinear, the regression line was determined on a logarithmic scale and later
transposed to a linear scale. Its equation is Number of Eggs $=0.9471 \times$ Length ${ }^{2.1169}$. The correlation ratio, γ, for the relationship between eggs produced and fish length is 0.838 . Regressions of eggs produced on fish length calculated separately for first spawners and second spawners showed such slight differences that a single regression was used.

The number of eggs left in steelhead after natural spawning was found to be so few that no allowance for them was made in calculating total egg deposition in the stream.

Although no quantitative data for Waddell Creek steelhead are available, there is every indication that the percentage of eggs fertilized is consistently very high.

After spawning, the spent adult steelhead which have not succumbed to old age, disease, or predators descend to the sea. At Waddell Creek the bulk of such "downstreamers" have been taken during the period April-June. Spent adult steelhead typically do not resume feeding while in fresh water.

The embryology of steelhead is in general similar to that of other trout and of salmon; it has been described in detail by Wales (1941). The number of days required for steelhead eggs to hatch varies from about 19 at an average temperature of 60 degrees F. to about 80 at an average temperature of 40 degrees F. At the temperatures prevailing in Waddell Creek, the usual hatching time is from 25 to 35 days.

As in the case of the silver salmon, silting occurring between fertilization and hatching is probably the principal cause of pre-hatching losses.

The writers believe that under favorable conditions (principally absence of heavy silting) the percentage of eggs hatching in Waddell Creek is comparable to that of hatchery eggs, or 80 to 90 percent of the eggs deposited.

At time of hatching steelhead are approximately 17 to 18 mm . (0.7 inch) long and weigh about 0.1 gram (270 fish per ounce).

Silting is also probably the principal factor in determining survival rate from time of hatching to emergence from the gravel. The writers believe that under favorable conditions the average percentage of steelhead emerging from the gravel is between 70 and 85 percent of the eggs deposited.

Steelhead fry probably start emerging from the gravel two to three weeks after hatching and require another two to three weeks to complete emergence. Shallow burial, loose gravel, absence of silt, and high temperatures speed emergence, while the opposite conditions retard it. Shallow burial results in premature emergence. At time of emergence from the gravel steelhead are approximately 23 to 26 mm . (0.95 inch) long and weigh about 0.16 gram (180 fish per ounce).

The behavior of juvenile steelhead during their first year of life, especially during the first couple of months following emergence, is generally similar to that of young silver salmon, which has been summarized previously.

Soon after the first steelhead have emerged from the gravel, marked differences in size are noticeable among them. Such differences result principally from the prolonged spawning season and therefore prolonged hatching and emergence periods.

Soon after the peak of emergence there is a marked decline in the numbers of fry in the stream, due to mortality. Predatory fishes are believed to make the greatest inroads.

As the fish grow, they gradually move into deeper water and eat coarser food. However, unlike the silver salmon, in late summer the young steelhead do not appear to move into the deep, quiet pools, but inhabit moderately swift portions of the stream. Diurnal movements within limited areas may occur.

The growth rate of the fish slows down (probably not as early nor as markedly as in the case of the silver salmon) in association with the period of maximum stream temperatures and minimum flow, with some evidence to indicate that the former plays the greatest part.

Feeding continues to be generally quite light and growth negligible until after the period of maximum precipitation, when the fish start making extremely rapid growth (usually in March). The resumption of heavy feeding is probably influenced both by rising temperatures and the abundance of aquatic food organisms.

Probably the sex ratio is close to $1: 1$ among stream steelhead two years of age or under.

Young steelhead exhibit much greater variation in individual behavior than do juvenile silver salmon. This is most markedly brought out by the fact that the young steelhead migrate downstream at various ages from + to 4, while practically all of the silver salmon migrate downstream as yearlings. While the salmon go to sea almost immediately, some of the steelhead remain for a whole season in the lagoon or the lower portion of the stream, after which some move out to sea, while others make an upstream migration and then a second downstream migration. While most of the steelhead go to sea before maturing, some fish of both sexes spawn before going to sea, while still others complete their life cycles entirely in fresh water. (Among the silver salmon perhaps a few males reach precocious sexual maturity prior to their seaward migration, but none of the females do so.) There are other variations in the behavior of individual young steelhead, especially in regard to feeding and growth. These variations in behavior are reflected in the structure of the scales.

During the nine seasons of operation of the trap, 36,779 stream steelhead were checked on their downstream migration.

Some stream steelhead, unlike the juvenile silver salmon, migrate downstream at all times of the year, but the largest numbers migrate in the spring and summer, with a secondary migration in the late fall or early winter. Migration during January and February is very light.

Since it was impossible to examine scales from all of the fish, the age classes were segregated according to modal groups of length frequencies, with "reading" of scales where overlaps between the modal groups occurred.

The four age classes which, except for occasional older fish, make up the downstream migration in each season move down in sequence during the main (spring) migration. The oldest appear first and are followed by progressively younger fish.

The 36,779 stream steelhead checked through the trap on their downstream migration consisted of 14,734 (40 percent) fish of age + ,

14,707 (40 percent) of age 1, 6,938 (19 percent) of age 2, 386 (1 percent) of age 3 , and 14 of age 4 .

It is probable that the migrations through the trap are indicative of but not strictly proportionate to the numbers migrating down in the stream as a whole. Because of the large volume of water in the early stages of the migration, proportionately larger numbers pass uncounted over the dam. Since the older age classes migrate first in the spring migration, it is to be expected that they show up in disproportionately small number among the fish taken in the trap.

Possible factors influencing the time of migration and the size of fish, and their interrelationships, were summarized for the silver salmon. Most of that discussion is also applicable to the steelhead, except in that the situation is made still more complex because a heterogeneous population is involved. In the steelhead, each age class must be treated as a separate unit.

The main (spring) migration occurs earlier in some seasons than in others, as was the case with the silver salmon. Similarly, the early seasons are those with generally low stream levels, while the late seasons are those with generally high stream levels.

The fish that migrate down in the late fall are principally of the previous season's year class. These migrations exhibit a fluctuating character, apparently through the influence of the fall rains. The fall migration probably should properly be thought of as the tail-end of the spring migration of age + fish, which has been interrupted by low water and perhaps other factors associated with low water.

Climatic factors not only affect the general starting time of the main (spring) migration, but also create breaks in its pattern.

As the spring migration as a whole is retarded or advanced within a season, so the age composition pattern within the migration is pushed backward or forward. As a result, the age composition of the fish migrating at any given time in two seasons may be quite different. Also, the strength of a given age class, i.e., its representation within a season both in absolute numbers and in proportion to the other age classes individually and as a whole, varies considerably from season to season.

As a rule, there is a distinct increase in the length of a fish of a given age class within a season between the end of the fall migration and the beginning of the spring migration. Scale examinations reveal that the great majority of the fall migrants have completed or nearly completed growth of the season, while the great majority of the spring migrants, even the early ones, have renewed growth. The increase in size within an age class therefore represents growth made by that age class as a whole.

Through the season there is often a decrease in the average size of the migrants of a given age class. This phenomenon results because the larger individuals of the age class migrate earlier than the smaller ones.

The summarized hypothetical picture of the downstream migration of silver salmon, as regards time of migration and size of fish, applies also to the steelhead.

The extent of schooling at migration time has not been noted sufficiently to be recorded at this time. Young steelhead do school in streams
under certain conditions, individuals of the same size tending to group together.

General observations indicate that some fish move down at all hours of the day and night, but that the bulk of the fish move downstream during the night or at least at twilight.

Parr marks are generally pronounced on the smaller migrants and such fish are not "silvery," while the larger ones are silvery. Migrants with "rainbow" coloration (prominent parr marks and rich body and fin coloration) are usually sexually mature and are believed to be mainly the offspring of stream fish.

During the nine seasons of operation of the trap, 3,104 upstream migrant stream steelhead were checked (seasonal variation 37 to 1,271). The peak of this migration usually occurs close to the beginning of the calendar year, and a secondary, quite minor rise takes place near the end of July. The latter migration is composed of fish younger than those migrating in the winter.

The upstream migration is composed of fish that had previously migrated downstream and spent some time in the lagoon (or the section of the stream below the dam) and fish that had hatched below the dam. Like the downstream migrants, they are probably composed largely of offspring of sea-run fish but to a minor extent of offspring of stream fish. Most of the upstream migrants make a subsequent downstream migration in the same season (some after spawning). Probably following this second migration most of them go to sea.

The 3,104 upstream migrants consisted of 44 (1 percent) fish of age + , 893 (29 percent) of age 1, 1,637 (53 percent) of age 2, 478 (15 percent) of age 3, 51 (2 percent) of age 4 , and 1 of age 5 . The upstream migrations do not involve sampling, but represent the entire runs.

Both sexes are represented in the upstream migration of stream steelhead, but the available data are insufficient to warrant definite conclusions regarding the sex ratio. Many of the fish are sexually mature. As in the case of the silver salmon, the extremely rapid growth made by
steelhead in the sea, as compared with that made in fresh water, is well known. Probably the young steelhead, on first migrating to the ocean, remain fairly close to the shoreline. How soon and to what extent they begin to spread out is not known, and practically nothing is known regarding their movements in the sea. For unknown reasons, very few are caught at sea by commercial salmon trollers. Almost nothing is known of the extent to which steelhead from different streams mix while in the sea. It is not known, but is not improbable, that steelhead in the sea, like the Pacific salmons, migrate in schools.

The views of the writers regarding "homing" among anadromous salmonids were expressed in the summary discussion of silver salmon and will not be repeated. During nine seasons of marking (1931 through 1938-39) and nine seasons during which returns were obtained (193334 through 1941-42) 476 (98.1 percent) steelhead marked at Waddell Creek returned there and 9 (1.9 percent) strayed to Scott Creek. Of those marked at Scott Creek, 932 (97.1 percent) returned
there and 28 (2.9 percent) strayed to Waddell Creek. Thus, the rate of straying among steelhead is considerably less than among silver salmon for the streams involved.

The simplest procedure to calculate survival to maturity among searun steelhead at Waddell Creek is to calculate the number of eggs deposited in a given season and then to total the numbers of sea-run fish of that brood season returning to spawn for the first time. Survival calculated in this manner may be termed primary over-all survival.

In calculating primary over-all survival, the first spawners among the fish comprising the estimated total run into Waddell Creek were divided into total age classes. It was then possible to assign all returning first spawners to the proper brood season (season in which they were produced), and to express them as a percentage of the number of eggs which produced them. The percentage of survival varied from 0.017 to 0.028 for the four seasons for which returns were complete or practically complete, and from 0.017 to 0.029 when an additional season (1937-38), for which the number of five-year-old returning fish was not available but was calculated on the basis of the average return of five-year-olds in the other four seasons, was included. In the former case the percentage is 0.021 and in the latter case it is 0.023 . The latter figure is used for the purposes of the present report.

One of the striking features to be noted is the inverse correlation between total egg production and survival percentage (the same phenomenon was encountered among the silver salmon).

In calculating the number of eggs produced by each spawning run, the number of eggs produced by each fish was calculated on the basis of the egg number-fish length relationship previously established.

Altogether, returns were obtained for 383 marked first spawners. Of these, 220 (57.4 percent) had made their initial downstream migration at age 2 (in their second year), 116 (30.3 percent) at age 1 , and 45 (11.8 percent) at age 3 . There was one fish apiece in the + and 4 groups.

The ages at initial downstream migration of these adult first spawners occur in quite different proportions from those of the 12,679 downstream stream fish which produced them. This results both from differing survival rates among downstream stream fish of different ages and the fact that varying percentages of the downstream fish remain in the stream for an additional season.

Of the 383 fish under discussion, 237 (61.9 percent) migrated to sea in the season of marking, while 146 (38.1 percent) migrated in the following season. Of the latter, three made an upstream migration and a second downstream migration, while the remainder stayed in the stream below the dam, most likely in the lagoon in the great majority of cases.

Among the age 1 group, only 9 (7.8 percent) had migrated in the same season and 107 (92.2 percent) in the following; among the age 2 group, 196 (89.9 percent) had migrated in the same season and only 24 (10.1 percent) in the following; among the age 3 group, 31 (68.9 percent) had migrated in the same season and 14 (31.1 percent) in
the following. This sequence, but not order of magnitude, is also true for each sex. Within each age group a greater proportion of the females than of the males had migrated in the following season.

Of the 383 adult first spawners under discussion, 303 (79.1 percent) had migrated to sea at age 2,55 (14.4 percent) at age 3,15 (3.9 percent) at age 4 , and 10 (2.6 percent) at age 1 .

A comparison of probable age as downstream migrant with age at entry into ocean shows striking differences between them in the representation of the different age groups. Although the age 2 fish are dominant in both cases, they are much stronger among the latter group. The age 1 fish represent 30.3 percent of the former group, but slump to only 2.6 percent in the latter. These examples show how easy it would be to reach erroneous conclusions regarding survival by considering the downstream migrants to be equivalent to seaward migrants.

Survival to adult first spawning for the 12,679 fish marked on their initial downstream migration was as follows: age,+ 1 out of $3,820(+$ percent) ; age 1,116 out of 4,811 (2.4 percent) ; age 2,220 out of 3,793 (5.8 percent) ; age 3,45 out of 249 (18.1 percent) ; age 4,1 out of 6 (16.7 percent). Since size of fish is correlated positively with age, there is also a positive correlation between size at time of marking (initial downstream migration) and survival to first spawning.

In no instance did a marked fish return for first spawning later than the third season following marking. Thus, probably in most California coastal streams in which it is desired to carry out marking of stream juvenile steelhead and secure survival rates in terms of returning first-spawning, searun adults, returns should be sought for three seasons following season of marking, but need not be watched for beyond that.

In order to determine the survival from eggs deposited to downstream migrants it was necessary to know the total number of downstream migrants, including those that went over the dam uncounted and those that were produced below the dam. In the case of the steelhead, all of the young fish do not migrate to the ocean at the same age at which they migrate downstream, so the total number of downstream migrants could not be calculated simply by applying the ratio of marked to unmarked fish among the adults of a given brood year to the marked downstream migrants of the same brood year. The calculation of the total number of downstream migrants was therefore made by a less direct method, illustrated by Tables 78 and 79.

The general occurrence of disease among trout and salmon under natural conditions was summarized for the salmon and will not be repeated. At Waddell Creek some mortality occurred among unspawned steelhead from some form or strain or furunculosis, particularly during the 1933-34 season, when 161 dead adults in all were found. It is estimated that 17 females died without spawning during that season. In all other season s mortality is believed to have been much less. Estimates of the numbers which died without spawning or spawned only partially were made for each season and considered in calculating egg production and survival.

Abnormal mortality among adults, such as that caused by furunculosis in 1933-34, of course results in abnormally low numbers of repeat
spawners in subsequent seasons. Thus, in 1934-35 the number of repeat spawners was the lowest on record, a further indication that mortality in 193334 was correctly assessed as being the heaviest.

The extent of losses from furunculosis among the stream steelhead is not known exactly, but is not believed to have been nearly as severe as among adults.

Freshwater copepods (Salmincola californiensis) were found attached to many of the downstream migrants, but apparently cause no serious damage. These copepods were found much more frequently on the steelhead than on the salmon migrating downstream at the same time.

No downstream migrant stream steelhead with fins completely missing were recorded.

It is not improbable that throughout the life history of the steelhead its food is similar to that of the silver salmon: juveniles in fresh water live very largely upon insects, both aquatic and terrestrial; smaller individuals in salt water depend heavily upon marine invertebrates (and those in brackish water, especially in lagoons, on brackishwater crustaceans); the larger fish in salt water are chiefly piscivorous.

Predators

Inasmuch as one of the main purposes of the project was to study a stream under as nearly as possible natural conditions, suspected predators were not killed because of the danger of upsetting the biological balance. Evaluations of the effects of various possible predators are therefore based on incomplete data and observations on other streams.

In Waddell Creek and other California streams juvenile silver salmon and steelhead are probably most heavily preyed upon by juvenile steelhead. Freshwater sculpins (Cottus) are probably important predators in most Pacific Coast streams; at Waddell Creek and probably in most other streams Cottus asper is the species which causes the greatest damage. Stomachs of sculpins taken from the downstream trap contained considerable numbers of young trout and salmon. That confinement of the fish in the trap aided the sculpins in capturing their prey is probable. During the period immediately following emergence from the gravel some young fish may also be eaten by juvenile silver salmon of older year classes; this has not been noted in Waddell Creek but has been reported from another stream (Pritchard, 1936b). Other predators on fish of such small size are limited in Waddell Creek and most other California streams to the dipper and to garter snakes. Usually these two are not sufficiently numerous to be the principal cause of loss at this stage.

As the young salmon and trout grow, the percentage of loss declines, but they become attractive as food to an increasing number of predators. When they are too large to be taken by the dipper, the smaller garter snakes, and many of the steelhead, they are taken in varying amounts by fish-eating birds (kingfishers, blue herons, and others). In some cases, striped bass may make serious inroads upon the seaward migration. The losses caused by each of these depend upon a variety of factors, including the size of the populations of trout and salmon and the predators, the abundance of other foods for the predators, the character of the stream and the particular portion of the stream, and
climatic and water conditions. Some of the predators are able to secure fish in appreciable quantities only when the latter are confined to drying pools or some spot like the traps at Waddell Creek.

The American osprey and American merganser, which may be serious predators in other California salmon and trout waters, are absent from the Waddell Creek area or are rare visitants.

Sea-run steelhead and silver salmon, except individuals dying after spawning or from old age, disease, or injury, are subject to very little predation from any source once they have entered fresh water. It is probable that less than 1 percent of the run of either species is normally taken by predators in any stream in California.

Considerable losses occur among both silver salmon and steelhead between the time that they leave fresh water and the time that they return as adults. Little is known of the life of salmon and trout at sea, but it is not improbable that the major mortality is caused by predators, of which there are some capable of preying on salmon and trout of all sizes.

Sea lions have been accused of extensive depredations on steelhead and salmon by sportsmen and commercial fishermen. The extent of such depredations is difficult to determine, largely because of the difficulty in securing stomachs of sea lions at the proper time of the year. Circumstantial evidence that sea lions feed on salmon and steelhead lies in the appearance of the sea lions near the mouths of California streams during the time of entry of salmon and steelhead. The extent of depredations by sea lions is of particular interest in the case of Waddell Creek in view of the fact that the largest Steller sea lion rookery in California is located only a little over three miles away, on Año Nuevo Island.

Management

Proper recommendations for the management of any species should consider that species in relation to its total environment, including the human beings who will be concerned with its utilization. To be able to formulate such recommendations, however, it is first necessary to know the basic facts about the biology of the species concerned. To gather these basic facts and present them in usable form has been the main function of the present study.

The problems that concern the steelhead have been well presented by Taft (1933). Intensive fisheries for both the adult and immature steelhead create too great a drain on the species. Most California coastal streams can support only limited numbers of fish of angling size.

By contrast, immature silver salmon (and king salmon) are subjected to relatively little fishing. The adult salmon, however, must withstand, in addition to the sport fishery, an extensive commercial fishery. The numbers of seaward migrants must be great enough to maintain these fisheries with adequate numbers of adults.

Many of the problems encountered and many of the ill effects on the fishes have resulted from the methods of land and water use now in effect. Control over these factors lies largely outside the province of the Department of Fish and Game.

Sometimes different management methods will give the same results. The choice of methods must often depend upon the desires of the
angling public, plus the funds, facilities, and personnel available to conservation agencies.

It is to be expected that many phases of the impending vast development of the northern areas of the world will adversely affect the salmon fisheries of those areas in the manner that has taken place in the United States, with the result that the salmon fisheries of California will assume a relatively more important position.

A sound program of management should include wise conservation legislation, good enforcement of this legislation, improvement of the physical and biological habitat, pollution control, and fish rescue and artificial propagation, when and if necessary.

Regulations governing the taking of salmon and steelhead should be designed to provide the maximum sustained yield, that is, the widest use of the resource possible without causing depletion. Regulations formulated for any given area should be coordinated with the regulations for adjacent areas, to avoid danger of an undue burden being placed on one or more of them. In general, regulations should be as uniform as is consistent with basic biological requirements.

Since in areas open to public fishing only the take of the individual angler is restricted and the total annual take is not directly limited in any body of water, regulations will remain a management tool of limited effectiveness in the maintenance of the steelhead and salmon fisheries.

The existing regulations are generally satisfactory, but some changes are desirable.

It is especially important that the summer season in the coastal steelhead and salmon waters, if permitted at all, open not earlier than the end of May, to protect the heavy downstream migration of young steelhead and silver salmon at that time.

It is also very important that at least the lagoons and tidal waters of all coastal streams be closed except during the winter angling season. It is here that young steelhead make their most rapid growth before entering the sea.

Physical habitat improvement in northern California salmon and steelhead waters offers definite possibilities which should be immediately and thoroughly explored and exploited when found to be feasible. Certainly, it seems wise to increase the carrying capacities of the streams to the practicable maximum before spending large sums on other, more expensive forms of management to increase the numbers of fish, if there must be a choice.

In northern California, desirable physical habitat improvement includes principally (1) stream clearance (removal of \log jams and debris clogging stream channels); (2) removal of unused dams and reduction of natural barriers; (3) maintenance and improvement of stream flows; (4) uniting of flows at mouths of small tributary streams, generally making entrance and exit for fish to and from these streams easier; (5) opening channels from streams and pools cut off from the main streams at low water; and (6) screening of water diversions.

Legislation prohibiting the cutting of trees within a prescribed distance of any stream would contribute importantly to the improvement of the coastal trout and salmon waters.

Biological habitat improvement in salmon and steelhead waters has received relatively little study, but several leads which have been uncovered should be followed up. Success in each case is by no means certain, but the potentialities are so great that thorough investigation should not be neglected.

The improvement of existing stocks through selective breeding and the introduction of various strains or races offers some promise, particularly in the case of the steelhead.

The elimination or control of undesirable fishes offers more promise than the introduction of desirable species, but like the latter is a matter involving complex ecological relationships and therefore possibly unforeseen results. The control of these unwanted fishes might be executed by seining, trapping, or chemical treatment. Control of certain of the species (e.g., lampreys, sculpins, suckers, and some Cyprinids) might also be effected by erecting barriers in the streams high enough to bar their upstream migration, but low enough to permit steelhead and salmon to jump them. Lampreys appear to constitute a very real menace to salmon and steelhead in certain instances and should receive further study.

In general, industrial pollution is not a major problem in the coastal area, being confined to isolated instances, principally from wineries, creameries, tanneries, dumps, sawmills, and millponds. Pollution from mining silt is of considerable importance in the Klamath River watershed. Pollution from sewage is not a general problem, but has had ill effects in some cases. Proper disposal of slashings and unwanted logs from lumbering operations is frequently disregarded. The \log jams thus created block spawning fish, destroy spawning grounds, and so change the character of the stream bottom that fish food organisms are destroyed.

The fish rescue work in the north coast area has been very worthwhile and should be continued and expanded to provide as complete coverage as possible.

For many years it has been the popular conception that artificial propagation of trout and salmon and the stocking of streams were the complete solution to the problem of maintaining the fisheries of a stream or stream system. It is the writers' belief, however, that stocking alone cannot hope to maintain fishing at its present level in the coastal streams. Moreover, the writers believe that the amount of natural propagation is so great that even with a very favorable survival rate artificially propagated fish would not form more than a minor part of the total production.

The inefficiency of stocking as carried on in the past does not mean that all artificial propagation is useless. The experimental programs at Waddell and Scott creeks have shown that although extremely small returns may be expected from fish in their first year of life, on the average approximately 2 to 5 percent of yearling steelhead and silver salmon allowed to descend to sea at their normal migration time may be expected to return as adults, and that survival among older and larger steelhead is considerably higher, increasing with the size and age of the fish. Therefore, some stocking of aged fish may be desirable in the coastal streams, especially in heavily fished streams. In such case, emphasis should be placed on planting yearling fish in barren
sections of streams above falls and other barriers and the planting of areas in which adverse climatic conditions or very small spawning runs have caused subnormal natural propagation. In other words, artificial propagation should be considered an aid to natural propagation, rather than a replacement of it.

The most hopeful solution to the problem of maintaining successful and varied angling in the coastal area of California as a whole appears to be to provide summer fishing by planting aged trout in heavily fished bodies of water, often those blocked to sea-run fish, and to have the winter fishing for adult salmon and trout depend largely upon natural propagation, aided by habitat improvement, fish rescue, and specialized stocking. Under such a program summer fishing in the streams in which a winter fishery is to be maintained should be limited in the ways recommended previously in this report.

REFERENCES

Babcock, John Pease

1911. Some experiments in the burial of salmon eggs - suggesting a new method of hatching salmon and trout. Amer. Fish. Soc., Trans., 1910, vol. 40, p. 393-395.
Bonnot, Paul
1912. The sea lions, seals and sea otter of the California coast. Calif. Fish and Game, vol. 37, no. 4, p. 371-389, 11 figs.
Bonnot, Paul, G. H. Clark, and S. Ross Hatton
1913. California sea lion census for 1938. Calif. Fish and Game, vol. 24, no. 4, p. 415-419, 1 fig.
Bradley, J. Chester
1914. Notes on two amphipods of the genus Corophium from the Pacific Coast. Univ. Calif.

Publ. Zool., vol. 4, no. 4, p. 227-252, pls. 9-13.
Briggs, John C.
1953. The behavior and reproduction of salmonid fishes in a small coastal stream. Calif. Dept. Fish and Game, Fish Bull. 94, 62 p., 5 figs.
Carl, G. Clifford
1940. Comparison of coho salmon fry from eggs incubated in gravel and in hatchery baskets. Amer. Fish Soc., Trans., 1939, vol. 69, p. 132-134.
Chamberlain, F. M.
1907. Some observations on salmon and trout in Alaska. U.S. Comm. Fish., Rept. for 1906, 112 p., map, 5 pls.
Chapman, Wilbert McLeod
1936. The pilchard fishery of the state of Washington in 1936 with notes on the food of the silver and chinook salmon off the Washington coast. Wash. Dept. Fish., Biol. Rept. no. 36C, 30 p., 6 figs.
1941. Observations on the migration of salmonoid fishes in the upper Columbia River. Copeia, no. 4, p. 240-242.
Chapman, Wilbert McLeod, and Elmer Quistorff
1938. The food of certain fishes of North Central Columbia River drainage, in particular, young chinook salmon and steelhead trout. Wash. Dept. Fish., Biol. Rept. no. 37A, 14 p .
Cheyne, Harlan
1941. The influence of oxygen content, hydrogen ion concentration, and waste sulphite liquor on the hatching and early development of chum salmon, Oncorhynchus keta (Walbaum). Wash. State Pollution Committee, Poll. Series no. 15, 25 p. (Typewritten)
Curtis, Brian
1934. The golden trout of Cottonwood Lakes. Master's Thesis, Stanford University, 82 p. (Typewritten)

Davidson, Frederick A., and Samuel J. Hutchinson
1938. The geographic distribution and environmental limitations of the Pacific salmon (genus Oncorhynchus). U. S. Bur. Fish., Bull., vol. 48, no. 26, p. 667-692, 9 figs.
Fitch, Henry S.
1941. The feeding habits of California garter snakes. Calif. Fish and Game, vol. 27, no. 2, p. 2-32, 2 figs.

Foerster, R. E.
1929. An investigation of the life history and propagation of the sockeye salmon (Oncorhynchus nerka) at Cultus Lake, British Columbia. 1. Introduction and the run of 1925. Contrib. Canad. Biol. and Fish., n. s., vol. 5, no. 1, p. 1-35, 20 figs.
1936. Artificial spawning methods for sockeye salmon. Biol. Bd. Canada, Bull., no. 50, 13 p., 2 figs.
1944. Report for 1943 of the Pacific Biological Station, Nanaimo, B. C. Fish. Res. Bd. Canada, Ann. Rept. for 1943, app. 4, p. 22-27.
Foerster, R. E., and A. L. Pritchard
1941. Observations on the relation of egg content to total length and weight in the sockeye salmon (Oncorhynchus nerka) and the pink salmon (O. gorbuscha). Roy. Soc. Canada, Trans., ser. 3, vol. 35, sect. 5, p. 51-60, 4 graphs.
Greeley, John R.
1932. The spawning habits of brook, brown and rainbow trout, and the problem of egg predators. Amer. Fish. Soc., Trans., vol. 62, p. 239-248, 2 photos.
Harrison, C. W.
1923. Planting eyed salmon and trout eggs. Amer. Fish. Soc., Trans., vol. 53, p. 191-200.

Hazzard, A. S.
1932. Some phases of the life history of the eastern brook trout, Salvelinus fontinalis Mitchill. Amer. Fish. Soc., Trans., vol. 62, p. 344-350, 11 figs.
Hile, Ralph
1941. Age and growth of the rock bass, Ambloplites rupestris (Rafinesque), in Nebish Lake, Wisconsin. Wisc. Acad. Sci., Arts and Let., Trans., vol. 33, p. 189-337
Hobbs, Derisley F.
1937. Natural reproduction of quinnat salmon, brown and rainbow trout in certain New Zealand waters. New Zealand Marine Dept., Fish. Bull. no. 6, 104 p., 11 pls., 8 figs.
1940. Natural reproduction of trout in New Zealand and its relation to density of populations. New Zealand Marine Dept., Fish. Bull. no. 8, 93 p., 3 maps.
Idyll, Clarence
1942. Food of rainbow, cutthroat and brown trout in the Cowichan river system, B. C. Fish. Res. Bd. Canada, Jour., vol. 5, no. 5, p. 448-458.
Kendall, William Converse, and Wilford Albert Dence
1929. The fishes of the Cranberry Lake region. Roosevelt Wild Life Bull., vol. 5, no. 2, p. 219-309, 29 figs.
Kincaid, Trevor
1919. An annotated list of Puget Sound fishes. Wash. Dept. Fish., 51 p., 114 figs.

Marr, John C.
1943. Age, length, and weight studies of three species of Columbia River salmon (Oncorhynchus keta, 0. gorbuscha, and 0. kisutch). Stanford Ichthyol. Bull., vol. 2, no. 6, p. 157-197, 23 figs.
Munro, J. A., and W. A. Clemens
1937. The American merganser in British Columbia and its relation to the fish population. Biol. Bd. Canada, Bull., no. 55, 50 p., 10 figs.
Neave, Ferris
1943. Diurnal fluctuations in the upstream migration of coho and spring salmon. Fish. Res. Bd. Canada, Jour., vol. 6, no. 2, p. 158-163, 1 fig.
Needham, P. R.
1934a. Notes on the food of trout. Calif. Fish and Game, vol. 20, no. 2, p. 119-127, 8 figs.
1934b. Quantitative studies of stream bottom foods. Amer. Fish. Soc., Trans., vol. 64, p. 238-247.
1935. Natural food of trout. U.S. Bur. Fish., Prog. Fish Culturist, no. 10, p. 1-12.
1938. Trout streams. Ithaca, Comstock Pub. Co., $x+233$ p., 74 figs.
1940. Quantitative and qualitative observations on fish foods in Waddell Creek Lagoon. Amer. Fish. Soc., Trans., 1939, vol. 69, p. 178-186.
Needham, P. R., and A. C. Taft
1934. Observations on the spawning of steelhead trout. Amer. Fish. Soc., Trans., vol. 64, p. 332-338, 2 figs.

Orr, Robert T.
1942. A study of the birds of the Big Basin Region of California. Amer. Midl. Nat., vol. 27, no. 2, p. 273-337, 16 photos.

Pautzke, Clarence F., and Robert C. Meigs
1940. Studies on the life history of the Puget Sound steelhead (Salmo gairdnerii). Wash. Dept. Game, Biol. Bull. no. 3, 23 p., 9 photos, map.
Peart, A. R.
1920. The mechanics of fertilization in trout. Salmon and Trout Mag., no. 21, p. 32-43, 4 figs.; no. 22, p. 36-47, 2 figs.
Pritchard, A. L.
1936a. Facts concerning the coho salmon (Oncorhynchus kisutch) in the commercial catches of British Columbia as determined from their scales. Pac. Biol. Sta. and Pac. Fish. Exp. Sta., Prog. Repts., no. 29, p. 16-20, 5 figs.
1936b. Stomach content analyses of fishes preying upon the young of Pacific sal mon during the fry migration at McClinton Creek, Masset Inlet, British Columbia. Cana. FieldNat., vol. 50, no. 6, p. 104-105.
1940. Studies on the age of the coho salmon (Oncorhynchus kisutch) and the spring salmon (Oncorhynchus tschawytscha) in British Columbia. Roy. Soc. Canada, Trans., ser. 3, vol. 34, sect. 5, p. 99-120, 2 pls.
Pritchard, A. L., and Albert L. Tester
1944. Food of spring and coho salmon in British Columbia. Fish. Res. Bd. of Canada, Bull., no. 65, 23 p., 11 figs.
Rathbun, Richard
1884. The cray-fishes-Astacus and Cambarus. In: The fisheries and fishery industries of the United States, by G. B. Goode, et al., sec. I, p. 812-816. Wash., U. S. Comm. Fish and Fisheries.

Scofield, E. C.
1931. The striped bass of California (Roccus lineatus). Calif. Div. Fish and Game, Fish. Bull. 29, 84 p.
Shapovalov, Leo
1936. Food of the striped bass. Calif. Fish and Game, vol. 24, no. 4, p. 261-271, 2 figs.
1937. Experiments in hatching steelhead eggs in gravel. Calif. Fish and Game, vol. 23, no. 3, p. 208-214.
1939a. A suggested program of fish rescue and improvement work for the Eel River drainage basin, California. Eureka (Calif.) Chamber of Commerce, p. 7-12 of untitled publication.
1939b. Recommendations for management of the fisheries of the Eel River drainage basin, California. Eureka (Calif.) Chamber of Commerce, p. 12-24 of untitled publication.
1939c. Fish culture in the Eel River basin. Calif. Conservationist, vol. 4, no. 2, p. 3-5, 18-20, 3 photos.
1941a. The fresh-water fish fauna of California. Sixth Pac. Sci. Cong., Proc., vol. 3, p. 441446.

1941b. The homing instinct in trout and salmon. Sixth Pac. Sci. Cong., Proc., vol. 3, p. 317322.

1941c. Prospectus for an Eel River fish management area. Calif. Div. Fish and Game, Bur. Fish Cons., Admin. Rept., 62 p., 12 photos. (Typewritten)
1947. A system for recording measurements of fish scales. Amer. Fish. Soc., Trans., 1944, vol. 74, p. 59-62.
1954. An analysis of the effect of an extended angling season on California steelhead runs. Calif. Dept. of Fish and Game, Admin. Rept., 11p. (Mimeographed)
Shapovalov, Leo, and William Berrian
1940. An experiment in hatching silver salmon (Oncorhynchus kisutch) eggs in gravel. Amer. Fish. Soc., Trans., 1939, vol. 69, p. 135-140.
Shapovalov, Leo, and Elden H. Vestal
1939. Preliminary outline of suggested stream and lake improvement in the Eel River watershed. Eureka (Calif.) Chamber of Commerce, p. 2 r 6 of untitled publication.
Shaw, Paul A., and John A. Maga
1943. The effect of mining silt on yield of fry from salmon spawning beds. Calif. Fish and Game, vol. 29, no. 1, p. 29-41, 7 figs.

Shepherd, David
1928. The Trichoptera of Waddell Creek and their relation to the food of the Rainbow Trout, Salmo irideus. Doctoral Thesis, Stanford University, 149 p., 25 pls., 2 maps. (Typewritten)
Snyder, Cedric O.
1938. A study of the trout (Salmo irideus Gibbons) from Waddell Creek, California. Calif. Fish and Game, vol. 24, no. 4, p. 354-375, 9 figs.
Snyder, John Otterbein
1914. The fishes of the streams tributary to Monterey Bay, California. U.S. Bur. Fish., Bull., vol. 32, p. 47-72, 6 pls., 3 figs. (Issued as Doc. 776, July 24, 1913.)
1921a. Steelheads caught at sea off the coast near Fort Bragg. Calif. Fish and Game, vol. 7, no. 1, p. 9-11, 2 figs.
1921b. Three California marked salmon recovered. Calif. Fish and Game, vol. 7, no. 1, p. 16, 4 figs.
1923. A second report on the return of king salmon marked in 1919, in Klamath River. Calif. Fish and Game, vol. 9, no. 1, p. 1-7, 3 figs.
1924. A third report on the return of king salmon marked in 1919 in Klamath River. Calif. Fish and Game, vol. 10, no. 3, p. 110-114, 2 figs.
1940. The trouts of California. Calif. Fish and Game, vol. 26, no. 2, p. 96-138, 4 pls., 32 figs.
Taft, A. C.
1933. California steelhead trout problems. Calif. Fish and Game, vol. 19, no. 6, p. 192198.
1934. California steelhead experiments. Amer. Fish Soc., Trans., vol. 64, p. 248251.
1936. The Waddell Creek Experimental Station for trout and salmon studies. Calif. Fish and Game, vol. 22, no. 2, p. 99-104, 3 figs.
1937. Marked silver salmon from Waddell Creek caught near Fort Bragg. Calif. Fish and Game, vol. 23, no. 2, p. 177-178.
Taft, A. C., and Leo Shapovalov
1935. A biological survey of streams and lakes in the Klamath and Shasta National Forests of California. U. S. Bur. of Fish, 71 p. (Mimeographed)
1938. Homing instinct and straying among steelhead trout (Salmo gairdnerii) and silver salmon (Oncorhynchus kisutch). Calif. Fish and Game, vol. 24, no. 2, p. 118125, 2 figs.
Tchernavin, V .
1918. The breeding changes in the skeleton of the Pacific salmon. Izvestia Otdela Priel Icht. Selskohoz. Utch. Komit. I, i, p. 5-80. Text figs.; 12 tables of figs. (In Russian)
1921. The origin of the breeding characters in the salmon. Petrograd Agronom. Inst., Jour., 3-4, p. 157-321. (In Russian)
1937a. Preliminary account of the breeding changes in the skulls of Salmo and Oncorhynchus. Linn. Soc. London, Proc., sess. 149, p. 11-19, 2 figs.
1937b. Skulls of salmon and trout : a brief study of their differences and breeding changes. Salmon and Trout Mag., no. 88, p. 235-242, 6 figs.
1938a. Changes in the skull of the salmon. Zool. Soc. London, Trans., 24, p. 103-184, 5 pls., 25 figs., 12 graphs.
1938b. Notes on the chondocranium and branchial skeletons of Salmo. Zool. Soc. London, Proc., ser. B., 1938, p. 347-364.
1938c. A ripe salmon parr ten months old. Salmon and Trout Mag., no. 91, p. 122.
1938d. The absorption of bones in the skull of salmon during their migration to rivers. Fish. Bd. Scotland, Salmon Fish., no. 6.4 p., 1 pl.
Wales, J. H.
1938. Mortality in young Eel River steelhead. Calif. Div. Fish and Game, Bur. Fish Cons., Admin. Rept., 10 p. (Typewritten)
1941. Development of steelhead trout eggs. Calif. Fish and Game, vol. 27, no. 4, p. 250260, 16 figs.
1948. California's fish screen program. Calif. Fish and Game, vol. 34, no. 2, p. 45-51, 5 figs.

Wales, J. H., and William Berrian
1937. The relative susceptibility of various strains of trout to furunculosis. Calif. Fish and Game, vol. 23, no. 2, p. 147-148.
Wales, J. H., E. W. Murphey, and John Handley
1950. Perforated plate fish screens. Calif. Fish and Game, vol. 36, no. 4, p. 392-403, 7 figs.

Went, Arthur E. J.
1942. Salmon of the River Erne. - Results of the examination of a small collection of scales and data. Roy. Dublin Soc., Sci. Proc., vol. 22, (n.s.), nos. 46-49, p. 471480.

White, H. C.
1930. Some observations on the eastern brook trout (8. fontinalis) of Prince Edward Island. Amer. Fish Soc., Trans., vol. 60, p. 101-108.
1936. The homing of salmon in Apple River, N. S. Biol. Bd. Canada, Jour., vol. 2, no. 4, p. 391-400.

Wilson, Charles Branch
1908. North American parasitic copepods : a list of those found upon the fishes of the Pacific Coast, with descriptions of new genera and species. U.S. Nat. Mus., Proc., vol. 35, p. 431-481, pls. 66-83.

APPENDIX

TABLE A－1
Waddell Creek，Silver Salmon：Adults Checked Upstream Through Trap；Mean Lengths（in cm．） by Brood Seasons

Brood season	1／1 すべ		1／2 우우		1／2 ઠ̋ ${ }^{\text {o }}$	
	Number	Mean length	Number	Mean length	Number	Mean length
1930－31	－－－	－－－	152	65.7	177	65.2
1931－32	118	39.8	275	64.0	287	63.2
1932－33	21	41.2	33	65.8	39	63.9
1933－34	56	41.0	104	65.8	107	64.3
1934－35	3	42.5	42	66.1	22	67.2
1935－36	20	39.6	29	63.2	40	63.6
1936－37	17	39.5	88	67.8	126	65.9
1937－38	52	41.8	93	64.3	105	62.5
1938－39	65	42.4	66	59.2	77	58.9
1939－40	4	40.2	－－	－－	－－	－－
Totals	356	40．9＊	882	64．7＊	980	63．8＊

TABLE A－2
Scott Creek，Silver Salmon：Data Used in Calculation of Volume Factor（F）

Date	Fish no．	Counted no． eggs	Measured vol．of eggs （cc．）	Vol．per egg （cc．）	Actual vol． of eggs（cc．）	Volume factor（F）	No．eggs measured
Jan．16， 1936	27	2，789	805	0.213	594	0.738	90 （9 lots）
Jan．30，1936＊	31	2，782	995	0.2226	619	0.622	50 （5 lots）
$0.738+0.622=1.360$				1.360	$=0.680=$ Average volume factor（ F ）		

＊Stray from Waddell Creek．
NOTE：The volume factor was also calculated for two other fish，for which the data are tabulated below．How－ ever，these data were not used，since the measured egg volumes approached the extremes of the egg volume fre－ quency distribution，Table A－3 of the Appendix．Admittedly，it would be desirable to have a larger series of measurements and counts to test the validity of the volume factor used，but such data are not available．Its validity is substantiated to a certain degree by the closeness of the volume factor found for steelhead（0．674）， using the same methods and apparatus．

Date	Fish no．	Counted no． eggs	Measured vol．of eggs （cc．）	Vol．per egg （cc．）	Actual vol． of eggs （cc．）	Volume factor（F）	No．eggs measured
Jan．8，1936	13	4,479	1,325	0.187	838	0.632	$90(9$ lots） Feb．6，1936

TABLE A-3
Scott Creek, Silver Salmon: Volumes of Eggs Obtained From 40 Spawned Fish, 1935-36

Measured vol. of eggs (cc.)	No. of fish	Measured vol. of eggs (cc.)	No. of fish
350-399	1	900	4
400	--	950	4
450	--	1,000	1
500	1	1,050	3
550	2	1,100	--
600	5	1,150	--
650	3	1,200	--
700	2	1,250	--
750	6	1,300	1
800	4		
850	3	Total	40

TABLE A-4
Waddell Creek, Silver Salmon: Juveniles Checked Through Downstream Trap, 1933-34, by Two-week Periods

Length in mm .	$\begin{array}{\|l} \hline \\ \vdots \\ \vdots \\ \hline \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \vdots \\ & \vdots \\ & \vdots \\ & \vdots \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \text { ત } \\ & \text { İ } \\ & \text { B } \\ & \text { Z } \end{aligned}$	$\begin{aligned} & \dot{\circ} \\ & \vdots \\ & \text { à } \\ & \text { z} \end{aligned}$	$\begin{aligned} & \dot{⿺} \\ & \dot{0} \end{aligned}$				$\begin{aligned} & \text { n } \\ & \dot{0} \\ & \dot{\sim} \\ & \dot{\sim} \\ & \dot{\sim} \\ & \text { in } \end{aligned}$	$\begin{aligned} & \bar{j} \\ & \dot{+} \\ & \dot{B} \\ & \dot{L} \end{aligned}$		$\begin{aligned} & \mathrm{F} \\ & \dot{7} \\ & \stackrel{y}{5} \end{aligned}$	$\begin{aligned} & \overrightarrow{\widetilde{\infty}} \\ & \stackrel{\text { d }}{1} \\ & \stackrel{\dot{\omega}}{2} \end{aligned}$	$\begin{aligned} & \pm \\ & I \\ & \frac{ \pm}{4} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{1} \\ & \stackrel{n}{n} \\ & \stackrel{3}{4} \end{aligned}$	$\begin{aligned} & \text { ~ } \\ & \text { む } \\ & \vdots \end{aligned}$			$\begin{aligned} & \text { N} \\ & \stackrel{\delta}{\circ} \\ & 0 \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { Z } \\ & \vdots \\ & \vdots \\ & \vdots \\ & 0 \\ & \vdots \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{Y}} \\ & \infty \\ & \vdots \\ & \vdots \end{aligned}$		$\begin{aligned} & \infty \\ & \frac{\infty}{1} \\ & \frac{b j}{4} \end{aligned}$		$\begin{aligned} & n \\ & \dot{y} \\ & \stackrel{0}{2} \\ & n \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{\hat{0}} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{2} \end{aligned}$	
21-25				$\begin{aligned} & \text { 믐 } \\ & \stackrel{0}{\approx} \\ & 0 \\ & \text { Z } \end{aligned}$		--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
30						--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
35						--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
40						--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	1
45						--	--	--	--	--	--	--	--	--	--	1	--	1	--	--	--	--	--	--	--	--	--	2
50						--	--	--	--	--	--	--	--	--	--	--	--	2	--	--	--	--	--	--	--	--	--	2
55						--	--	--	--	--	--	--	--	--	--	--	--	2	--	--	(1)*	--	--	--	---	(1)*	--	(2)* +2
60						--	--	--	--	--	--	--	--	--	--	--	--	4	--	--	--	--	--	--	--	--	--	4
65						--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
70						--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
75						--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
80						--	--	--	--	--	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
85						--	--	--	--	--	--	--	1	--	1	--	--	--	--	--	--	--	--	--	--	--	--	2
90						--	--	--	--	--	--	--	1	2	--	--	4	2	1	--	--	--	--	--	--	--	1	10
95						--	--	--	--	--	--	--	2	2	1	8	18	5	2	--	--	--	--	--	--	--	--	38
100						--	--	--	--	--	--	--	--	1	7	47	76	20	3	--	--	--	--	--	--	--	--	154
105						--	--	--	--	--	--	--	--	2	22	165	151	23	$\dagger 5$ (39)	--	--	--	(1) \dagger	--	--	--	--	(40) $\dagger+369$
110						--	--	--	--	--	--	--	--	2	42	313	279	44	4	--	--	--	--	--	--	--	--	684
115						--	--	--	--	--	--	--	--	2	54	370	316	44	3	--	--	--	--	--	--	--	--	789
120						--	--	--	--	--	--	--	--	6	79	306	288	30	2	--	--	--	--	--	--	--	--	711
125						--	--	--	--	--	--	--	--	--	61	165	117	13	2	--	--	--	--	--	--	--	--	357
130						--	--	--	--	--	--	--	--	--	17	65	47	5	--	--	--	--	--	--	--	--	--	134
135						--	--	--	--	--	--	--	--	--	3	41	17	4	2	--	--	--	--	--	--	--	--	67
140						--	--	--	--	--	--	--	--	1	3	21	6	1	--	--	--	--	--	--	--	--	--	32
145						--	--	--	--	--	--	--	--	--	1	11	5	2	2	--	--	--	--	--	--	--	--	21
150						--	--	--	--	--	--	--	--	--	--	3	--	1	--	--	--	--	--	--	--	--	--	4
155						--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
160						--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	1
165						--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
Totals						--	1	--	--	--	2	--	4	18	291	1,516	1,324	204	66	--	1	--	1	--	--	1	1	3,430

inches.

wadill Crek Sille A-6
Waddell Creek, Silver Salmon: Juveniles Checked Through Downstream Trap, 1935-36, by Two-week Periods

Length in mm .	$\begin{aligned} & \pm \\ & \stackrel{I}{I} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{~} \\ & \stackrel{y}{0} \\ & 0.0 \\ & \hline \end{aligned}$								$\begin{aligned} & \mathrm{F} \\ & \dot{7} \\ & \stackrel{0}{0} \end{aligned}$			$\begin{aligned} & \bar{\sim} \\ & \stackrel{\infty}{\infty} \\ & \dot{\omega} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \pm \\ & I \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{1} \\ & \stackrel{1}{4} \\ & \dot{3} \end{aligned}$				$\begin{aligned} & \tilde{N} \\ & \vdots \\ & 0 \\ & 0 \\ & \vdots \end{aligned}$		$\begin{aligned} & \overline{\mathrm{I}} \\ & \infty \\ & \vdots \\ & \end{aligned}$				$\begin{aligned} & \cong \\ & \dot{1} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{n}{2} \end{aligned}$		
21-25	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
30	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
35	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
40	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
45	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
50	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
55	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
60	--	--	--	1	--	--	--	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
65	1	--	--	4	1	--	2	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	9
70	--		--	33	5	--	3	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	42
75	--		--	92	18	--	5	3	2	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	121
80	--		--	125	26	--	5	2	2	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	161
85	--	--	--	96	20	--	4	9	1	--	1	2	--	--	--	1	1	2	--	--	--	--	--	--	--	--	137
90	--	--	--	44	10	--	1	4	3	--	--	4	--	--	--	2	5	1	--	--	--	--	--	--	--	--	74
95	--	--	--	18	3	--	--	4	--	--	--	3	--	--	--	24	26	5	1	--	--	--	--	--	--	--	84
100	--	--	--	3	1	--	2	--	--	--	--	2	1	--	2	75	112	16	5	1	--	--	--	--	--	--	220
105	--	--	--	1	2	--	--	--	--	--	--	--	1	--	4	225	269	30	6	--	--	--	--	--	--	--	538
110	--	--	--	--	1	--	--	--	--	--	--	--	--	--	8	449	387	32	--	--	--	--	--	--	--	--	877
115	--	--	--	--	--	--	--	--	--	--	--	--	--	--	20	580	377	30	--	--	--	--	--	--	--	--	1,007
120	--	--	--	--	--	--	--	--	--	--	--	--	--	--	27	521	276	26	--	--	--	--	--	--	--	--	850
125	--	--	--	--	--	--	--	--	--	--	--	--	--	--	33	335	120	5	--	--	--	--	--	--	--	--	493
130	--	--	--	--	--	--	--	--	--	--	--	--	1	--	17	137	42	1	--	--	--	--	--	--	--	--	198
135	--	--	--	--	--	--	--	--	--	--	--	--	--	1	15	50	6	--	--	--	--	--	--	--	--	--	72
140	--	--	--	--	--	--	--	--	--	--	--	--	--	--	5	11	--	--	--	--	--	--	--	--	--	--	16
145	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4	3	--	--	--	--	--	--	--	--	--	--	7
150	--	--	--	--	--	--	--	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	--	--	2
155	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
160	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
165	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
Totals	1	--	--	417	87	--	22	25	8	1	1	12	3	2	136	2,413	1,621	148	12	2	--	--	--	--	--	--	4,911

TABLE A-7
Waddell Creek, Silver Salmon: Juveniles Checked Through Downstream Trap, 1936-37, by Two-week Periods

TABLE A－8
Waddell Creek，Silver Salmon：Juveniles Checked Through Downstream Trap，1937－38，by Two－week Periods

Length in mm．	$\begin{aligned} & \frac{\exists}{I} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{~ i}{~} \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { İ } \\ & \text { 訁̀ } \\ & \text { Z. } \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \dot{\circ} \\ & \stackrel{1}{\circ} \\ & \stackrel{1}{\mathrm{o}} \\ & \stackrel{\Delta}{\mathrm{O}} \end{aligned}$	$\begin{aligned} & \text { ત̃ } \\ & \text { 犬̀ } \\ & \dot{0} \end{aligned}$			$\begin{aligned} & \text { m } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{1}{\sim} \\ & \dot{N} \\ & \dot{\#} \\ & \dot{\sim} \end{aligned}$			$\begin{aligned} & \underset{7}{7} \\ & \text { In } \end{aligned}$		$\begin{aligned} & \pm \\ & \frac{ \pm}{2} \\ & \frac{2}{4} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{4} \\ & \stackrel{y}{2} \\ & \stackrel{y}{4} \end{aligned}$		$\begin{aligned} & \stackrel{y}{c} \\ & \stackrel{y}{n} \\ & \underset{\text { In }}{㐅} \end{aligned}$		$\begin{aligned} & \text { N} \\ & \stackrel{1}{7} \\ & 0 \\ & 0 ٍ \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{y}{7} \\ & \underset{\sim}{7} \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \overline{\underset{\prime}{\prime}} \\ & \infty \\ & \grave{\Xi} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \\ & \dot{\operatorname{coj}} \end{aligned}$	$\begin{aligned} & \overrightarrow{0} 0 \\ & 0 \\ & \grave{0} \\ & \stackrel{1}{2} \\ & \frac{0}{2} \end{aligned}$	$\begin{aligned} & \stackrel{n}{1} \\ & \text { u} \\ & \stackrel{0}{0} \\ & \stackrel{n}{2} \end{aligned}$		
21－25	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
30	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
35	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
40	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
45	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
50	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
55	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
60	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
65	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
70	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
75	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1
80	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
85	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	－－	－－	－－	1	－－	－－	－－	－－	－－	－－	－－	－－	2
90	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	5	2	－－	－－	－－	－－	－－	－－	－－	－－	7
95	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	－－	14	9	－－	－－	－－	－－	－－	－－	－－	－－	24
100	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	1	1	56	24	2	－－	－－	－－	－－	－－	－－	－－	85
105	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	3	127	34	1	1	－－	－－	－－	－－	－－	－－	166
110	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	2	13	216	78	4	－－	－－	－－	－－	－－	－－	－－	313
115	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	14	328	59	5	－－	－－	－－	－－	－－	－－	－－	406
120	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	2	23	366	56	2	－－	－－	－－	－－	－－	－－	－－	449
125	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	2	23	199	31	1	－－	－－	－－	－－	－－	－－	－－	256
130	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	25	110	10	4	－－	－－	－－	－－	－－	－－	－－	150
135	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	14	33	5	1	－－	－－	－－	－－	－－	－－	－－	53
140	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	3	3	－－	1	－－	－－	－－	－－	－－	－－	－－	7
145	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	3	3	－－	－－	－－	－－	－－	－－	－－	－－	－－	6
150	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1
155	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
160	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
165	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
Totals	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	－－	－－	－－	2	9	123	1，460	309	21	1	－－	－－	－－	－－	－－	－－	1，926

TABLE A-9
Waddell Creek, Silver Salmon: Juveniles Checked Through Downstream Trap, 1938-39, by Two-week Periods

Length in mm .	$\begin{aligned} & \frac{I}{I} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{1}{0} \\ & \stackrel{y}{0} \\ & \hline 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { n} \\ & \underset{\sim}{\underset{\sim}{2}} \\ & \text { din } \end{aligned}$				$\begin{aligned} & \text { İ } \\ & \text { İ } \\ & \text { İ } \end{aligned}$	$\begin{aligned} & \text { m } \\ & \stackrel{0}{0} \\ & \dot{\sim} \\ & \dot{\sim} \\ & \dot{\#} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \underset{7}{7} \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \underset{7}{7} \\ & \stackrel{y}{5} \end{aligned}$		$\begin{aligned} & \pm \\ & \stackrel{~}{I} \\ & \stackrel{\vdots}{4} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{6} \\ & \stackrel{1}{6} \\ & \stackrel{\vdots}{4} \end{aligned}$		$\begin{aligned} & \stackrel{\sim}{c} \\ & \stackrel{y}{n} \\ & \underset{\sim}{I} \end{aligned}$		$\begin{aligned} & \text { ત్} \\ & \stackrel{1}{-} \\ & 0 \\ & \vdots \end{aligned}$				$\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \\ & \dot{n} \\ & \dot{z} \end{aligned}$		$\begin{aligned} & \stackrel{n}{y} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{n} \end{aligned}$	$\begin{aligned} & 0 . \\ & \stackrel{0}{6} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	
21-25	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
30	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
35	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
40	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
45	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
50	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	1
55	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	2
60	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	1	--	--	--	--	--	2
65	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	1	--	--	--	2
70	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
75	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
80	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
85	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
90	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	1
95	--	--	--	--	--	--	--	--	--	--	--	--	--	--	6	5	1	--	--	--	--	--	--	--	--	--	12
100	--	--	--	--	--	--	--	--	--	--	--	--	--	4	34	14	2	--	--	--	--	--	--	--	--	--	54
105	--	--	--	--	--	--	--	--	--	--	--	--	--	2	62	54	7	--	--	--	--	--	--	--	--	--	125
110	--	--	--	--	--	--	--	--	--	--	--	--	--	3	101	80	11	1	--	--	--	--	--	--	--	--	196
115	--	--	--	--	--	--	--	--	--	--	--	--	--	3	94	78	7	--	--	--	--	--	--	--	--	--	182
120	--	--	--	--	--	--	--	--	--	--	--	--	--	5	61	44	2	--	--	--	--	--	--	--	--	--	112
125	--	--	--	--	--	--	--	--	--	--	--	--	--	4	57	26	2	--	--	--	1	--	--	--	--	--	90
130	--	--	--	--	--	--	--	--	--	--	--	--	--	3	22	11	--	--	--	--	--	--	--	--	--	--	36
135	--	--	--	--	--	--	--	--	--	--	--	--	--	1	16	1	--	--	--	--	--	--	--	--	--	--	18
140	--	--	--	--	--	--	--	--	--	--	--	--	--	2	1	5	--	--	--	--	--	--	--	--	--	--	8
145	--	--	--	--	--	--	--	--	--	--	--	--	--	4	4	2	--	--	--	--	--	--	--	--	--	--	10
150	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
155	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
160	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	1
165	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
Totals	--	--	--	--	--	--	--	--	--	--	--	--	--	32	459	320	33	3	2	--	2	--	1	--	--	--	852

TABLE A－10
Waddell Creek，Silver Salmon：Juveniles Checked Through Downstream Trap，1939－40，by Two－week Periods

Length in mm．	$\begin{aligned} & \pm \\ & \frac{7}{\square} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{1}{6} \\ & \stackrel{y}{0} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { İ } \\ & \text { 訁̀ } \\ & \text { İ } \end{aligned}$	$\begin{aligned} & \text { oे } \\ & \dot{0} \\ & 0 \\ & \vdots \\ & \dot{0} \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N} \\ & \stackrel{\text { ®}}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$		$\begin{aligned} & \text { İ } \\ & \text { 亡̀ } \\ & \text { ji } \end{aligned}$	$\begin{aligned} & \text { m } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{1}{N} \\ & \dot{N} \\ & \dot{末} \end{aligned}$	$\begin{aligned} & \bar{j} \\ & \dot{+} \\ & \dot{e} \\ & \dot{L} \end{aligned}$			$\begin{aligned} & \overrightarrow{\vec{\alpha}} \\ & \stackrel{y}{6} \\ & \stackrel{\dot{I}}{\dot{z}} \end{aligned}$	$\begin{aligned} & \pm \\ & I \\ & \stackrel{I}{4} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\grave{n}} \\ & \stackrel{y}{4} \\ & \stackrel{2}{4} \end{aligned}$				$\begin{aligned} & \text { N} \\ & \stackrel{1}{-} \\ & 0 \\ & \vdots \end{aligned}$	$\begin{aligned} & \underset{y}{\lambda} \\ & \underset{\Xi}{7} \\ & \underset{\sim}{7} \\ & 0 \\ & \vdots \end{aligned}$	$\begin{aligned} & \vec{Y} \\ & \dot{\infty} \\ & \stackrel{\lambda}{ミ} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \\ & \dot{n} \\ & \stackrel{\infty}{4} \end{aligned}$		$\begin{aligned} & \because \\ & \stackrel{n}{y} \\ & \stackrel{\rightharpoonup}{2} \\ & \ddot{n} \end{aligned}$	$\begin{aligned} & 0 \\ & \hat{6} \\ & \stackrel{1}{4} \\ & \stackrel{0}{0} \end{aligned}$	
21－25	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
30	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
35	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
40	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
45	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
50	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
55	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
60	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
65	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
70	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
75	－－	－－	－－	2	－－	－－	1	－－	－－	－－	－－	－－	1	－－	－－	1	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	5
80	－－	－－	－－	－－	－－	1	3	－－	－－	－－	－－	1	3	－－	1	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	9
85	－－	－－	－－	2	－－	－－	－－	－－	－－	1	－－	－－	3	1	1	2	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	10
90	－－	－－	－－	－－	－－	－－	1	－－	－－	1	－－	1	1	－－	5	1	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	10
95	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	1	－－	18	4	1	2	－－	－－	－－	－－	－－	－－	－－	－－	27
100	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	30	21	12	15	2	－－	－－	－－	－－	－－	－－	－－	81
105	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	38	77	81	45	9	－－	－－	－－	－－	－－	－－	－－	250
110	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	22	104	125	81	4	－－	－－	－－	－－	－－	－－	－－	336
115	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	25	85	153	122	4	1	－－	－－	－－	－－	－－	－－	390
120	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	11	45	162	111	1	－－	－－	－－	－－	－－	－－	－－	330
125	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	21	111	77	1	－－	－－	－－	－－	－－	－－	－－	211
130	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	7	37	24	1	－－	－－	－－	－－	－－	－－	－－	69
135	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	4	5	2	－－	－－	－－	－－	－－	－－	－－	－－	11
140	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
145	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	1
150	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
155	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
160	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
165	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－	－－－－－－－
Totals	－－	－－	－－	4	－－	1	5	－－	－－	2	－－	3	9	2	153	372	687	479	22	1	－－	－－	－－	－－	－－	－－	1，740

TABLE A-11
Waddell Creek, Silver Salmon: Juveniles Checked Through Downstream Trap, 1940-41, by Two-week Periods

Length in mm.	$\begin{aligned} & I \\ & \vdots \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N} \\ & \stackrel{1}{n} \\ & \stackrel{4}{0} \\ & \hline \end{aligned}$								$\begin{aligned} & \underset{+}{7} \\ & \dot{0} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & m \\ & \stackrel{y}{5} \\ & \stackrel{y}{5} \\ & 1 \\ & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{F}{7} \\ & \dot{F} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \vec{W} \\ & \stackrel{\infty}{\oplus} \\ & \stackrel{1}{\tilde{n}} \end{aligned}$	$\begin{aligned} & I \\ & I \\ & \frac{I}{4} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{~}{~} \\ & \stackrel{y}{4} \\ & \dot{4} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { む } \\ & \text { ¿ } \\ & \text { ते } \\ & \vdots \vdots \end{aligned}$				$\begin{aligned} & \text { N } \\ & \underset{y}{3} \\ & \underset{\sim}{j} \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \overrightarrow{\mathrm{I}} \\ & \infty \\ & \stackrel{\rightharpoonup}{\infty} \\ & \vdots \end{aligned}$	$\begin{aligned} & \dot{+} \\ & \substack{\text { in } \\ \underset{i}{n} \\ \dot{N} \\ \vdots \\ \vdots} \end{aligned}$		$\begin{aligned} & \overline{0} \\ & 0 \\ & \stackrel{0}{2} \\ & \stackrel{1}{20} \\ & \frac{0}{4} \end{aligned}$	$\begin{aligned} & \cong \\ & \tilde{N} \\ & \stackrel{0}{2} \\ & \vdots \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{6} \\ & \stackrel{\rightharpoonup}{\ddot{0}} \\ & \dot{0} \\ & \hline \end{aligned}$	
21-25	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
30	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
35	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
40	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
45	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
50	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
55	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
60	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
65	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	1
70	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
75	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	1
80	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	1	--	--	--	--	--	--	2
85	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
90	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
95	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	2	--	--	--	--	--	--	--	--	--	4
100	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	7	7	--	--	--	--	--	--	--	--	--	14
105	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	12	18	2	--	--	--	--	--	--	--	--	33
110	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	18	17	2	--	--	--	--	--	--	--	--	38
115	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	16	9	3	--	--	--	--	--	--	--	--	28
120	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	7	6	--	--	--	--	--	--	--	--	--	14
125	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	6	2	--	--	--	--	--	--	--	--	--	9
130	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	5	1	--	--	--	--	--	--	--	--	--	6
135	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	--	--	--	--	--	--	--	--	--	--	2
140	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
145	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
150	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
155	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
160	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
165	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
Totals	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4	75	62	7	2	2	--	--	--	--	--	--	152

Waddell Creek, Silver Salmon: Juveniles Checked Through Downstream Trap, 1941-42, by Two-week Periods

Length in mm.	$\begin{aligned} & \pm \\ & \stackrel{7}{\square} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{1}{6} \\ & \stackrel{3}{0} \\ & \hline 0 \end{aligned}$							$\begin{aligned} & \text { m } \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{1}{N} \\ & \dot{N} \\ & \dot{末} \end{aligned}$	$\begin{aligned} & \mathcal{F} \\ & \dot{F} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{n}{n} \\ & \stackrel{y}{n} \\ & \dot{1} \\ & \stackrel{\infty}{1} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \underset{7}{7} \\ & \frac{1}{5} \\ & \frac{1}{2} \end{aligned}$	$\begin{aligned} & \vec{\sim} \\ & \stackrel{\infty}{=} \\ & \stackrel{1}{n} \end{aligned}$	$\begin{aligned} & \pm \\ & \vdots \\ & \stackrel{~}{\vdots} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{1} \\ & \stackrel{n}{n} \\ & \stackrel{3}{4} \end{aligned}$						$\begin{aligned} & \overrightarrow{\mathrm{I}} \\ & \infty \\ & \underset{\Xi}{\grave{j}} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \\ & \text { min } \\ & \hline \end{aligned}$	$\begin{aligned} & \overrightarrow{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{2} \\ & \dot{\alpha} \\ & \frac{00}{z} \end{aligned}$			
21-25	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
30	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
35	--	--	--	--	--	--	--	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	--	--	2
40	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	--	2
45	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
50	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	1	--	--	--	--	--	3
55	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	1	1	3	1	--	--	--	--	7
60	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	3	4	--	--	--	--	--	8
65	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3	1	1	1	--	--	--	6
70	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	1
75	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	1
80	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	1
85	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	1	3	1	--	--	--	--	--	--	--	--	6
90	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	6	17	3	2	1	--	--	--	--	--	--	30
95	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	25	51	18	6	--	--	--	--	--	--	--	100
100	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	37	77	29	10	--	--	--	--	--	--	--	153
105	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	31	56	48	7	--	--	--	--	--	--	--	142
110	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	36	28	25	8	--	--	--	--	--	--	--	97
115	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	36	35	16	3	--	--	--	--	--	--	--	90
120	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	21	27	3	--	--	--	--	--	--	--	--	52
125	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3	5	--	--	--	--	--	--	--	--	--	8
130	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	2
135	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
140	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
145	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
150	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
155	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
160	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
165	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	-------
Totals	--	--	--	--	--	--	2	--	--	--	--	--	--	2	2	198	300	144	40	11	9	2	1	--	--	--	711

TABLE A-13
Waddell Creek, Silver Salmon: Age + Juveniles Checked Through Downstream Trap; Mean Length (in mm.) by Two-week Periods

Waddell Creek, Silver Salmon: Juveniles Checked Through Downstream Trap, 1941-42, by Two-week Periods

Waddell Creek, Silver Salmon: Age 1 Juveniles Checked Through Downstream Trap; Mean Length (mm.) by Two-week Periods

	Item	Two-week period ending:																										
		\pm	$\stackrel{\sim}{\sim}$		$\begin{aligned} & \text { N } \\ & \text { a } \\ & \text { zan } \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \dot{0} \end{aligned}$	$\begin{gathered} \text { N} \\ \dot{\Delta} \\ \dot{\Delta} \end{gathered}$		$\begin{aligned} & \text { ì } \\ & \text { 틀 } \end{aligned}$	$\begin{aligned} & \text { m } \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\stackrel{\sim}{5}$	m	N 砍	$\begin{aligned} & \bar{m} \\ & \text { n} \\ & \text { n} \end{aligned}$	$\begin{aligned} & \pm \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{4} \\ & \stackrel{\vdots}{4} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \frac{\pi}{\Sigma} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { N } \\ & 0 \\ & \vdots \end{aligned}$	$\stackrel{\star}{\vdots}$	$\begin{aligned} & \bar{\rightharpoonup} \\ & \grave{ミ} \\ & \text { N } \end{aligned}$	$\begin{gathered} \dot{+} \\ \substack{c i \\ \gtrless} \end{gathered}$	$\stackrel{\infty}{\stackrel{\infty}{8}}$	$\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{2}}$	$\begin{aligned} & n \\ & \stackrel{\sim}{0} \\ & i \end{aligned}$	¢ $\stackrel{y}{3}$ $\stackrel{\rightharpoonup}{0}$ \sim	
1932-33	Number Mean length					--	$\begin{array}{\|c\|} \hline 1 \\ 71.00 \\ \hline \end{array}$				$\begin{array}{c\|} \hline 2 \\ 78.00 \\ \hline \end{array}$	--	$\begin{array}{\|c\|} \hline 4 \\ 89.50 \\ \hline \end{array}$	18 108.83	291 115.82	$\begin{array}{\|c\|} \hline 1,515 \\ 114.20 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1,324 \\ 112.57 \\ \hline \end{array}$	194 111.28	$\begin{array}{\|c\|} \hline 27 \\ 112.89 \\ \hline \end{array}$		--	--	--	--	--	--	--	$\begin{aligned} & 3,376+40 \ddagger=3,416 \\ & 113.52^{*} \\ & \hline \end{aligned}$
1933-34	Number Mean length			--			--	$\begin{array}{\|c\|} \hline 1 \\ 69.00 \\ \hline \end{array}$	$\begin{gathered} \hline 2 \\ 78.00 \\ \hline \end{gathered}$			2 104.00	$\begin{array}{\|c\|} \hline 1 \\ 89.00 \\ \hline \end{array}$	1 101.00	$\begin{gathered} 18 \\ 92.56 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 240 \\ 113.80 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 1,636 \\ 113.47 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1,179 \\ 113.59 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 402 \\ 110.35 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 32 \\ 109.38 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1 \\ 123.00 \\ \hline \end{array}$	--		--	--		--	$\begin{aligned} & 3,515+17 \ddagger=3,532 \\ & 113.26^{*} \\ & \hline \end{aligned}$
1934-35	Number Mean length	$\begin{gathered} 1 \\ 62.00 \\ \hline \end{gathered}$			$\begin{gathered} \hline 417 \\ 79.13 \end{gathered}$	$\begin{array}{\|c\|} \hline 87 \\ 80.48 \\ \hline \end{array}$		$\begin{gathered} \hline 22 \\ 77.09 \\ \hline \end{gathered}$	$\begin{gathered} \hline 25 \\ 81.12 \end{gathered}$	$\begin{array}{\|c\|} \hline 8 \\ 81.00 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1 \\ 72.00 \\ \hline \end{array}$	$\begin{gathered} \hline 1 \\ 85.00 \end{gathered}$	$\begin{array}{\|c\|} \hline 12 \\ 89.42 \\ \hline \end{array}$	3 110.33	$\begin{array}{\|c\|} \hline 2 \\ 140.00 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 136 \\ 121.89 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 2,413 \\ 114.37 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1,621 \\ 110.80 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 148 \\ 108.36 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 12 \\ 100.75 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1 \\ 98.00 \\ \hline \end{array}$	--		--	--		--	$\begin{array}{\|l\|} \hline 4,910 \\ 113.06^{*} \\ \hline \end{array}$
1935-36	Number Mean length			--	--	--	--	$\begin{array}{\|c\|} \hline 4 \\ 91.75 \end{array}$	$\begin{array}{\|c\|} \hline 4 \\ 86.75 \\ \hline \end{array}$	--	$\begin{array}{\|c\|} \hline 6 \\ 93.67 \end{array}$	$\begin{gathered} 1 \\ 78.00 \end{gathered}$	--	--	1 118.00	$\begin{array}{\|c\|} \hline 40 \\ 112.32 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 470 \\ 118.49 \\ \hline \end{array}$	438 115.40	$\begin{array}{\|c\|} \hline 92 \\ 114.66 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 3 \\ 116.33 \\ \hline \end{array}$	--	--	$\begin{gathered} \text {-- } \\ \text {-- } \\ \hline \end{gathered}$	--	--	--	--	$\begin{array}{\|l\|} \hline 1,059 \\ 116.61^{*} \\ \hline \end{array}$
1936-37	Number Mean length		--					--	--	--	$\begin{array}{\|c\|} \hline 1 \\ 71.00 \end{array}$		--	--	$\begin{gathered} 2 \\ 92.00 \end{gathered}$	$\begin{array}{\|c\|} \hline 9 \\ 113.00 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 123 \\ 121.94 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1,460 \\ 114.86 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 309 \\ 111.37 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 21 \\ 116.33 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1 \\ 105.00 \\ \hline \end{array}$	--		--	--	--	--	$\begin{array}{\|l\|} \hline 1,926 \\ 114.77^{*} \\ \hline \end{array}$
1937-38	Number Mean length							--	--	--	--	--	--	--	32 121.00	$\begin{array}{\|c\|} \hline 459 \\ 118.63 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 320 \\ 111.62 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 32 \\ 108.37 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1 \\ 106.00 \\ \hline \end{array}$	--	--	$\begin{array}{\|c\|} \hline 1 \\ 123.00 \\ \hline \end{array}$		--	--	--	--	$\begin{array}{\|l\|} \hline 845 \\ 112.40^{*} \\ \hline \end{array}$
1938-39	Number Mean length			--	$\begin{gathered} 4 \\ 79.25 \end{gathered}$		$\begin{array}{\|c\|} 1 \\ 76.00 \\ \hline \end{array}$	$\begin{gathered} 5 \\ 79.80 \end{gathered}$			$\begin{array}{\|c\|} \hline 2 \\ 87.00 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 3 \\ 87.33 \\ \hline \end{array}$	$\begin{gathered} 9 \\ 81.56 \end{gathered}$	$\begin{gathered} 2 \\ 90.00 \end{gathered}$	$\begin{array}{\|c\|} \hline 153 \\ 103.61 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 372 . \\ 109.95 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 687 \\ 114.38 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 479 \\ 114.28 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 22 \\ 108.18 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1 \\ 111.00 \\ \hline \end{array}$			--	--	--	--	$\begin{array}{\|l\|} \hline 1,740 \\ 112.40^{*} \\ \hline \end{array}$
1939-40	Number Mean length		--					--	--		--	--	--	--	--	$\begin{array}{\|c} 4 \\ 114.25 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 75 \\ 111.19 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 62 \\ 107.18 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 7 \\ 108.57 \\ \hline \end{array}$	--	--	--	--	--	--	--	---	$\begin{array}{\|l\|} \hline 148 \\ 109.47^{*} \\ \hline \end{array}$
1940-41	Number Mean length							$\begin{gathered} 2 \\ 87.00 \end{gathered}$						--	$\begin{array}{\|c\|} \hline 1 \\ 120.00 \end{array}$	--	$\begin{gathered} 197 \\ 105.10 \end{gathered}$	$\begin{gathered} 300 \\ 102.40 \end{gathered}$	$\begin{array}{\|c\|} \hline 143 \\ 102.45 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 36 \\ 100.83 \end{array}$	$\begin{gathered} 1 \\ 86.00 \end{gathered}$		--	--	--	--	--	$\begin{array}{\|l\|} \hline 680 \\ 103.11^{*} \\ \hline \end{array}$
Total																												112.07†

* Mean length of four consecutive periods forming largest total
\dagger Arithmetic mean of means.
\ddagger not measured.

Waddell Creek, Steelhead: Changes in Life History Category Composition of the Spawning Run, by Months *

Month	First spawners			Second spawners			Total
	1/1	2/1	3/1	$2 / 2$	2/1S. 1	2/1.1S.1	
October	--	2	--	--	--	--	2
November	0.1\%	0.2\%	--	--	--	--	0.3\%
	4	7	1	--	--	--	12
December	1.5\%	4.6\%	0.2\%	1.2\%	0.8\%	0.1\%	8.5\%
	59	179	8	48	31	5	330
January	1.8\%	8.6\%	1.6\%	6.4\%	2.0\%	0.6\%	21.0\%
	69	336	61	250	76	24	816
February	0.5\%	5.9\%	2.1\%	8.7\%	2.7\%	1.1\%	21.1\%
	20	231	81	338	106	44	820
March	0.6\%	7.8\%	5.3\%	7.8\%	1.8\%	1.1\%	24.4\%
	23	304	205	303	71	41	947
April	0.1\%	2.2\%	2.1\%	1.8\%	0.4\%	0.2\%	6.8\%
	3	86	83	70	14	8	264
May	-	0.1\%	--	0.1\%	--	--	0.3\%
	--	5	--	5	--	--	10
June	--	1	--	--	--	--	1
Totals	4.6\%	29.6\%	11.3\%	26.1\%	7.7\%	3.1\%	82.4\%
	178	1,151	439	1,014	298	122	3,202

* Percentages are percentages of total run of all fish.

TABLE A-15
TABLE A-16
Scott Creek, Steelhead: Data Used in Calculation of Volume Factor (F)

Date	Fish no.	Counted no. eggs	Measured vol. of eggs (cc.)	Vol. per egg (cc.)	Actual vol. of eggs (cc.)	Volume factor (F)	No. eggs measured
1932	--	3,874	550	0.0978	379	0.689	100 (10 lots)
Mar, 5,1936	--	6,172	900	0.0958	591	0.657	110 (11 lots)
Mar. 5,1936	--	4,013	568	0.0958	384	0.676	110 (11 lots)

$$
0.689+0.657+0.676=2.022
$$

$$
\frac{2.022}{3}=0.674=\text { Average volume factor }(\mathrm{F})
$$

NOTE: The latter two sets of data represent complete and partial counts and measured egg volumes from the same fish. The volume factor was also calculated for three other fish, for which the data are tabulated below. However, these data were not used, since either the measured egg volumes approached the extremes of the egg volume frequency distribution, Table A-17 of the Appendix, or the number of eggs measured for individual volume was too small.

Date	Fish no.	Counted no. eggs	Measured vol. of eggs (cc.)	Vol. per egg (cc.)	Actual vol. of eggs (cc.)	Volume factor (F)	No. eggs measured
Feb. 2, 1933	87,927	8,859	1,325	0.101	895	0.675	10
Feb. 13,1933	87,950	4,217	425	0.070	295	0.694	10
Feb. 19,1935	54	2,403	190	0.053	127	0.668	20 (2 lots)

Scott Creek, Steelhead: Volumes of Eggs Obtained From 537 Spawned Fish, 1932-33

Measured volume of eggs (cc.)	No. of fish	Measured volume of eggs (cc.)	No. of fish
100-149	1	900	47
150	4	950	33
200	11	1,000	16
250	20	1,050	14
300	16	1,100	16
350	17	1,150	10
400	31	1,200	2
450	22	1,250	3
500	27	1,300	3
550	23	1,350	1
600	27	1,400	3
650	35	1,450	--
700	49	1,500	1
750	29		
800	48		
850	28	Total	537

TABLE A-18
Scott Creek, Steelhead: Eggs Remaining in Spawned Fish

Date	Fish length in cm .	Age	Vol. per egg (cc.)	Calc. no. eggs obtained	Eggs remaining		Total no. eggs
					Number	Percentage	
1932							
February 25	--	--	. 087	7,347	325	4.2	7,672
March 10	62	2/2	. 099	4,174	925	18.1	5,099
April 14	66	--	. 076	7,476	740	9.0	8,216
April 14	--	--	. 091	5,294	400	7.0	5,694
April 21	52	--	. 111	4,591	445	8.8	5,036
April 21	51	--	. 072	3,395	344	9.2	3,739
April 28	58	2/1 S. 1	. 072	4,687	539	10.3	5,226
April 28	48	2/1	. 058	2,969	264	8.2	3,233
May 5	53	2?/1	. 094	3,150	415	11.6	3,565
May 5	53	3?/1	. 080	2,838	475	14.3	3,313
1933							
February 13	72	2(?)/2	. 088	11,153	1,047	8.6	12,200
March 6	71	1/1.1S.1	. 090	6,122	659	9.7	6,781
Mean	--	--	--	--	--	9.92	--

NOTE: The total number of eggs in the fish less 9.92 percent $=1.11 \mathrm{X}$ the number of eggs obtained in spawning. For purposes of calculation of total egg production in this paper, the factor 1.1 has been used to multiply the number of eggs obtained in spawning.

TABLE A-17
TABLE A-19
Waddell Creek, SteeIhead: Stream Fish Checked Through Downstream Trap, 1933-34; Length-frequency Distribution by Two-week Periods

Length in mm .	\pm $\stackrel{7}{\square}$ $\stackrel{\square}{\circ}$					$\begin{aligned} & \text { N} \\ & \stackrel{\Delta}{\circ} \\ & \stackrel{\circ}{0} \end{aligned}$		$\begin{aligned} & \text { İ } \\ & \text { N } \\ & \text { d } \end{aligned}$	$\begin{aligned} & \text { m } \\ & \stackrel{.}{0} \\ & \dot{+} \\ & \dot{N} \\ & \dot{~ I} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \underset{7}{7} \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$		$\begin{aligned} & \bar{j} \\ & \dot{J} \\ & \dot{W} \end{aligned}$		$\begin{aligned} & \pm \\ & \frac{ \pm}{4} \\ & \stackrel{\vdots}{4} \end{aligned}$							$\begin{aligned} & \bar{Y} \\ & \infty \\ & \grave{\vdots} \\ & \vdots \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \\ & \dot{\sin } \end{aligned}$		$\begin{aligned} & \stackrel{n}{1} \\ & \underset{y}{\ddot{0}} \\ & \stackrel{\rightharpoonup}{\ddot{0}} \\ & \hline \end{aligned}$	$$
21-25	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	*189	*72	*42	*74	*27	*28	*12	*7	--
30	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--
35	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--				--	--
40	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--		AGE +		--	--
45	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	1	3	--	--	--	--	--	--	--	--	--
50	--	--	--	--	--	2	1	--	--	--	--	--	--	--	3	4	6	--	--	--	--	--	--	--	--	--
55	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	--	5	1	--	--	--	--	--	--	--	--
60	--	--	--	--	--	3	2	--	--	4	--	--	--	--	--	4	22	3	--	--	--	--	--	--	--	--
65	--	--	--	--	--	4	--	1	1	7	--	--	2	--	--	1	31	11	--	--	--	--	--	--	--	--
70	--	--	--	--	--	--	--	1	--	3	1	--	--	--	--	1	26	11	--	--	--	--	--	--	--	--
75	--	--	--	--	--	1	1	--	1	1	--	--	--	2	--	--	5	3	--	--	--	--	--	--	--	--
80	--	--	--	--	--	--	--	--	--	1	--	--	2	3	3	1	3	1	--	--	--	--	--	--	--	--
85	--	--	--	--	--	--	--	--	--	--	--	3	3	10	10	3	4	--	--	--	--	--	--	--	--	--
90	--	--	--		--	--	1	--	--	--	--	--	4	13	18	11	5	1	--	--	--	--	--	--	--	--
95	--	--	--		--	1	--	--	--	--	--	--	2	18	34	11	7	5	--	--	--	--	--	--	--	--
100	--	--	--		--	3	1	--	1	--	1	--	3	12	49	16	16	3	--	--	--	--	--	--	--	--
105	--	--	--		--	--	--	--	--	--	--	1	3	6	34	17	22	6	--	--	--	--	--	--	--	--
110	--	--	--	\cdots	--	1	1	--	1	--	3	2	1	7	33	20	19	7	--	--	--	--	--	--	--	--
115	--	--	--	¢	--	3	--	1	--	2	6	4	--	8	26	16	22	3	--	--	--		AGE 1		--	--
120	--	--	--	${ }_{2}$	1	3	1	1	--	1	8	2	1	6	16	19	14	4	--	--	--				--	--
125	--	--	--	$\stackrel{\square}{0}$	--	4	--	--	--	3	5	2	5	9	16	6	6	2	--	--	--	--	--	--	--	--
130	--	--	--	$\stackrel{8}{8}$	--	--	--	--	--	--	2	1	7	5	13	5	7	1	--	--	--	--	--	--	--	--
135	--	--	--	$\stackrel{\square}{\square}$	--	2	--	--	1	1	7	3	9	8	12	5	5	1	--	--	--	--	--	--	--	--
140	--	--	--	唇	--	1	--	--	--	--	2	--	5	22	15	4	2	1	--	--	--	--	--	--	--	--
145	--	--	--	$\stackrel{\circ}{\square}$	--	2	--	--	--	2	3	--	18	26	31	8	2	--	--	--	--	--	--	--	--	--
150	--	--	--	$\stackrel{\rightharpoonup}{\square}$	--	--	--	--	--	--	2	5	25	40	36	13	3	--	--	--	--	--	--	--	--	--
155	--	--	--	$\stackrel{\sim}{\sim}$	--	--	--	--	--	1	--	5	24	50	57	17	2	1	--	--	--	--	--	--	--	--
160	--	--	--	$\stackrel{y}{*}$	--	1	--	--	--	--	2	3	26	67	72	12	1	--	--	--	--	--	--	--	--	--
165	--	--	--		1	--	--	--	--	1	2	7	35	68	53	20	1	--	--	--	--	--	--	--	--	--
170	--	--	--		--	--	--	--	--	--	2	5	19	67	54	11	1	--	--	--	--	--	--	--	--	--
175	--	--	--		--	--	--	--	--	--	1	6	30	51	46	8	--	--	--	--	--	--	--	--	--	--
180	--	--	--		--	--	--	--	--	--	3	5	22	65	29	4	--	--	--	--	--	--	--	--	--	--
185	--	--	--	--	--	--	--	--	--	--	1	4	25	36	23	1	--	--	--	--	--				--	--
190	--	--	--	--	--	--	--	--	--	--	1	2	18	25	17	4	--	--	--	--	--		AGE 2		--	--
195	--	--	--	--	--	--	--	--	--	--	--	3	12	22	8	1	--	--	--	--	--	--	--	--	--	--
200	--	--	--	--	--	--	--	--	--	--	--	5	16	23	3	1	--	--	--	--	--	--	--	--	--	--
205	--	--	--	--	--	--	--	--	--	--	2	3	11	13	3	--	--	1	--	--	--	--	--	--	--	--
210	--	--	--	--	--	--	--	--	--	--	--	4	4	6	2	1	--	--	--	--	--	--	--	--	--	--
215	--	--	--	--	--	--	--	--	--	--	2	4	3	3	4	--	--	--	--	--	--	--	--	--	--	--
220	--	--	--	--	--	--	--	--	--	--	1	--	7	3	1	--	--	--	--	--	--	--	--	--	--	--
225	--	--	--	--	--	--	--	--	1	--	--	2	2	4	2	--	--	--	--	--	--	--	--	--	--	--
230	--	--	--	--	--	--	--	--	--	--		4	4	1	4	--	--	--	--	--	--	--	--	--	--	--
235	--	--	--	--	--	--	--	--	--	--	--	2	3	3	3	1	--	1	--	--	--		AGE 3		--	--
240	--	--	--	--	--	--	--	--	--	--	--	2	1	4	1	--	--	--	--	--	--		AGE 3		--	--
245	--	--	--	--	--	--	--	--	--	--	--	1	2	5	--	1	--	--	--	--	--	--	--	--	--	--
250	--	--	--	--	--	--	--	--	--	--	--	--	1	2	1	--	--	--	--	--	--	--	--	--	--	--
255	--	--	--	--	--	--	--	--	--	--	--	1	2	6	1	--	--	1	--	--	--	--	--	--	--	--
260	--	--	--	--	--	--	--	--	--	--	--	--	2	--	2	--	--	--	--	--	--	--	--	--	--	--
265	--	--	--	--	--	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--		AGE 4		--	--
270	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--
																		$\dagger 36$	$\dagger 8$	$\dagger 1$	$\dagger 3$	$\dagger 1$	$\dagger 1$			
Totals	--	--	--	--	3	33	8	4	6	27	57	92	360	719	735	255	249	293	80	43	77	28	29	12	7	0
* Measure	as	hes or	der			\dagger Mea	d	over																AND	AL:	117

TABLE A-20
Waddell Creek, SteeIhead: Stream Fish Checked Through Downstream Trap, 1934-35; Length-frequency Distribution by Two-week Periods

Length in mm .	Oct. 1- 14	$\begin{gathered} \text { Oct. } \\ 15-28 \end{gathered}$	$\begin{gathered} \text { Oct } \\ 29- \\ \text { Nov. } \end{gathered}$	$\begin{aligned} & \text { Nov. } \\ & 12-25 \end{aligned}$	$\begin{gathered} \text { Nov. } \\ 26- \\ \text { Dec. } 9 \end{gathered}$	$\begin{aligned} & \text { Dec. } \\ & 10-23 \end{aligned}$	$\begin{array}{\|c} \text { Dec. } \\ \text { 24-Jan. } \\ 6 \end{array}$	$\begin{gathered} \text { Jan. } 7- \\ 20 \end{gathered}$	$\begin{array}{\|c} \text { Jan. } \\ \text { 21-Feb. } \\ 3 \end{array}$	Feb.417	$\begin{gathered} \text { Feb. } \\ \text { 18- } \\ \text { Mar. } 3 \end{gathered}$	$\begin{gathered} \text { Mar. 4- } \\ 17 \end{gathered}$	$\begin{gathered} \text { Mar. } \\ \text { 18-31 } \end{gathered}$	$\begin{gathered} \text { Apr. 1- } \\ 14 \end{gathered}$	$\begin{gathered} \text { Apr. } \\ 15-28 \end{gathered}$	$\begin{gathered} \text { Apr. } \\ 29- \\ \text { May } 12 \end{gathered}$	$\begin{gathered} \text { May } \\ 13-26 \end{gathered}$	$\begin{gathered} \text { May } \\ 27- \\ \text { June } 9 \end{gathered}$	$\begin{gathered} \text { June } \\ 10-23 \end{gathered}$	$\begin{gathered} \text { June } \\ \text { 24-July } \\ 7 \end{gathered}$	July 821	$\begin{gathered} \text { July } \\ 22- \\ \text { Aug. } 4 \end{gathered}$	$\begin{gathered} \text { Aug. } 5- \\ 18 \end{gathered}$	$\begin{aligned} & \text { Aug. } \\ & 19- \\ & \text { Sept. } 1 \end{aligned}$	$\begin{aligned} & \text { Sept. } \\ & 2-15 \end{aligned}$	$\begin{gathered} \text { Sept. } \\ 16-30 \end{gathered}$
			*6	*55																						
21-25	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
30	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--		AGE +		--	--
35	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--				--	--
40	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3	--	--	--	--	--	--
45	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	11	2	5	--	--	--	--
50	--	--	--	--	1	2	3	--	--	--	--	--	--	--	--	--	--	1	9	21	8	15	14	3	1	--
55	--	--	--	5	2	--	3	--	--	--	--	--	--	--	--	--	1	4	17	62	14	17	13	7	5	--
60	--	--	--	3	5	2	3	--	1	2	--	--	--	--	--	--	--	3	26	33	22	18	12	7	3	2
65	--	--	--	3	2	3	8	1	2	2	--	--	--	--	--	--	--	2	32	35	25	20	20	9	6	4
70	--	--	--	1	1	2	2	4	--	2	--	--	--	--	--	--	--	--	24	33	10	20	9	3	6	--
75	--	--	--	1	--	2	3	1	--	4	--	--	--	--	1	--	--	4	14	10	9	5	5	1	2	--
80	--	--	--	--	1	--	1	--	1	--	--	1	--	2	--	1	--	4	10	5	1	3	1	--	1	1
85	--	--	--	--	--	--	--	--	--	--	--	--	--	1	1	--	3	4	3	3	2	--	1	--	--	--
90	--	--	--	1	--	--	--	--	--	--	--	--	--	3	3	6	3	4	6	3	1	--	--	--	--	--
95	--	--	--	--	--	--	--	--	--	--	--	2	--	--	4	5	9	15	12	2	--	1	--	--	--	--
100	--	--	--	1	--	--	--	--	--	--	--	--	2	1	1	10	8	23	16	5	--	--	--	--	1	--
105	--	--	4	4	--	--	--	--	--	--	--	--	--	3	1	13	10	22	11	3	--	--	--	--	--	--
110	--	--	--	1	--	--	--	1	--	--	--	3	--	2	1	9	6	19	8	7	--	--	--	--	--	--
115	--	--	--	1	--	--	1	--	1	--	--	--	--	2	2	4	3	14	16	3	--	--	--	--	--	--
120	--	--	--	--	--	--	1	--	--	--	--	--	1	1	1	9	5	4	3	2	1	--	--	--	--	--
125	--	--	--	1	--	1	1	--	--	1	--	1	1	3	--	6	4	9	7	--	--	--	--	--	1	--
130	--	--	1	4	1	--	--	--	--	1	2	--	2	--	3	2	--	7	5	1	1		AGE 1		--	--
135	--	--	--	1	--	--	--	--	--	--	--	1	2	--	1	7	3	1	5	--	--				--	--
140	--	--	--	1	--	--	--	--	--	--	--	1	1	2	7	4	5	2	1	1	--	--	--	--	1	--
145	--	--	--	--	--	--	--	--	--	--	--	1	5	5	10	5	2	1	1	--	--	--	--	--	--	--
150	--	--	--	--	--	--	--	--	--	--	--	1	3	8	8	12	2	--	--	1	--	--	--	--	--	--
155	--	--	--	1	--	--	--	--	--	--	--		4	16	21	14	6	1	1	--	--	--	--	--	--	--
160	--	--	--	--	--	--	--	--	--	--	1	2	8	14	27	12	5	--	--	--	--	--	--	1	--	--
165	--	--	--	--	--	--	--	--	--	--	--	1	10	10	12	17	2	--	--	--	--	--	--	--	--	--
170	--	--	--	1	--	--	--	--	--	--	1	2	9	19	11	5	4	2	--	--	--	--	--	--	--	--
175	--	--	--	--	--	--	--	--	--	--	1	4	10	13	8	6	--	--	--	--	--	--	--	--	--	--
180	--	--	--	--	--	--	--	--	--	1	1	2	12	8	5	2	1	--	--	--	--	--	--	--	--	--
185	--	--	--	--	--	--	--	--	--	--	--	2	7	7	4	2	--	--	--	--	--		AGE 2		--	--
190	--	--	--	--	--	--	--	--	--	--	--	1	3	8	3	--	--	--	--	--	--		AGE 2		1	--
195	--	--	--	--	--	--	--	--	--	--	--	1	4	4	1	--	--	--	--	--	--	--	--	--	--	--
200	--	--	--	--	--	--	--	--	--	--	--	2	5	2	2	1	--	--	--	--	--	--	--	--	--	--
205	--	--	--	--	--	--	--	--	--	--	--	1	4	1	--	--	--	--	--	--	--	--	--	--	--	--
210	--	--	--	--	--	--	--	--	--	--	--	2	2	3	--	--	--	--	--	--	--	--	--	--	--	--
215	--	--	--	--	--	--	--	--	--	--	--	1	4	2	--	--	--	--	--	--	--	--	--	--	--	--
220	--	--	--	--	--	--	--	--	--	--	--	--	3	--	--	--	--	--	--	--	--	--	--	--	--	--
225	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--
230	--	--	--	--	--	--	--	--	--	--	--	--	--	2	--	--	--	--	--	--	--				--	--
235	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--		AGE 3		--	--
240	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
245	--	--	--	1	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--
250	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
255	--	--		AGE 4		--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--
260	--	--		AGE 4		--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
265	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
270	--	--	--	$1(31 \mathrm{~cm})$	--	--	--	--	--		--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
Totals	--	--	11	87	13	12	27	7	5	13	6	32	104	144	138	152	82	146	227	244	96	104	75	31	28	7

table A-21
Waddell Creek, Steelhead: Stream Fish Checked Through Downstream Trap, 1935-36; Length-frequency Distribution by Two-week Periods

Length in mm.	$\begin{gathered} \text { Oct. 1- } \\ 14 \end{gathered}$	$\begin{gathered} \text { Oct. } \\ 15-28 \end{gathered}$	$\begin{gathered} \hline \text { Oct. } \\ 29- \\ \text { Nov. } \\ 11 \end{gathered}$	$\begin{aligned} & \text { Nov. } \\ & 12-25 \end{aligned}$	$\begin{gathered} \text { Nov. } \\ 26- \\ \text { Dec. } 9 \end{gathered}$	$\begin{gathered} \hline \text { Dec. } \\ 10-23 \end{gathered}$	$\begin{aligned} & \text { Dec. } \\ & 24- \\ & \text { Jan. } 6 \end{aligned}$	$\begin{gathered} \mathrm{Jan} .7- \\ 20 \end{gathered}$	$\begin{gathered} \text { Jan. } \\ 21- \\ \text { Feb. } 3 \end{gathered}$	Feb.4- 17	Feb. 18Mar. 3	$\begin{aligned} & \text { Mar. } \\ & 4-17 \end{aligned}$	$\begin{aligned} & \text { Mar. } \\ & \text { 18-31 } \end{aligned}$	$\begin{aligned} & \text { Apr. } \\ & 1-14 \end{aligned}$	$\begin{aligned} & \text { Apr. } \\ & 15-28 \end{aligned}$	$\begin{gathered} \text { Apr. } \\ 29- \\ \text { May } \\ 12 \end{gathered}$	$\begin{gathered} \text { May } \\ 13-26 \end{gathered}$	$\begin{gathered} \text { May } \\ 27- \\ \text { June } 9 \end{gathered}$	$\begin{gathered} \text { June } \\ 10-23 \end{gathered}$	$\begin{aligned} & \text { June } \\ & 24- \\ & \text { July } 7 \end{aligned}$	$\begin{gathered} \text { July } 8-1 \\ 21 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { July } \\ 22- \\ \text { Aug. } 4 \end{array}$	$\begin{aligned} & \text { Aug. } \\ & 5-18 \end{aligned}$	$\begin{gathered} \text { Aug. } \\ 19- \\ \text { Sept. } 1 \end{gathered}$	$\begin{aligned} & \text { Sept. } \\ & 2-15 \end{aligned}$	$\begin{aligned} & \text { Sept. } \\ & 16-30 \end{aligned}$
21-25	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
30	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--		AGE +		--	--	--	--	--	--	--	--
35	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--		AGE +		1	--	--	1	1	--	--	--
40	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	8	8	1	7	--	6	--	--
45	1	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	29	20	11	14	14	6	1	1
50	3	--	--	1	2	1	4	--	--	--	--	--	--	--	--	--	--	2	50	36	22	22	18	17	2	--
55	1	--	--	8	2	3	31	4	1	--	--	1	--	--	--	--	2	5	84	51	30	31	36	29	4	2
60	--	--	--	10	2	2	71	7	1	1	1	1	--	--	--	--	3	4	76	74	37	27	19	28	1	3
65	1	--	--	18	5	4	93	13	--	1	1	--	--	--	--	--	2	2	59	54	32	20	21	22	2	1
70	--	--	--	20	--	3	93	7	2	1	--	1	--	--	--	--	4	9	34	24	21	9	8	15	4	1
75	1	--	--	12	2	3	58	19	1	--	1	--	--	--	--	--	3	12	29	9	12	7	6	11	2	--
80	--	--	--	8	--	--	27	10	--	1	--	--	--	--	--	1	7	7	27	9	8	2	1	1	2	--
85	--	--	--	3	--	--	9	3	1	--	--	1	--	--	1	3	14	13	15	3	4	1	1	--	--	--
90	--	--	--	1	1	--	5	2	--	--	--	--	--	--	--	4	22	19	11	7	4	--	1	--	--	--
95	--	--	--	--	1	1	3	1	--	--	--	1	--	--	2	11	48	37	14	10	6	--	--	1	--	--
100	--	--	--	--	1	--	--	--	--	--	1	--	--	1	1	6	63	31	29	6	--	--	--	--	--	--
105	--	--	--	--	1	--	2	1	--	--	--	2	--	--	3	16	76	39	24	5	--	--	--	--	--	--
110	--	--	--	--	2	--	2	--	--	--	2	--	--	1	--	17	55	45	15	7	3	--	--	--	--	--
115	--	--	--	--	1	--	--	2	--	--	--	1	--	--	1	12	53	27	17	2	2	--	1	1	--	--
120	--	--	--	1	--	--	1	1	--	--	--	--	--	--	--	6	32	18	18	4	--	--	--	--	--	--
125	--	--	--	1	--	--	--	--	--	--	--	2	--	--	--	5	18	18	12	3	--	--	--	--	--	--
130	--	--	--	1	--	--	1	1	2	--	--	1	--	--	--	3	15	4	4	1	--				1	--
135	--	--	--	--	1	--	1	--	--	--	--	--	2	2	1	1	5	6	5	--	--		AGE 1		--	--
140	--	--	--	1	--	--	1	--	--	--	1	2	1	1	1	3	5	1	2	2	--	--	--	--	--	--
145	--	--	--	--	--	--	1	--	1	--	--	4	4	2	5	6	7	2	3	1	--	--	--	--	--	--
150	--	--	--	--	--	--	--	1	1	--	--	3	2	1	6	10	4	1	1	1	--	--	--	--	--	--
155	--	--	--	--	--	--	--	--	--	--	--	6	7	3	19	22	5	3	1	--	--	--	--	--	--	--
160	--	--	--	--	--	--	--	--	2	--	--	8	8	6	27	17	3	1	1	--	--	--	--	--	--	--
165	--	--	--	--	--	--	--	--	--	--	1	10	25	10	27	25	5	--	--	--	--	--	--	--	--	--
170	--	--	--	--	--	--	--	--	1	--	--	9	16	16	25	25	4	--	--	--	--	--	--	--	--	--
175	--	--	--	--	--	--	--	--	--	--	--	15	12	14	45	12	1	--	--	--	--	--	--	--	--	--
180	--	--	--	--	--	--	1	--	1	--	3	9	15	19	35	9	1	2	--	--	--	--	--	--	--	--
185	--	--	--	--	--	--	--	--	--	--	1	12	16	10	22	12	--	1	--	--	--				--	--
190	--	--	--	--	--	--	--	--	--	--	4	12	16	20	22	8	--	--	--	1	--		AGE 2		--	--
195	--	--	--	--	--	--	1	--	--	--	--	13	6	5	18	2	--	--	--	--	--	--	--	--	--	--
200	--	--	--	--	--	--	--	--	--	--	--	4	13	7	9	1	--	--	--	--	--	--	--	--	--	--
205	--	--	--	--	--	--	--	--	--	--	2	4	8	1	3	--	--	--	--	--	--	--	--	--	--	--
210	--	--	--	--	--	--	--	--	--	--	--	3	7	--	5	--	--	--	--	--	--	--	--	--	--	--
215	--	--	--	--	--	--	--	--	--	--	1	3	3	3	4	--	--	--	--	--	--	--	--	--	--	--
220	--	--	--	--	--	--	--	--	--	--	--	7	4	1	2	--	--	--	--	--	--	--	--	--	--	--
225	--	--	--	--	--	--	--	--	--	--	--	1	5	1	--	2	--	--	--	--	--	--	--	--	--	--
230	--	--	--	--	--	--	--	--	--	--	--	3	2	--	3	--	2	--	--	--	--	--	--	--	--	--
235	--	--	--	--	--	--	--	--	--	--	--	3	3	--	1	--	1	--	--	--	--				--	--
240	--	--	--	--	--	--	--	--	--	--	--	4	5	1	--	--	--	--	--	--	--		AGE 3		--	--
245	--	--	--	--	--	--	--	--	--	--	--	--	3	--	*1	1	--	--	--	--	--	--	--	--	--	--
250	--	--	--	--	--	--	--	--	--	--	--	3	1	1	1	--	--	--	--	--	--	--	--	--	--	--
255	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--
260	--	--	--	--	--	--	--	--	--	--	--	2	1	--	1	--	--	--	--	--	--	--	--	--	--	--
265	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	1	--	--	--	--		AGE 4		--	--
270	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--				--	--
Totals	7	--	--	85	21	17	407	72	14	4	19	151	186	126	291	241	461	309	569	338	193	141	127	137	19	8

TABLE A-22
Waddell Creek, SteeIhead: Stream Fish Checked Through Downstream Trap, 1936-37; Length-frequency Distribution by Two-week Periods

Length in mm .	Oct. 1- 14	$\begin{gathered} \text { Oct. } \\ 15-28 \end{gathered}$	$\begin{gathered} \text { Oct. } \\ 29- \\ \text { Nov. } \\ 11 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Nov. } \\ & 12-25 \end{aligned}$	$\begin{gathered} \text { Nov. } \\ 26- \\ \text { Dec. } 9 \end{gathered}$	$\begin{gathered} \text { Dec. } \\ 10-23 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Dec. } \\ \text { 24-Jan. } \\ 6 \end{array}$	$\begin{array}{\|c} \hline \text { Jan. } 7- \\ 20 \end{array}$	$\begin{array}{\|c} \text { Jan. } \\ \text { 21-Feb. } \\ 3 \end{array}$	Feb.417	$\begin{array}{\|c\|} \hline \text { Feb. } \\ 18- \\ \text { Mar. } 3 \end{array}$	Mar. 417	$\begin{aligned} & \text { Mar. } \\ & 18-31 \end{aligned}$	$\begin{gathered} \text { Apr. 1- } \\ 14 \end{gathered}$	$\begin{gathered} \text { Apr. } \\ 15-28 \end{gathered}$	$\begin{array}{\|c\|c} \text { Apr. } \\ \text { 29-May } \\ 12 \end{array}$	$\begin{gathered} \text { May } \\ 13-26 \end{gathered}$	$\begin{gathered} \text { May } \\ 27- \\ \text { June } 9 \end{gathered}$	$\begin{gathered} \text { June } \\ 10-23 \end{gathered}$	$\begin{array}{\|c} \text { June } \\ \text { 24-July } \\ 7 \end{array}$	July 8- 21	$\begin{array}{\|c\|} \hline \text { July } \\ 22- \\ \text { Aug. } 4 \end{array}$	$\begin{gathered} \text { Aug. 5- } \\ 18 \end{gathered}$	$\begin{gathered} \text { Aug. } \\ 19 . \\ \text { Sept. } 1 \end{gathered}$	$\begin{aligned} & \text { Sept. } \\ & 2-15 \end{aligned}$	$\begin{aligned} & \text { Sept. } \\ & 16-30 \end{aligned}$
21-25	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
30	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	4	--	--	1	--	--	--	--	--
35	--	--	--	--	--	--	--	--	--	--	--	--	--		GE +		--	2	14	31	9	--	--	--	2	--
40	--	--	--	--	--	--	--	1	--	--	--	--	--		GE +		--	2	5	102	101	2	8	2	3	--
45	--	--	--	--	--	--	4	--	--	--	--	--	--	--	--	--	1	1	5	83	125	2	23	7	11	4
50	1	--	--	--	1	2	9	2	--	--	--	--	--	--	--	--	3	4	4	50	91	3	26	11	10	4
55	1	--	--	1	1	4	*20	2	3	3	--	--	--	--	--	--	11	35	11	28	78	9	31	9	16	7
60	--	--	--	3	--	4	27	1	--	--	--	--	--	--	--	--	5	65	40	12	63	3	29	9	11	2
65	1	--	--	3	--	7	24	3	1	1	1	--	--	--	--	--	2	70	61	22	46	3	13	7	8	--
70	2	--	--	4	--	4	33	4	--	1	3	--	--	--	--	--	--	32	41	35	29	4	6	2	3	--
75	--	--	--	4	1	5	23	2	1	8	--	--	--	--	--	--	--	1	12	33	42	3	10	1	2	--
80	--	--	--	1	--	2	21	2	--	2	2	--	--	1	--	2	3	2	3	26	37	--	3	2	1	--
85	--	1	--	1	--	1	6	1	--	--	1	--	1	2	1	--	3	8	5	19	25	1	2	--	1	--
90	--	--	--	--	--	1	13	2	1	--	1	--	--	1	--	1	16	25	5	5	8	--	2	--	1	--
95	--	1	--	--	--	--	3	1	--	1	--	--	--	--	--	--	32	33	8	2	5	--	--	2	--	--
100	--	--	--	1	--	--	2	--	1	--	--	1	--	--	1	2	36	51	4	3	5	--	--	--	--	--
105	--	--	--	--	--	--	1	1	--	1	1	--	--	--	--	3	53	68	16	5	2	--	--	--	--	--
110	--	--	--	--	--	--	1	--	--	1	--	1	--	--	--	8	42	66	20	4	1	--	--	--	--	--
115	--	1	--	--	--	--	1	--	--	2	--	2	--	1	--	4	47	53	20	7	5	--	--	--	--	--
120	--	--	--	--	--	--	1	--	--	2	2	1	--	--	--	1	23	43	22	3	3	--	--	1	--	--
125	--	--	--	--	--	1	--	--	--	4	1	--	--	--	--	1	12	24	13	2	3	--	--	--	--	--
130	--	--	--	--	--	1	1	--	--	1	--	--	--	2	--	--	9	13	10	1	--		AGE 1		--	--
135	--	--	--	--	--	--	--	--	--	2	3	2	--	4	2	2	8	6	2	1	1		AGE 1		--	--
140	--	--	--	--	--	--	--	--	--	1	3	1	--	2	2	1	3	2	1	--	--	--	--	--	--	--
145	--	--	--	--	--	--	--	--	--	1	1	3	--	4	2	4	5	1	1	--	1	--	--	--	--	--
150	--	--	--	1	--	--	1	--	1	2	2	2	3	8	6	10	5	2	--	--	--	--	--	--	--	--
155	--	--	--	--	--	--	--	--	--	--	2	3	2	5	11	7	11	3	1	--	--	--	--	--	--	--
160	--	--	--	--	--	--	--	--	--	--	1	3	7	8	10	11	8	1	--	--	--	--	--	--	--	--
165	--	--	--	--	--	--	--	--	--	1	1	4	1	10	8	15	11	1	--	--	--	--	--	--	--	--
170	--	--	--	--	--	--	--	--	--	--	--	6	3	6	10	19	12	--	--	--	--	--	--	--	--	--
175	--	--	--	--	--	--	--	--	--	1	1	2	1	7	5	15	4	1	--	--	--	--	--	--	--	--
180	--	--	--	--	--	--	1	--	--	--	7	8	1	4	5	13	2	--	--	--	--	--	--	--	--	--
185	--	--	--	--	--	--	--	--	--	--	1	4	1	--	3	4	3	--	--	--	--	--	--	--	--	--
190	--	--	--	--	--	--	--	--	--	--	--	6	1	1	5	4	1	--	--	--	--		AGE 2		--	--
195	--	--	--	--	--	--	--	--	--	--	5	2	1	3	1	2	3	--	--	--	--				1	--
200	--	--	--	--	--	--	--	--	--	--	--	6	1	1	--	--	1	--	--	--	--	--	--	--	--	--
205	--	--	--	--	--	--	--	--	--	--	--	3	1	1	1	--	1	--	--	--	--	--	--	--	--	--
210	--	--	--	--	--	--	--	--	--	--	1	2	--	--	--	1	--	--	--	--	--	--	--	--	--	--
215	--	--	--	--	--	--	--	--	--	--	1	1	--	--	--	--	--	1	--	--	--	--	--	--	--	--
220	--	--	--	--	--	--	--	--	--	--	1	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--
225	--	--	--	--	--	--	--	--	--	--	--	2	--	--	1	--	--	--	--	--	--	--	--	--	--	--
230	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--		AGE 3		--	--
235	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--				--	--
240	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
245	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
250	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
255	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--
260	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
265	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--		AGE 4		--	--
270	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	${ }^{1} 1$	*1	--	$\dagger 1$	--	--				--	--
Totals	5	3	--	19	3	32	192	22	8	35	42	65	25	71	74	132	378	620	325	474	681	30	153	53	70	17

TABLE A-23
Waddell Creek, SteeIhead: Stream Fish Checked Through Downstream Trap, 1937-38; Length-frequency Distribution by Two-week Periods

Length in mm.	$\begin{gathered} \text { Oct. 1- } \\ 14 \end{gathered}$	$\begin{gathered} \text { Oct. } 15- \\ 28 \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Oct. 29- } \\ \text { Nov. } 11 \end{array}$	$\begin{gathered} \text { Nov. 12- } \\ 25 \end{gathered}$	Nov. 26Dec. 9	$\begin{array}{\|c} \text { Dec. } 10- \\ 23 \end{array}$	Dec. 24- Jan. 6	$\begin{gathered} \text { Jan. } 7- \\ 20 \end{gathered}$	$\begin{gathered} \text { Jan. } 21- \\ \text { Feb. } 3 \end{gathered}$	$\begin{aligned} & \text { Feb. } \\ & 4-17 \end{aligned}$	Feb. 18Mar. 3	$\begin{gathered} \text { Mar. 4- } \\ 17 \end{gathered}$	Mar. 18- 31	$\begin{gathered} \text { Apr. 1- } \\ 14 \end{gathered}$	$\begin{array}{\|c} \text { Apr. } 15- \\ 28 \end{array}$	$\begin{array}{\|c\|} \text { Apr. 29- } \\ \text { May } 12 \\ \hline \end{array}$	May 1326	May 27June 9	$\begin{array}{c\|} \hline \text { June } 10- \\ 23 \end{array}$	June 24July 7	July 821	July 22- Aug. 4	$\underset{18}{\text { Aug. } 5-}$	\| Aug. 19- $\text { Sept. } 1$	$\underset{15}{\text { Sept. 2- }}$	$\begin{gathered} \text { Sept. } \\ 16-30 \end{gathered}$
21-25	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
30	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
35	--	--	2	--	--	--	--	--	--	--	--	--	--		AGE +		--	--	--	1	--	--	--	--	--	--
40	2	1	4	2	1	--	--	2	--	--	--	--	--				--	1	1	4	4	11	1	--	--	--
45	2	3	10	11	6	2	1	1	--	--	--	--	--	--	--	--	1	4	1	8	21	31	2	1	--	1
50	2	1	11	43	9	2	2	2	1	--	--	--	--	--	--	--	5	8	1	19	42	44	6	9	--	4
55	1	8	10	53	16	3	1	1	--	1	--	--	--	--	--	1	15	33	6	54	45	44	15	28	13	10
60	3	2	11	55	11	3	1	1	--	--	1	--	--	--	--	1	18	27	29	68	33	37	16	44	10	17
65	1	1	--	26	3	3	1	3	1	--	--	--	--	--	--	--	10	41	43	96	49	36	16	25	15	11
70	1	6	2	11	5	2	1	--	--	--	--	--	--	--	--	--	4	31	75	102	35	24	13	19	12	9
75	--	--	--	8	2	1	--	1	1	--	-	--	--	--	--	--	2	7	35	76	48	14	18	14	2	4
80	--	2	--	9	2	4	--	--	--	--	--	2	--	1	--	--	7	6	17	46	27	16	5	10	3	1
85	1	--	--	7	--	1	--	--	--	--	--	--	--	1	--	1	9	9	4	32	8	7	3	3	3	--
90	1	1	--	5	--	2	--	--	2	--	--	--	--	2	--	--	23	19	5	10	17	6	3	3	1	--
95	1	--	--	1	--	2	1	1	--	--	--	--	--	--	--	1	34	14	--	6	5	3	--	1	1	--
100	--	1	--	1	--	1	--	--	1	--	1	--	--	--	--	3	32	22	9	5	3	3	1	3	1	--
105	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	10	32	32	9	7	4	3	--	1	1	1
110	--	--	--	1	--	--	--	--	--	--	--	1	1	--	--	8	33	20	12	10	1	--	--	--	--	--
115	--	--	--	1	--	--	1	--	--	--	--	1	--	--	--	4	28	23	10	6	4	1	--	2	--	--
120	--	--	--	--	--	1	--	--	--	--	1	--	--	--	--	2	12	21	11	5	3	--	--	--	--	--
125	--	1	--	1	--	1	--	--	1	--	--	--	--	--	--	2	6	11	4	2	2	--	--	--	--	--
130	--	--	--	2	1	1	--	--	1	--	--	--	--	--	1	2	9	3	2	2	2				--	--
135	--	--	--	--	1	1	--	--	--	--	2	1	--	--	1	2	7	3	4	3	--		AGE 1		--	--
140	--	--	--	1	--	--	--	--	--	--	1	2	--	--	3	--	6	3	1	1	--	--	--	--	--	--
145	--	--	--	--	--	--	--	--	1	--	--	1	--	3	2	6	13	4	1	1	--	--	--	--	--	--
150	1	--	--	--	--	--	--	--	--	--	--	--	--	4	8	20	16	2	1	--	--	--	1	--	--	--
155	--	--	--	--	--	--	--	--	--	--	1	--	2	4	9	17	19	2	--	--	--	--	--	--	--	--
160	--	--	--	--	1	--	--	--	--	--	2	1	--	8	12	14	25	1	--	--	--	--	--	--	--	--
165	--	--	--	--	--	--	--	--	--	--	1	--	--	5	11	16	15	1	--	--	--	--	--	--	--	--
170	--	--	--	--	--	--	--	--	--	--	2	2	--	3	11	19	8	1	--	--	--	--	--	--	--	--
175	--	--	--	--	--	--	--	--	--	--	2	1	--	2	6	12	11	--	--	--	--		AGE 2		--	--
180	--	--	--	--	--	--	--	--	--	--	4	1	--	2	4	3	3	--	--	--	--				--	--
185	--	--	--	--	--	--	--	--	--	--	1	4	--	1	4	5	2	--	--	--	--	--	--	--	--	--
190	--	--	--	--	--	--	--	--	--	--	1	2	--	2	--	2	--	1	--	--	--	--	--	--	--	--
195	--	--	--	--	--	--	--	--	--	--	1	--	--	1	1	--	1	--		--	--	--	--	1	--	--
200	--	--	--	--	--	--	--	--	--	--	1	3	--	1	1	1	--	--	--	--	--	--	--	--	--	--
205	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
210	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
215	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
220	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--
225	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	1	--	--	--	--	--	--	--	--	--
230	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
235	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--				--	--
240	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--		AGE 3		--	--
245	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
250	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
255	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
260	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
265	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
270	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
Totals	16	27	50	238	58	31	9	12	9	1	25	22	3	40	75	153	409	350	281	564	353	280	100	164	62	58

TABLE A-24
Waddell Creek, Steelhead: Stream Fish Checked Through Downstream Trap, 1938-39; Length-frequency Distribution by Two-week Periods

Length in mm .	Oct. 1- 14	$\begin{gathered} \text { Oct. } \\ 15-28 \end{gathered}$	$\begin{gathered} \text { Oct. } \\ 29- \\ \text { Nov. } \\ 11 \\ \hline \end{gathered}$	$\begin{aligned} & \text { Nov. } \\ & 12-25 \end{aligned}$	$\begin{gathered} \text { Nov. } \\ 26- \\ \text { Dec. } 9 \end{gathered}$	$\begin{gathered} \text { Dec. } \\ 10-23 \end{gathered}$	$\begin{aligned} & \text { Dec. } \\ & 24- \\ & \text { Jan. } 6 \end{aligned}$	$\begin{gathered} \text { Jan. } 7- \\ 20 \end{gathered}$	$\begin{gathered} \text { Jan. } \\ 21- \\ \text { Feb. } 3 \end{gathered}$	Feb.4- 17	Feb. 18Mar. 3	$\begin{aligned} & \text { Mar. } \\ & 4-17 \end{aligned}$	$\begin{gathered} \text { Mar. } \\ 18-31 \end{gathered}$	$\begin{aligned} & \text { Apr. } \\ & 1-14 \end{aligned}$	$\begin{gathered} \text { Apr. } \\ \text { 15-28 } \end{gathered}$	$\begin{gathered} \text { Apr. } \\ 29- \\ \text { May } \\ 12 \end{gathered}$	$\begin{gathered} \text { May } \\ 13-26 \end{gathered}$	$\begin{gathered} \text { May } \\ 27- \\ \text { June } 9 \end{gathered}$	$\begin{gathered} \text { June } \\ 10-23 \end{gathered}$	$\begin{aligned} & \text { June } \\ & 24- \\ & \text { July } 7 \end{aligned}$	$\begin{gathered} \text { July } 8 \text { - } \\ 21 \end{gathered}$	$\begin{gathered} \text { July } \\ 22- \\ \text { Aug. } 4 \end{gathered}$	$\begin{gathered} \text { Aug. } \\ 5-18 \end{gathered}$	$\begin{gathered} \text { Aug. } \\ \text { 19- } \\ \text { Sept. } 1 \end{gathered}$	$\begin{aligned} & \text { Sept. } \\ & 2-15 \end{aligned}$	$\begin{aligned} & \text { Sept. } \\ & 16- \\ & 30 \end{aligned}$
21-25	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
30	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--		GE +		2	--	--	--	--	--	--	--
35	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--		+		2	--	--	--	2	--	--	--
40	--	--	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	3	--	1	2	1	1	--	--
45	2	1	7	--	7	1	6	--	1	--	--	--	--	--	--	--	--	--	20	4	2	--	5	5	4	2
50	7	2	18	1	24	21	11	4	4	1	--	--	--	--	--	--	1	9	33	12	17	13	13	13	5	5
55	29	5	47	--	87	51	23	12	14	1	--	1	--	--	--	1	7	9	53	23	26	22	25	16	14	15
60	31	2	70	1	98	55	28	25	13	1	--	1	--	--	--	--	3	5	35	20	21	15	24	15	5	13
65	17	2	45	2	88	55	15	17	12	2	--	4	--	1	--	1	2	5	25	8	11	5	5	10	3	2
70	10	--	23	--	50	31	19	11	9	7	--	2	--	--	4	1	--	2	9	4	4	5	5	4	2	6
75	10	1	20	--	38	22	8	14	5	3	--	4	2	5	10	6	6	1	3	1	1	2	2	--	--	4
80	5	2	7	--	33	6	5	4	4	3	--	1	2	12	17	36	10	--	4	1	--	--	2	1	--	1
85	--	--	7	--	9	14	2	6	1	3	--	--	2	14	54	73	33	3	4	--	--	--	--	--	1	--
90	1	--	4	--	2	6	3	2	3	--	--	--	1	30	82	114	69	14	6	1	--	--	--	1	--	--
95	1	1	9	--	6	--	1	1	1	--	--	--	5	24	107	155	88	10	8	2	1	--	--	1	--	2
100	1	--	1	--	6	--	1	--	1	--	--	2	1	15	96	151	111	15	5	1	--	--	--	--	--	3
105	--	--	1	--	3	1	--	1	--	--	--	1	1	18	73	111	101	11	5	-	--	--	--	--	1	1
110	2	--	3	--	1	--	--	--	--	--	--	1	1	10	47	94	80	9	5	--	--	--	--	--	--	--
115	1	--	--	--	2	--	--	--	--	--	--	--	1	4	25	53	53	3	2	2	1		AGE 1		1	--
120	--	--	--	--	2	--	--	--	--	--	--	1	--	--	12	27	26	2	7	3	--		AGE 1		1	--
125	1	--	--	--	1	--	--	--	1	--	1	--	1	2	7	16	14	2	--	--	--	--	--	--	--	--
130	--	--	--	--	1	--	--	--	--	--	--	--	--	5	8	3	7	2	--	--	--	--	--	--	--	--
135	--	--	--	--	1	1	--	--	--	--	--	--	6	11	14	14	6	--	--	--	--	1	1	--	--	--
140	--	--	--	--	--	1	--	--	--	1	--	--	4	19	21	18	8	--	--	--	--	--	--	--	--	--
145	--	--	--	--	--	1	--	--	--	--	--	1	3	46	38	17	4	--	--	--	--	--	--	--	--	--
150	--	--	1	--	--	--	--	1	--	--	--	--	14	45	50	28	7	--	--	--	--	--	--	--	--	--
155	--	--	--	--	--	--	--	--	--	--	--	1	25	67	50	16	3	--	--	--	--	--	--	--	--	--
160	--	--	--	--	--	--	--	--	--	--	--	3	21	78	54	14	1	--	--	--	--	--	--	--	--	--
165	1	--	--	--	--	1	--	--	--	--	--	3	29	91	56	14	2	--	--	--	--	--	--	--	--	--
170	--	--	--	--	--	--	--	--	--	1	--	3.	33	89	39	10	--	--	--	--	--		AGE 2		--	--
175	--	--	--	--	--	--	1	--	--	--	--	5	34	78	34	9	1	--	--	--	--		AGE 2		--	--
180	--	--	--	--	--	--	--	--	--	--	--	6	30	47	24	3	2	--	--	--	--	--	--	--	--	--
185	--	--	--	--	--	--	--	--	--	--	1	5	27	39	13	3	--	--	--	--	--	--	--	--	--	--
190	--	--	--	--	--	--	--	--	--	--	--	4	31	31	10	1	--	--	--	--	--	--	--	--	--	--
195	--	--	--	--	--	--	--	--	--	--	1	3	20	25	8	1	--	--	--	--	--	--	--	--	--	--
200	--	--	--	--	--	--	--	--	--	--	--	3	20	20	5	1	--	--	--	--	--	--	--	--	--	--
205	--	--	--	--	--	--	--	--	--	--	--	1	15	15	3	1	1	--	--	--	--	--	--	--	--	--
210	--	--	--	--	--	--	--	--	--	--	1	1	11	14	4	1	--	--	--	--	--	--	--	--	--	--
215	--	--	--	--	--	--	--	--	--	--	--	2	11	9	1	1	--	--	--	--	--	--	--	--	--	--
220	--	--	--	--	--	--	--	--	--	--	--	4	6	6	2	--	--	--	--	--	--	--	--	--	--	--
225	--	--	--	--	--	--	--	--	--	--	--	1	7	3	3	2	--	--	--	--	--	--	--	--	--	--
230	--	--	--	--	--	--	--	--	--	--	--	--	3	1	--	--	--	--	--	--	--	--	--	--		--
235	--	--	--	--	--	--	--	--	--	--	--	1	3		1	1	--	1	--	*1	--	--	--	--	--	--
240	--	--	--	--	--	--	--	--	--	--	--	--	1	2	1	--	--	--	--	--	--				--	--
245	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	1	--	--	--	--		AGE 3		--	--
250	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--
255	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--
260	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--
265	--	--	--	--	--	--	--	--	--	--	-	--	1	1	--	--	--	--	--	--	--	---	--	--	--	--
270	--	--	--	--	--	--	--	--	--	--	--	$1(30 \mathrm{~cm})$	--	$1(28 \mathrm{~cm})$	--	--	--	--	--	--			AGE 4		--	--
Totals	119	16	258	4	459	267	123	98	69	23	4	66	374	880	973	997	647	105	231	83	85	65	85	67	37	54

TABLE A-25

Length in mm .	$\begin{array}{r} I \\ I \\ \dot{B} \\ \hline \end{array}$			$\begin{aligned} & \text { ๙ } \\ & \text { İ } \\ & \text { ̇̀ } \\ & \text { Z } \end{aligned}$				$\begin{aligned} & \text { Ǹ } \\ & \text { İ } \\ & \text { ji } \end{aligned}$		$\begin{aligned} & \underset{\sim}{j} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{i} \end{aligned}$		$\begin{aligned} & \bar{F} \\ & \dot{F} \\ & \stackrel{y}{\#} \end{aligned}$		$\begin{aligned} & \pm \\ & \frac{J}{I} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{1}{n} \\ & \stackrel{1}{2} \\ & \stackrel{3}{4} \\ & \hline \end{aligned}$				$\begin{aligned} & \text { N} \\ & \stackrel{1}{\circ} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	N 2 \vdots \vdots \vdots 0 0	$\begin{aligned} & \overrightarrow{\mathrm{I}} \\ & \dot{\infty} \\ & \text { ¿} \end{aligned}$	$\begin{aligned} & \dot{+} \\ & \text { sp } \\ & \underset{\sim}{c} \\ & \underset{\sim}{c} \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{1} \\ & \substack{\text { mon } \\ \hline} \end{aligned}$			
21-25	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
30	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
35	--	--	--	--	--	--	--	--	--	--	--	--	--	--		AGE +		1	--	--	--	--	--	--	--	--
40	--	--	--	--	--	--	--	--	--	--	--	--	--	--		AGE +		--	--	--	--	--	1	--	--	--
45	2	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	1	--	--	--	--	--
50	14	5	2	--	--	1	--	--	--	1	--	--	--	--	--	--	--	1	3	11	--	2	2	2	--	1
55	25	13	4	2	--	6	1	--	--	--	--	--	--	--	--	--	--	3	7	32	16	6	26	5	1	--
60	21	5	6	--	--	6	6	--	--	--	--	--	--	--	--	--	--	2	8	42	30	51	48	9	2	1
65	20	2	10	4	2	6	3	--	--	--	--	--	--	--	--	--	--	4	28	61	39	99	91	18	6	--
70	5	2	2	1	--	6	6	1	1	--	--	--	1	--	--	--	--	5	25	73	42	94	84	13	9	3
75	2	2	--	2	--	--	3	--	--	--	--	--	--	--	--	--	--	4	25	73	31	112	92	9	6	3
80	1	2	--	1	--	2	4	--	1	--				--	1	--	--	2	25	54	31	77	70	6	6	3
85	--	--	1	1	--	--	--	--	--	--		AGE 1		--	1	2	--	4	18	63	19	56	50	1	1	3
90	--	--	--	--	--	--	1	--	--	--	--	--	--	--	2	3	--	6	13	39	24	59	44	2	6	1
95	1	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	1	7	13	23	14	34	18	1	1	1
100	2	1	--	--	--	--	--	--	--	--	--	--	--	1	3	3	3	8	7	17	6	32	15	--	1	--
105	1	--	--	--	--	2	--	1	--	1	--	--	--	--	1	2	5	30	23	16	8	11	11	--	--	1
110	2	--	--	--	--	--	--	1	--	1	--	--	--	--	--	6	5	32	9	8	3	12	7	1	1	--
115	1	--	1	--	--	1	3	--	--	--	--	--	1	--	1	1	2	46	22	11	1	3	5	3	--	--
120	2	--	1	--	--	--	1	2	--	--	--	--	--	--	--	5	8	64	10	7	--	5	2	1	--	1
125	2	--	--	--	--	--	--	1	1	--	1	--	2	1	--	3	10	58	13	4	1	6	1	1	--	--
130	2	--	1	--	--	--	--	--	--	--	--	1	2	--	--	--	3	44	9	4	2	--	--	2	--	--
135	1	--	--	--	--	--	--	--	--	2	--	--	1	--	--	--	3	36	11	3	1	3	2	2	1	1
140	--	--	--	--	--	--	--	--	--	--	1	--	1	--	7	--	6	23	4	2	--	2	6	1	--	2
145	--	--	--	--	--	--	--	1	--	--	1	--	7	--	7	4	--	13	2	--	--	2	--	2	2	1
150	--	--	--	--	--	--	--	--	--	--	1	1	8	2	13	3	3	8	1	--	--	1	1	--	--	--
155	--	--	--	--	--	1	--	--	--	--	--	--	8	1	18	5	6	6	2	1	--	1	--	--	--	1
160	--	--	--	--	--	--	1	--	--	--	--	--	7	2	11	3	4	5	1	--	--	1	--	1	--	--
165	--	--	--	--	--	1	1		AGE 2		--	--	6	2	9	4	7	7	2	--	--	--	--	--	--	--
170	--	--	--	--	--	1	--		AGE 2		--	--	10	--	9	--	7	2	1	--	--	--	--	--	--	--
175	--	--	--	--	--	--	--	--	--	--	--	1	5	--	1	1	3	3	1	--	--	--	--	--	--	--
180	--	--	--	--	--	--	--	--	--	--	--	2	4	--	1	1	1	2	1	--	--	--	--	--	1	--
185	--	--	--	--	--	--	--	--	--	--	--	--	3	2	--	--	2	3	--	--	--	--	--	--	--	--
190	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	2	--	--	--	--	--	--	--	--
195	--	--	--	--	--	--	1	--	--	--	--	--	3	--	1	--	--	--	--	--	--	--	--	--	--	--
200	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--
205	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
210	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--
215	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
220	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
225	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
230	--	--	--	--	--	--	--				--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
235	--	--	--	--	--	--	--		AGE 3		--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
240	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
245	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
250	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
255	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
260	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
265	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
270	--		AGE 4		--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
275	1		AGE 4		--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
Totals	105	34	28	11	2	33	31	7	3	5	4	5	71	12	86	46	80	431	285	544	269	669	576	80	44	23

TABLE A-26
Waddell Creek, SteeIhead: Stream Fish Checked Through Downstream Trap, 1940-41; Length-frequency Distribution by Two-week Periods

Length in mm	$\begin{gathered} \text { Oct. 1- } \\ 14 \end{gathered}$	$\begin{gathered} \text { Oct. } \\ 15-28 \end{gathered}$	$\begin{gathered} \text { Oct. } \\ 29- \\ \text { Nov. } \\ 11 \end{gathered}$	$\begin{aligned} & \text { Nov. } \\ & 12-25 \end{aligned}$	$\begin{gathered} \text { Nov. } \\ 26- \\ \text { Dec. } 9 \end{gathered}$	$\begin{gathered} \text { Dec. } \\ 10-23 \end{gathered}$	$\begin{aligned} & \text { Dec. } \\ & 24- \\ & \text { Jan. } 6 \end{aligned}$	$\begin{gathered} \text { Jan. } 7- \\ 20 \end{gathered}$	$\begin{gathered} \text { Jan. } \\ 21- \\ \text { Feb. } 3 \end{gathered}$	Feb.417	$\begin{gathered} \text { Feb. } \\ 18- \\ \text { Mar. } 3 \end{gathered}$	$\begin{aligned} & \text { Mar. } \\ & 4-17 \end{aligned}$	$\begin{gathered} \text { Mar. } \\ \text { 18-31 } \end{gathered}$	$\begin{aligned} & \text { Apr. } \\ & 1-14 \end{aligned}$	$\begin{gathered} \text { Apr. } \\ 15-28 \end{gathered}$	$\begin{gathered} \text { Apr. } \\ 29- \\ \text { May } \\ 12 \end{gathered}$	$\begin{gathered} \text { May } \\ 13-26 \end{gathered}$	$\begin{gathered} \text { May } \\ 27- \\ \text { June } 9 \end{gathered}$	$\begin{gathered} \text { June } \\ 10-23 \end{gathered}$	$\begin{aligned} & \text { June } \\ & 24- \\ & \text { July } 7 \end{aligned}$	July 8- 21	$\begin{gathered} \text { July } \\ 22- \\ \text { Aug. } 4 \end{gathered}$	$\begin{gathered} \text { Aug. } \\ 5-18 \end{gathered}$	$\begin{aligned} & \text { Aug. } \\ & \text { 19- } \\ & \text { Sept. } \end{aligned}$	$\begin{aligned} & \text { Sept. } \\ & 2-15 \end{aligned}$	$\begin{aligned} & \text { Sept. } \\ & 16-30 \end{aligned}$
21-25	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
30	--	--	--	--	--	--	--	--	--	--		GE +		--	1	--	--	--	--	--	--	--	--	--	--	--
35	--	--	--	--	--	--	--	--	--	--				--	1	--	--	--	--	--	--	--	--	--	--	--
40	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4	--	--	-	1	--	--	--	--	--	--	--
45	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	1	5	--	2	1	--	--	--	--	--
50	--	--	--	--	--	1	--	--	1	--	--	--	--	--	--	--	11	12	12	2	--	1	--	--	--	--
55	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	24	31	63	11	6	2	--	--	--	1
60	--	--	--	--	--	1	--	1	--	--	1	--	--	--	1	--	73	54	182	61	6	10	--	--	1	1
65	--	--	--	--	--	--	--	1	--	--	3	--	--	--	--	3	69	90	271	102	10	27	1	2	2	21
70	2	2	9	2	2	7	2	1	1	--	--	--	--	--	2	2	29	62	211	92	28	24	2	3	10	55
75	2	3	9	1	1	6	--	2	--	--	1	--	1	--	2	2	23	62	146	72	43	53	3	2	23	89
80	2	4	5	4	1	15	1	--	--	1	--	2	--	--	5	4	16	52	123	40	26	32	2	9	30	111
85	2	3	7	4	1	18	1	1	2	--	--	--	--	--	7	24	41	45	79	37	9	16	5	5	22	100
90	1	6	4	3	--	13	1	2	3	--	--	--	--	1	8	17	58	46	55	28	10	11	5	4	27	80
95	2	8	7	3	--	13	2	2	1	--	1	--	--	--	11	21	91	59	33	23	12	6	4	5	16	57
100	1	--	3	5	1	7	--	2	1	--	--	--	--	--	9	48	86	73	49	30	6	4	3	1	12	36
105	--	1	1	2	--	8	1	3	--	--	--	1	--	--	7	41	74	68	39	15	4	2	--	4	4	23
110	--	2	--	--	1	13	--	1	1	--	--	--	--	--	7	22	57	36	51	11	3	1	1	5	3	24
115	--	4	2	1	1	5	--	2	--	--	--	--	1	--	1	19	50	38	34	15	4	1	2	2	1	7
120	1	4	2	--	--	4	--	--	--	--	--	--	--	1	4	12	31	22	20	9	3	2	1	1	4	8
125	--	1	2	--	--	7	--	1	--	--	--	1	--	--	5	12	24	18	13	3	1	1	--	--	1	2
130	--	1	1	--	--	5	--	2	--	--	--	1	3	--	4	7	12	12	7	4	1	--	--	--	2	6
135	1	2	3	1	--	2	1	1	--	--	--	--	1	--	3	4	11	5	2	3	1	1	--	--	--	2
140	2	--	--	--	--	1	--	1	--	1	--	1	4	--	8	7	7	2	--	1	--	1	--	--	--	3
145	--	--	--	--	--	4	--		--	--	--	--	7	--	5	8	4	1	1	--	--	--	--	--	--	2
150	--	1	--	--	--	2	--	1	--	--	--	4	5	--	10	4	6	--	2	--	--	--	1	--	--	1
155	--	2	1	--	--	1	--	--	--	--	--		5	--	9	3	2	3	--	--	--	--		AGE 1		--
160	--	--	--	--	--	--	--	--	--	--	--	2	5	--	3	2	4	--	--	--	--	--		AGE 1		--
165	--	1	--	--	--	1	--	--	--	--	--	5	4	--	1	4	2	1	--	--	--	--	--	--	--	1
170	--	--	1	--	--	--	--	--	--	--	--	5	6	--	3	--	1	--	--	--	--	--	--	--	--	--
175	--	--	--	--	--	1	--	--	--	--	--	5	2	--	2	--	--	--	--	--	--	--	--	--	--	1
180	--	--	--	--	--	--	--	--	--	--	--	3	4	--	--	--	--	--	--	--	--	--	--	--	--	--
185	--	--	--	--	--	--	--	--	--	--	--		3	--	--	--	--	--	--	--	--	--	--	--	--	--
190	--	--	--	--	--	--	--	--	--	1	--	2	2	--	1	--	--	--	--	--	--	--				--
195	--	--	--	--	--	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--		aud 4		--
200	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
205	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--
210	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
215	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
220	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--
225	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--
230	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
235	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--		AGE 3		--
240	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--				--
245	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--
250	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
255	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
260	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--
265	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
270	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
Totals	16	45	57	26	8	135	9	25	10	3	6	34	56	2	124	268	808	797	1,394	561	174	195	30	43	158	631

TABLE A-27

Length in	Oct. 1- 14	$\begin{gathered} \text { Oct. } \\ 15-28 \end{gathered}$	$\begin{gathered} \text { Oct. } \\ 29- \\ \text { Nov. } \\ 11 \end{gathered}$	$\begin{aligned} & \text { Nov. } \\ & \text { 12-25 } \end{aligned}$	$\begin{gathered} \text { Nov. } \\ 26- \\ \text { Dec. } 9 \end{gathered}$	$\begin{gathered} \text { Dec. } \\ 10-23 \end{gathered}$	$\begin{gathered} \text { Dec. } \\ \text { 24-Jan. } \\ 6 \end{gathered}$	$\begin{gathered} \text { Jan. } 7- \\ 20 \end{gathered}$	$\begin{gathered} \text { Jan. } \\ \text { 21-Feb. } \\ 3 \end{gathered}$	Feb.4- 17	$\begin{aligned} & \text { Feb. } \\ & \text { 18- } \\ & \text { Mar. } 3 \end{aligned}$	Mar. 4- 17	$\begin{gathered} \text { Mar. } \\ 18-31 \end{gathered}$	$\begin{gathered} \text { Apr. 1- } \\ 14 \end{gathered}$	$\begin{aligned} & \text { Apr. } \\ & 15-28 \end{aligned}$	$\begin{gathered} \text { Apr. } \\ 29- \\ \text { May } 12 \end{gathered}$	$\begin{gathered} \text { May } \\ 13-26 \end{gathered}$	$\begin{gathered} \text { May } \\ 27- \\ \text { June } 9 \end{gathered}$	$\begin{gathered} \text { June } \\ 10-23 \end{gathered}$	$\begin{gathered} \text { June } \\ \text { 24-July } \\ 7 \end{gathered}$	$\begin{gathered} \text { July } 8 \text { 8- } \\ 21 \end{gathered}$	$\begin{gathered} \text { July } \\ 22- \\ \text { Aug. } 4 \end{gathered}$	$\begin{gathered} \text { Aug. } 5- \\ 18 \end{gathered}$	$\begin{aligned} & \text { Aug. } \\ & 19- \\ & \text { Sept. } 1 \end{aligned}$	$\begin{aligned} & \text { Sept. 2- } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Sept. } \\ & 16-30 \end{aligned}$
21-25	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--		AGE +		--	--
30	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	4	1	--	--	--	--	--	--	--	--
35	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3	2	--	4	--	--	--	1	--
40	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	2	1	3	3	7	1	1	--	--	--
45	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	5	1	5	5	22	4	1	1	--	1
50	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	13	10	14	20	42	15	3	--	--	--
55	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	22	19	51	33	80	19	9	--	1	--
60	1	--	1	--	--	--	--	--	--	--	--	--	--	--	--	2	12	41	102	83	121	42	10	4	5	5
65	5	6	5	4	1	2	2	--	1	2	1	--	--	--	--	--	7	44	118	114	128	41	6	1	8	8
70	16	12	20	5	8	8	4	--	1	--	2	--	--	1	--	1	5	20	71	103	92	21	3	1	12	7
75	37	25	32	5	5	9	5	--	--	--	2	1	--	1	--	4	4	6	51	43	52	12	4	1	4	10
80	25	35	31	6	15	10	3	1	1	--	--	--	--	--	--	6	16	10	35	32	23	5	1	--	4	8
85	12	25	26	4	10	10	6	--	--	--	1	--	--	1	--	16	31	19	46	12	7	4	1	1	--	6
90	23	25	19	4	13	6	1	--	1	1	--	--	1	1	1	28	48	24	51	13	10	3	--	1	1	2
95	17	11	11	3	10	7	--	--	2	--	--	--	--	2	--	26	87	59	70	31	5	3	--	3	--	5
100	6	10	9	2	5	5	1	--	--	--		AGE 1		4	1	29	109	59	94	32	12	1	--	1	2	1
105	9	5	1	1	7	2	2	--	--	--		AGE 1		1	1	40	93	56	90	28	8	--	--	1	4	4
110	--	4	8	2	5	1	--	--	--	--	--	--	--	1	3	31	84	52	75	30	8	--	--	2	1	4
115	4	3	4	--	3	2	--	--	2	--	1	1	--	2	--	21	57	34	73	31	1	--	--	--	1	5
120	--	1	4	1	5	--	--	1	--	--	2	1	--	5	2	18	29	26	43	20	4	1	1	--	2	3
125	1	1	3	1	--	2	--	--	--	--	1	--	1	5	5	13	20	9	18	12	5	--	1	--	1	4
130	--	--	3	--	2	--	--	--	--	--	1	--	4	14	3	21	10	5	13	5	4	--	--	--	1	1
135	--	1	3	1	1	--	--	--	--	--	--	1	6	22	9	22	12	4	7	4	3	--	--	--	1	1
140	--	2	3	--	1	1	--	--	--	--	6	3	8	29	8	19	5	2	2	1	--	--	--	--	--	1
145	--	--	1	--	1	--	--	--	--	--	4	3	18	29	8	18	12	2	4	--	2	--	--	--	--	1
150	--	1	1	--	--	--	--	--	--	--	2	3	13	37	3	26	7	--	1	--	1	--	--	--	--	--
155	--	--	2	--	--	--		AGE 2		--	4	6	17	33	9	10	2	2	1	--	--	--	--	--	--	--
160	--	--	--	--	--	--		AGE 2		--	3	10	17	24	3	13	2	--	--	--	--	--	--	--	--	--
165	--	--	--	--	--	--	--	--	--	--	5	6	17	15	1	1	2	2	--	--	--	--	--	--	--	--
170	--	--	1	--	--	--	--	--	--	1	3	9	15	13	2	4	--	1	--	--	--	--	--	--	--	--
175	--	--	--	--	--	--	--	--	--	--	3	9	14	12	--	2	--	--	--	--	--	--	--	--	--	--
180	--	--	--	--	--	--	--	--	--	--	1	5	8	11	--	2	--	--	--	--	--	--	--	--	--	--
185	--	--	--	--	--	--	--	--	--	--	5	6	6	11	--	2	1	--	--	--	--	--	--	--	--	--
190	--	--	--	--	1	--	--	--	1	--	4	3	9	7	1	--	1	--	--	--	--	--	--	--	--	--
195	--	--	--	--	--	--	--	--	--	--	2	7	6	6	--	1	1	--	--	--	--	--	--	--	--	--
200	--	--	--	--	--	--	--	--	--	--	1	4	8	2	--	2	--	--	--	--	--	--	--	--	--	--
205	--	--	--	--	--	--	--	--	--	--	1	2	6	1	--	--	--	--	--	--	--	--	--	--	--	--
210	--	--	--	--	--	--	--	--	--	--	--	2	--	3	--	--	1	--	--	--	--	--	--	--	--	--
215	--	--	--	--	--	--				--	--	1	2	2	--	--	--	--	--	--	--	--	--	--	--	--
220	--	--	--	--	--	--		AGE 3		--	--	3	2	2	--	--	--	--	--	--	--	--	--	--	--	--
225	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--
230	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
235	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
240	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--
245	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
250	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
255	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
260	--	--	--	--	--	--		AGE 4		--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
265	--	--	--	--	--	--		AGE 4		--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
270	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--
Totals	156	167	188	39	94	65	24	2	9	4	55	87	178	298	60	384	705	512	1,042	655	641	172	41	17	49	77

TABLE A-28
Waddell Creek, SteeIhead: Stream Fish Checked Through Upstream Trap, 28-34; Length-frequency Distribution by Two-week Periods

Length in mm .	$\begin{gathered} \text { Oct } \\ 1- \\ 14 \end{gathered}$	$\begin{aligned} & \text { Oct } \\ & 15- \\ & 28 \end{aligned}$	$\begin{gathered} \text { Oct } \\ 29- \\ \text { Nov } \\ 11 \end{gathered}$	$\begin{aligned} & \text { Nov } \\ & 12- \end{aligned}$	$\begin{gathered} \text { Nov } \\ 26- \\ \text { Dec } \\ 9 \end{gathered}$	$\begin{aligned} & \text { Dec } \\ & 10- \\ & 23 \end{aligned}$	$\begin{gathered} \text { Dec } \\ 24- \\ \text { Jan } 6 \end{gathered}$	$\begin{gathered} \text { Jan } \\ 7-20 \end{gathered}$	$\begin{gathered} \text { Jan } \\ 21- \\ \text { Feb } \\ 3 \end{gathered}$	$\begin{aligned} & \text { Feb } \\ & 4-17 \end{aligned}$	$\begin{gathered} \text { Feb } \\ 18- \\ \text { Mar } \\ 3 \end{gathered}$	$\begin{aligned} & \mathrm{Mar} \\ & 4-17 \end{aligned}$	$\begin{aligned} & \text { Mar } \\ & 18- \\ & 31 \end{aligned}$	$\begin{aligned} & \text { Apr } \\ & 1-14 \end{aligned}$	$\begin{aligned} & \text { Apr } \\ & 15- \\ & 28 \end{aligned}$	$\begin{gathered} \text { Apr } \\ 29- \\ \text { May } \\ 12 \end{gathered}$	$\begin{gathered} \text { May } \\ 13- \\ 26 \end{gathered}$	$\begin{gathered} \text { May } \\ 27 \\ \text { June } \\ 9 \end{gathered}$	$\begin{aligned} & \text { June } \\ & 10- \\ & 23 \end{aligned}$	$\begin{gathered} \text { Jun } \\ 24- \\ \text { July } \\ 7 \end{gathered}$	$\begin{gathered} \text { July } \\ 8-21 \end{gathered}$	$\begin{gathered} \text { July } \\ 22- \\ \text { Aug } \\ 4 \end{gathered}$	$\begin{gathered} \text { Aug } \\ 5-18 \end{gathered}$	$\begin{gathered} \text { Aug } \\ 19- \\ \text { Sept } \\ 1 \end{gathered}$	$\begin{aligned} & \text { Sept } \\ & 2-15 \end{aligned}$	$\begin{gathered} \text { Sept } \\ 16- \\ 30 \end{gathered}$		$\begin{gathered} \tilde{j} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & 0 \\ & \stackrel{\sim}{\aleph} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \widehat{6} \\ & \hat{6} \\ & \text { ñ } \end{aligned}$	$$	$\begin{aligned} & \underset{\infty}{\infty} \\ & \stackrel{\infty}{\alpha} \end{aligned}$	$\begin{aligned} & \dot{q} \\ & \dot{\alpha} \end{aligned}$	$\begin{aligned} & \overrightarrow{7} \\ & \dot{\circ} \\ & \dot{O} \end{aligned}$	$\frac{\tilde{T}}{\frac{1}{む}}$	$\underset{\sim}{\text { ¢ }}$
61-65	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	1
70	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	1	2	5
75	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	3	1	15	20
80	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	4	1	--	1	6	5	33	51
85	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4	--	1	--	5	4	58	72
90	--	--	--	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	--	2	1	1	1	3	11	66	87
95	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	3	1	1	2	6	5	63	82
100	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	3	--	1	3	--	11	64	83
105	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	4	5	2	6	4	2	14	55	93
110	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	2	--	3	2	5	3	4	8	45	72
115	--	--	--	--	--	--	--	--	--	,	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	2	3	--	2	8	5	3	14	37	74
120	--	--	--	--	--	--	--	3	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	1	2	2	1	4	3	5	11	33	62
125	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	1	--	--	--	--	--	--	--	--	--	5	1	4	1	7	5	6	13	30	72
130	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4	--	--	--	--	--	--	--	--	--	4	4	1	2	10	3	7	10	28	69
135	--	--	--	--	--	--	1	1	--	--	--	--	--	1	--	--	4	--	--	--	--	--	--	--	--	--	6	2	4	4	14	5	7	8	15	65
140	--	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	3	1	2	2	14	3	5	13	12	55
145	--	--	--	--	--	--	--	2	1	--	--	1	--	--	--	1	1	--	--	--	--	--	--	--	--	--	5	4	3	3	19	7	8	20	31	100
150	--	--	--	--	--	--	--	1	2	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	6	1	7	1	20	3	3	18	33	92
155	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	3	4	24	9	1	19	68	129
160	--	--	--	--	--	--	--	1	--	1	--	--	--	--	--	--	--	-	--	--	--	--	--	--	--	--	1	--	5	2	40	6	6	28	55	143
165	--	--	--	--	--	--	1	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	3	--	2	4	35	14	11	11	77	157
170	--	--	--	--	--	1	1	1	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	3	--	3	2	46	6	4	11	80	155
175	--	--	--	--	--	4	1	--	--	--	--	--	$\dagger(1)$	--	--	--	1	--	--	--	--	--	--	--	--	--	7	1	--	4	57	6	2	6	80	163
180	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	5	5	44	11	4	4	72	146
185	--	--	--	--	2	3	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	6	--	5	3	52	8	2	5	68	149
190	--	--	--	--	1	3	2	1	--	1	--	--	--	--	--	--	--	-	--	--	--	--	--	--	--	--	7	--	4	4	47	13	2	10	59	146
195	--	--	--	--	--	1	--	2	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3	--	8	4	49	11	3	5	27	110
200	--	--	--	--	--	3	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	6	1	13	8	36	10	2	5	16	97
205	--	--	--	--	--	--	1	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	--	10	5	18	4	--	12	17	68
210	--	--	--	--	--	--	4	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	6	1	7	4	8	4	--	11	10	51
215	--	--	--	--	--	--	--	3	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	12	3	11	7	--	5	5	44
220	--	--	--	--	--	2	1	2	--	1	--	--	\dagger (1)	$\dagger(3)$	\dagger (13)	\dagger (14)	\dagger (4)	\dagger (2)	--	--	--	--	--	--	--	--		--	12	--	8	7	1	10	6	51
225	--	--	--	--	--	1	8	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	12	--	26	1	3	3	2	15	--	62
230	--	--	--	--	--	1	3	1	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	5	--	17	3	4	3	--	14	2	48
235	--	--	--	--	1	--	3	--	--	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	7	--	14	--	2	4	--	11	1	39
240	--	--	--	--	--	--	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	--	15	--	2	3	1	15	2	40
245	--	--	--	--	--	--	2	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	--	9	--	--	2	--	6	--	19
250	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	--	2	--	--	2	--	12	--	18
255	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3	4	1	--	2	--	7	1	18
260	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	3	1	1	1	--	12	1	20
265	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	1	--	1	9	1	13
270	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	--	1	--	7	2	12
275	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3	--	3
280	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	1	1	--	--	1	1	--	3	1	8
285	--	--	--	--	--	1	--	--	--	1	--	--	1	--	--	1	--	--	--	--	--	--	--	--	--	--	4	--	--	--	--	--	--	7	--	11
290	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	--	--	--	1	--	3
295	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	2	--	--	--	--	--	--	3	--	5
300	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	1	--	--	2	--	1	--	--	--	4
305	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	*1	--	--	--	--	--	--	--	--	--	--	${ }^{*} 1$	*2	${ }^{*} 1$	--	--	*1	--	--	--	*5
310	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3	1	3	1	2	1	1	--	12
Totals	--	--	--	--	4	20	33	23	5	15	2	2	1	1	2	6	17	--	--	-	--	--	--	--	--	--	131	37	229	91	601	190	119	435	1,271	3,104

Waddell Creek, SteeIhead: Stream Fish Checked Through Upstream Trap, 1934-35; Length-frequency Distribution by Two-week Periods

Length in mm	$\text { Oct } 1-$ 14	$\begin{array}{\|c} \text { Oct } 15- \\ 28 \end{array}$	$\begin{array}{\|l\|} \hline \text { Oct 29- } \\ \text { Nov } 11 \end{array}$	$\begin{gathered} \text { Nov } \\ 12-25 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Nov } \\ 26-\mathrm{Dec} \\ 9 \end{array}$	$\begin{gathered} \text { Dec } \\ 10-23 \end{gathered}$	$\begin{gathered} \text { Dec } \\ \text { 24-Jan } \\ 6 \end{gathered}$	$\begin{gathered} \text { Jan } 7- \\ 20 \end{gathered}$	$\begin{array}{\|l} \hline \text { Jan } 21- \\ \text { Feb } 3 \end{array}$	$\begin{gathered} \text { Feb 4- } \\ 17 \end{gathered}$	Feb 18Mar 3	$\begin{gathered} \text { Mar 4- } \\ 17 \end{gathered}$	$\begin{gathered} \text { Mar } \\ 18-31 \end{gathered}$	Apr 1- 14	$\begin{array}{\|c\|} \hline \text { Apr } 15- \\ 28 \end{array}$	Apr 29- May 12	$\begin{gathered} \text { May } \\ 13-26 \end{gathered}$	$\begin{array}{\|c\|} \text { May } \\ \text { 27-June } \\ 9 \end{array}$	$\begin{gathered} \text { June } \\ 10-23 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Jun } 24- \\ \text { July } 7 \end{array}$	July 8- 21	$\begin{array}{\|c} \text { July } \\ \text { 22-Aug } \\ 4 \end{array}$	Aug 5- 18	$\begin{gathered} \text { Aug } \\ \text { 19-Sept } \\ 1 \end{gathered}$	$\begin{gathered} \text { Sept 2- } \\ 15 \end{gathered}$	$\begin{gathered} \text { Sept } \\ 16-30 \end{gathered}$	碳
66-70	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
75	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
80	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
85	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
90	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
95	--	--	--	--	--	--	--				1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
100	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
105	--	--	--	2	--	--	1	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4
110	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
115	--	--	--	--	2	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
120	--	--	--	--	1	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
125	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
130	--	--	--	--	--	1	--	--	3	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4
135	--	--	--	--	--	1	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
140	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
145	--	--	--	--	1	1	--	--	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4
150	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
155	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
160	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
165	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
170	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
175	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
180	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
185	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
190	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
195	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
200	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
205	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
210	--	--	--	--	--	--	1		--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
215	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
220	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
225	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
230	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
235	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
240	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
245	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
250	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
255	--	--	--	--	--	--	--	--	1	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
260	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
265	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
270	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
275	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
280	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
285	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
290	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
295	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
300	--	-	-	-	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
305	--	--	--	--	--	--	*1	*1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
310	--	--	--	--	--	--	$\begin{gathered} 1 \\ (35 \mathrm{~cm}) \end{gathered}$	$\begin{gathered} 1 \\ (33 \mathrm{~cm}) \end{gathered}$	--	--	--	$\begin{gathered} 1 \\ (35 \mathrm{~cm}) \end{gathered}$	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
Totals	--	--	--	4	5	3	4	2	15	1	2	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	37

TABLE A-30
Waddell Creek, SteeIhead: Stream Fish Checked Through Upstream Trap, 1935-36; Length-frequency Distribution by Two-week Periods

Length in mm.	$\begin{gathered} \text { Oct 1- } \\ 14 \end{gathered}$	$\begin{gathered} \text { Oct } 15- \\ 28 \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \text { Oct 29- } \\ \text { Nov } 11 \end{array}$	$\begin{gathered} \text { Nov } \\ 12-25 \end{gathered}$	$\begin{array}{\|c} \hline \text { Nov } \\ \text { 26-Dec } \\ 9 \end{array}$	$\begin{gathered} \text { Dec } \\ 10-23 \end{gathered}$	$\begin{gathered} \text { Dec } \\ \text { 24-Jan } \\ 6 \end{gathered}$	$\begin{gathered} \text { Jan } 7- \\ 20 \end{gathered}$	$\begin{gathered} \text { Jan 21- } \\ \text { Feb } 3 \end{gathered}$	$\begin{gathered} \text { Feb 4- } \\ 17 \end{gathered}$	Feb 18Mar 3	$\begin{gathered} \text { Mar 4- } \\ 17 \end{gathered}$	$\begin{gathered} \text { Mar } \\ 18-31 \end{gathered}$	Apr_{14}^{1-}	$\begin{gathered} \text { Apr } 15- \\ 28 \end{gathered}$	$\begin{array}{\|l\|l} \text { Apr 29- } \\ \text { May } 12 \end{array}$	$\begin{gathered} \text { May } \\ 13-26 \end{gathered}$	$\begin{array}{\|c} \text { May } \\ \text { 27-June } \\ 9 \end{array}$	$\begin{gathered} \text { June } \\ 10-23 \end{gathered}$	Jun 24- July 7	$\begin{gathered} \text { July } 8- \\ 21 \end{gathered}$	$\begin{array}{\|c} \text { July } \\ 22 \text {-Aug } \\ 4 \end{array}$	$\begin{array}{\|c} \text { Aug 5- } \\ 18 \end{array}$	$\begin{aligned} & \text { Aug } \\ & \text { 19-Sept } \\ & 1 \end{aligned}$	$\begin{gathered} \text { Sept 2- } \\ 15 \end{gathered}$	$\begin{gathered} \text { Sept } \\ 16-30 \end{gathered}$	
66-70	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
75	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
80	--	--	--	--	1	--	--	2	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4
85	--	--	--	--	--	--	--	3	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4
90	--	--	--	--	1	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
95	--	--	--	--	2	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
100	--	--	--	--	1	--	--	1	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	3
105	--	--	--	--	2	--	2	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	5
110	--	--	--	--	--	--	--	2	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
115	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
120	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	2
125	--	--	--	--	1	--	--	1	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4
130	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
135	--	--	--	--	--	--	2	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4
140	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
145	--	--	--	--	--	--	--	2	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
150	--	--	--	--	1	--	2	--	1	--	--	--	--	--	--	--	--	--	--	1	--	1	--	1	--	--	7
155	--	--	--	--	--	--	--	3	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
160	--	--	--	--	--	--	--	3	1	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	5
165	--	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
170	--	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	3
175	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
180	--	--	--	--	--	--	1	2	1	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	5
185	--	--	--	--	--	--	3	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	5
190	--	--	--	--	--	--	2	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4
195	--	--	--	--	--	--	5	2	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	8
200	--	--	--	--	--	--	7	5	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	13
205	--	--	--	--	--	--	5	5	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	10
210	--	--	--	--	--	--	3	4	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	7
215	--	--	--	--	--	--	6	5	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	12
220	--	--	--	--	--	--	8	4	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	12
225	--	--	--	--	--	--	12	12	--	--	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	26
230	--	--	--	--	--	--	13	3	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	17
235	--	--	--	--	--	--	8	4	1	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	14
240	--	--	--	--	--	--	9	5	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	15
245	--	--	--	--	--	--	7	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	9
250	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
255	--	--	--	--	--	--	1	3	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4
260	--	--	--	--	--	--	1	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
265	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
270	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
275	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
280	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
285	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
290	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
295	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
300	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
305	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	*1
310	--	--	--	--	--	--	--	--	--	$\begin{gathered} 1 \\ (35 \mathrm{~cm}) \end{gathered}$	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
Totals	--	--	--	--	9	--	101	86	14	4	5	--	1	--	--	1	1	--	--	4	--	2	--	1	--	--	229

TABLE A-31
Waddell Creek, SteeIhead: Stream Fish Checked Through Upstream Trap, 1936-37; Length-frequency Distribution by Two-week Periods

Length in mm .	Oct 114	$\begin{gathered} \text { Oct } 15- \\ 28 \end{gathered}$	$\begin{array}{\|l} \text { Oct } 29- \\ \text { Nov } 11 \end{array}$	$\begin{gathered} \text { Nov } \\ 12-25 \end{gathered}$	$\begin{gathered} \text { Nov } \\ \text { 26-Dec } \\ 9 \end{gathered}$	$\begin{gathered} \text { Dec } \\ 10-23 \end{gathered}$	$\begin{array}{\|c} \text { Dec } \\ 24-J a n \\ 6 \end{array}$	$\begin{aligned} & \text { Jan } 7- \\ & 20 \end{aligned}$	$\begin{array}{\|c} \hline \text { Jan 21- } \\ \text { Feb } 3 \end{array}$	Feb 417	Feb 18Mar 3	Mar 417	$\begin{gathered} \text { Mar } \\ 18-31 \end{gathered}$	Apr 1- 14	$\begin{gathered} \text { Apr 15- } \\ 28 \end{gathered}$	$\begin{aligned} & \text { Apr 29- } \\ & \text { May } 12 \end{aligned}$	$\begin{gathered} \text { May } \\ 13-26 \end{gathered}$	$\begin{array}{\|c} \text { May } \\ \text { 27-June } \\ 9 \end{array}$	$\begin{gathered} \text { June } \\ 10-23 \end{gathered}$	$\begin{array}{\|l\|} \hline \text { Jun 24- } \\ \hline \end{array}$	$\begin{gathered} \text { July } 8- \\ 21 \end{gathered}$	$\begin{array}{\|c} \text { July } \\ 22-\text { Aug } \\ 4 \end{array}$	Aug 5- 18	$\begin{array}{\|c} \text { Aug } \\ \text { 19-Sept } \\ 1 \end{array}$	$\begin{array}{\|c} \text { Sept 2- } \\ 15 \end{array}$	$\begin{gathered} \text { Sept } \\ 16-30 \end{gathered}$	
66-70	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
75	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	1
80	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	1
85	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
90	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	1
95	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	1
100	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
105	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	2
110	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	1	--	--	--	--	--	2
115	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	1	--	--	--	--	--	--	--	2
120	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	1
125	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	1
130	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	2
135	--	--	--	--	--	1	--	--	--	--	--	--	--	1	--	--	--	--	--	--	2	--	--	--	--	--	4
140	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	1	--	--	--	--	--	2
145	--	--	--	--	--	1	--	--	--	--	--	--	--	--	1	--	--	--	--	--	1	--	--	--	--	--	3
150	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
155	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	1	1	--	--	1	--	--	4
160	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
165	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	1	1	--	1	--	--	--	4
170	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	1	--	--	--	2
175	--	--	--	--	1	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	1	--	1	--	--	--	4
180	--	--	--	--	--	1	1	--	--	2	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	5
185	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	--	--	--	--	--	3
190	--	--	--	--	--	1	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	2	--	--	--	4
195	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	1	--	--	--	1	1	--	--	4
200	--	--	--	--	--	--	--	--	3	3	--	--	--	1	--	--	--	--	--	--	--	--	--	1	--	--	8
205	--	--	--	--	--	--	--	--	5	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	5
210	--	--	--	--	--	--	1	1	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4
215	--	--	--	--	--	--	--	--	--	3	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
220	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
225	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
230	--	--	--	--	--	--	--		2	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
235	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
240	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
245	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
250	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
255	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
260	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
265	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
270	--	--	--	--	--	1	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
275	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
280	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
285	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
290	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	2
295	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
300	--	--	--	--	--	--	1	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
305	--	--	--	--	--	--	--	--	--	$1(33$		--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
310	--	--	--	--	--	--	--	--	--	$1(44$	cm)	--	--	--	--	--	--	$\begin{gathered} 1 \\ (33 \mathrm{~cm}) \\ \hline \end{gathered}$	--	--	--	--	--	--	--	--	3
Totals	--	--	--	2	1	8	4	2	14	15	2	--	--	4	4	--	1	1	5	2	14	1	6	4	--	1	91

TABLE A-30

Length in mm.	$\text { Oct } 1-$ 14	$\text { Oct } 15-$ 28	$\begin{array}{\|l\|l\|} \text { Oct } 29- \\ \text { Nov } 11 \end{array}$	$\begin{gathered} \text { Nov } \\ 12-25 \end{gathered}$	$\begin{array}{\|c} \text { Nov } \\ 26-\mathrm{Dec} \\ 9 \end{array}$	$\begin{gathered} \text { Dec } \\ 10-23 \end{gathered}$	$\begin{gathered} \text { Dec } \\ \text { 24-Jan } \\ 6 \end{gathered}$	$\begin{gathered} \text { Jan } 7- \\ 20 \end{gathered}$	$\begin{gathered} \text { Jan 21- } \\ \text { Feb } 3 \end{gathered}$	Feb 417	$\begin{array}{\|c} \hline \text { Feb } 18- \\ \text { Mar } 3 \end{array}$	$\begin{gathered} \text { Mar 4- } \\ 17 \end{gathered}$	$\begin{gathered} \text { Mar } \\ 18-31 \end{gathered}$	Apr 1- 14	$\begin{array}{\|c} \text { Apr } 15- \\ 28 \end{array}$	$\begin{array}{\|l\|} \text { Apr 29- } \\ \text { May } 12 \end{array}$	$\begin{gathered} \text { May } \\ 13-26 \end{gathered}$	$\begin{array}{\|c} \text { May } \\ 27- \\ \text { June } 9 \end{array}$	$\begin{gathered} \text { June } \\ 10-23 \end{gathered}$	$\begin{array}{\|l\|l} \hline \text { Jun 24- } \\ \text { July } 7 \end{array}$	July 821	$\begin{array}{\|c} \text { July } \\ 22-\text { Aug } \\ 4 \end{array}$	Aug 518	$\begin{array}{\|c} \text { Aug } \\ \text { 19-Sept } \\ 1 \end{array}$	$\begin{gathered} \text { Sept } 2- \\ 15 \end{gathered}$	$\begin{gathered} \text { Sept } \\ 16-30 \end{gathered}$	Seasonal Total
66-70	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
75	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
80	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
85	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	1
90	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
95	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	1
100	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
105	--	--	--	1	--	4	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	6
110	--	--	--	1	--	1	1	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	1	--	5
115	--	--	--	--	--	2	1	1	--	--	--	--	--	--	--	--	--	--	--	1	--	1	--	1	1	--	8
120	--	--	--	--	--	2	1	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	4
125	--	1	--	--	--	4	--	--	--	--	--	--	--	1	--	1	--	--	--	--	--	--	--	--	--	--	7
130	--	--	--	--	--	5	2	--	--	1	--	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	10
135	--	--	--	--	1	5	4	1	--	--	--	--	--	--	--	--	--	2	--	--	--	1	--	--	--	--	14
140	--	--	--	--	--	9	3	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	14
145	--	--	--	--	--	13	4	--	--	--	--	1	--	1	--	--	--	--	--	--	--	--	--	--	--	--	19
150	--	--	1	--	--	8	8	1	1	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	20
155	--	--	--	--	3	13	8	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	24
160	--	--	--	--	--	20	16	1	--	1	--	--	--	--	--	--	--	1	--	--	1	--	--	--	--	--	40
165	--	--	--	--	--	17	14	2	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	35
170	--	--	--	--	--	16	26	2	--	1	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	46
175	--	--	--	--	--	21	32	2	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	57
180	--	--	--	--	2	16	22	3	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	44
185	--	--	--	1	2	23	24	--	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	52
190	--	--	--	--	1	18	24	--	4	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	47
195	--	--	--	--	1	16	25	3	3	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	49
200	--	--	--	--	--	14	19	--	1	1	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	36
205	--	--	--	--	--	11	6	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	18
210	--	--	--	--	--	2	5	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	8
215	--	--	--	1	--	6	1	1	--	--	--	--	--	--	1	--	--	--	--	--	--	1	--	--	--	--	11
220	--	--	--	--	--	4	2	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	8
225	--	--	--	--	--	1	1	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
230	--	--	--	--	--	4	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4
235	--	--	--	--	--	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
240	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	--	--	--	--	--	--	--	--	--	--	--	2
245	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
250	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
255	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
260	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
265	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
270	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
275	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
280	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
285	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
290	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
295	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
300	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
305	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
310	--	--	--	--	--	--	--	$\begin{aligned} & 1(39 \\ & \mathrm{cm}) \end{aligned}$	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
Totals	--	1	1	4	10	260	249	24	17	5	1	2	--	4	3	1	1	5	2	2	2	4	--	1	2	--	601

Waddell Creek, SteeIhead: Stream Fish Checked Through Upstream Trap, 1938-39; Length-frequency Distribution by Two-week Periods

Length in mm .	Oct 114	$\begin{array}{\|c} \text { Oct } 15- \\ 28 \end{array}$	$\begin{array}{\|l\|} \text { Oct 29- } \\ \text { Nov } 11 \end{array}$	$\begin{gathered} \text { Nov } \\ 12-25 \end{gathered}$	$\begin{array}{\|c} \text { Nov } \\ 26-\mathrm{Dec} \\ 9 \end{array}$	$\begin{gathered} \text { Dec } \\ 10-23 \end{gathered}$	$\begin{array}{\|c} \text { Dec } \\ 24-J a n \\ 6 \end{array}$	$\begin{gathered} \text { Jan } 7- \\ 20 \end{gathered}$	$\begin{array}{\|c} \text { Jan 21- } \\ \text { Feb } 3 \end{array}$	Feb 417	$\begin{gathered} \text { Feb 18- } \\ \text { Mar } 3 \end{gathered}$	Mar 417	$\begin{gathered} \text { Mar } \\ 18-31 \end{gathered}$	Apr 1- 14	$\begin{gathered} \text { Apr } 15- \\ 28 \end{gathered}$	$\begin{aligned} & \text { Apr 29- } \\ & \text { May } 12 \end{aligned}$	$\begin{gathered} \text { May } \\ 13-26 \end{gathered}$	$\begin{array}{\|c\|} \hline \text { May } \\ \text { 27-June } \\ 9 \end{array}$	$\begin{gathered} \text { June } \\ 10-23 \end{gathered}$	$\text { Jun } 24-$ $\text { July } 7$	$\begin{gathered} \text { July } 8 \text { - } \\ 21 \end{gathered}$	$\begin{array}{\|c} \text { July } \\ \text { 22-Aug } \\ 4 \end{array}$	$\begin{gathered} \text { Aug } 5- \\ 18 \end{gathered}$	$\begin{array}{\|c} \text { Aug } \\ \text { 19-Sept } \\ 1 \end{array}$	Sept 2- 15	$\begin{gathered} \text { Sept } \\ 16-30 \end{gathered}$	
66-70	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
75	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
80	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	1
85	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	
90	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
95	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	--	--	--	--	--	--	--	--	2
100	--	--	1	--	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
105	--	--	2	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	4
110	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	--	--	--	--	--	--	--	--	3
115	--	--	--	--	3	--	--	--	--	--	--	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	5
120	--	--	1	--	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
125	--	--	1	--	1	1	--	--	--	--	--	--	--	--	--	--	--	--	1	--	1	--	--	--	--	--	5
130	--	--	2	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
135	--	--	2	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	5
140	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	--	--	--	--	--	--	--	--	3
145	--	--	2	2	2	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	7
150	--	--	2	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
155	--	--	2	3	4	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	9
160	--	--	--	3	1	--	1	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	6
165	--	--	3	4	2	3	--	1	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	14
170	--	--	--		3	2	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	6
175	--	--	--	4	1	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	6
180	--	--	--	3	3	2	1	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	11
185	--	--	1	3	3	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	8
190	--	--	3	1	5	3	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	13
195	--	--	--	--	3	2	3	1	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	11
200	--	--	2	1	3	2	--	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	10
205	--	--	1	--	--	--	--	2	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4
210	--	--	1	1	1	--	----	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4
215	--	--	1	1	4	--	1	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	7
220	--	--	--	--	5	1	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	7
225	--	--	--	--	--	--	--	2	_---	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
230	--	--	--	--	--	--	--	2	----	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	3
235	--	--	--	--	2	1	--	_---	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4
240	--	--	--	--	--	1	1	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
245	--	--	--	--	1	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
250	--	--	--	--	--	--	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
255	--	--	--	--	--	--	--	1	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
260	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
265	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
270	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
275	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
280	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
285	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
290	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
295	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
300	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
305	--	--	--	--	--	--	--	--	1*	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
310	--	--	--	--	$\begin{gathered} 1(39 \\ \mathrm{cm}) \end{gathered}$	--	--	--	--	--	--	$\begin{aligned} & 1(40 \\ & \mathrm{cm} .) \end{aligned}$	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
Totals	--	--	30	30	53	21	11	16	6	6	--	2	--	--	--	--	--	10	4	--	1	--	--	--	--	--	190

TABIABABCA-34

Length in mm.	Oct 114	Oct 15- 28	$\begin{array}{\|l\|l\|} \hline \text { Oct } 29- \\ \text { Nov } 11 \end{array}$	$\begin{gathered} \text { Nov } \\ 12-25 \end{gathered}$	$\begin{gathered} \text { Nov } \\ \text { 26-Dec } \\ 9 \end{gathered}$	$\begin{gathered} \text { Dec } \\ 10-23 \end{gathered}$	$\begin{array}{\|c} \text { Dec } \\ 24-J a n \\ 6 \end{array}$	$\begin{gathered} \text { Jan } 7- \\ 20 \end{gathered}$	$\begin{array}{\|c} \hline \text { Jan 21- } \\ \text { Feb } 3 \end{array}$	Feb 417	Feb 18Mar 3	Mar 417	$\begin{gathered} \text { Mar } \\ 18-31 \end{gathered}$	Apr 1- 14	$\begin{array}{\|c} \text { Apr } 15- \\ 28 \end{array}$	Apr 29- May 12	$\begin{gathered} \text { May } \\ 13-26 \end{gathered}$	$\begin{array}{\|c\|} \text { May } \\ \text { 27-June } \\ 9 \end{array}$	$\begin{gathered} \text { June } \\ 10-23 \end{gathered}$	$\begin{array}{\|l\|l} \hline \text { Jun 24- } \\ \hline \end{array}$	$\begin{gathered} \text { July } 8 \text { - } \\ 21 \end{gathered}$	$\begin{array}{\|c} \text { July } \\ 22-\text { Aug } \\ 4 \end{array}$	Aug 518	$\begin{array}{\|c} \text { Aug } \\ \text { 19-Sept } \\ 1 \end{array}$	Sept 2- 15	$\begin{gathered} \text { Sept } \\ 16-30 \end{gathered}$	
61-65	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	1
70	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	1	--	--	--	--	2
75	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	2	--	--	--	--	3
80	--	--	1	--	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3	--	--	--	--	6
85	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	2	--	--	--	--	5
90	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	3
95	--	--	--	--	--	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	3	--	--	--	--	6
100	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
105	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	2
110	--	--	--	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	--	1	1	--	--	--	4
115	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	2	--	--	--	--	3
120	--	--	1	--	1	1	--	--	1	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	5
125	--	--	--	--	--	1	--	--	1	--	1	--	--	--	--	--	--	--	1	1	--	--	1	--	--	--	6
130	--	--	1	--	--	--	1	1	1	--	--	--	--	--	--	--	--	--	--	--	--	2	--	1	--	--	7
135	--	--	--	--	--	--	--	2	--	--	--	1	--	--	--	--	--	--	--	1	--	--	1	2	--	--	7
140	--	--	--	--	--	1	--	3	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	5
145	--	--	--	--	--	--	--	3	--	--	--	--	--	--	--	--	--	--	--	1	1	2	--	1	--	--	8
150	--	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	3
155	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
160	--	--	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	--	--	--	1	1	2	--	--	6
165	--	--	--	--	--	--	1	1	--	--	--	1	--	--	--	--	--	--	--	--	--	5	2	--	1	--	11
170	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	1	1	1	--	--	--	4
175	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	2
180	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2	2	--	--	4
185	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--]	--	1	--	--	2
190	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	2
195	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	2	--	--	--	--	--	--	--	3
200	--	--	--	--	--	--	--	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
205	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
210	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
215	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
220	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	1
225	--	--	--	--	--	--	1	---	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
230	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
235	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
240	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
245	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
250	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
255	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
260	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
265	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
270	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
275	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
280	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
285	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
290	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
295	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
300	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
305	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
310	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	$\begin{aligned} & 1(35 \\ & \mathrm{cm}) \end{aligned}$	--	--	--	--	--	--	--	--	1
Totals	--	--	4	--	3	7	5	17	7	2	4	3	--	--	--	--	--	1	3	6	6	30	10	10	1	--	119

Length in mm.	$\underset{14}{\text { Oct } 1-}$	${ }_{28}^{\mathrm{Oct} 15-}$	$\begin{aligned} & \text { Oct 29- } \\ & \text { Nov } \end{aligned}$	$\begin{gathered} \text { Nov } \\ \hline 2-25 \end{gathered}$	$\underset{9}{\substack{\text { Nov } \\ \text { 26-Dec }}}$	$\begin{gathered} \text { Dec } \\ 10-23 \end{gathered}$	$\underset{\substack{\text { Dec } \\ \text { 24-Jan } \\ 6}}{ }$	$\mathrm{Jan} 7-^{\mathrm{J} 7-} \mathbf{2 0}$	$\begin{array}{\|l\|} \hline \mathrm{Jan} 21- \\ \mathrm{Feb} 3 \end{array}$	$\begin{aligned} & \mathrm{Feb} 4- \\ & 17 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { Feb } 18- \\ \text { Mar } \end{array}$	Mar 4-	$\begin{gathered} \text { Mar } \\ 181 \end{gathered}$	$\mathrm{Apr}_{14} 1-$	$\underset{28}{\text { Apr 15- }}$	$\begin{aligned} & \text { Apr 29- } \\ & \text { May } 12 \end{aligned}$	$\begin{aligned} & \text { May } \\ & 13-26 \end{aligned}$	$\underset{\substack{\text { May } \\ \text { 27-June }}}{\substack{\text { and }}} \begin{gathered} \text { M } \\ 9 \end{gathered}$	$\begin{aligned} & \text { June } \\ & 10-23 \end{aligned}$	$\begin{array}{\|c} \hline \text { Jun 24- } \\ \text { July } 7 \end{array}$	$\begin{array}{\|l\|l\|} \hline \text { July } 8-1 \\ 21 \end{array}$	$\underset{4}{\text { July }} \begin{gathered} \text { 22-Aug } \end{gathered}$	$\underset{18}{\text { Aug } 5-}$	$\begin{gathered} \text { Aug } \\ \text { 19-Sept } \\ 1 \end{gathered}$	$\operatorname{Sept~}_{15} \mathbf{S}^{-}$	$\begin{gathered} \text { Sept } \\ 16-30 \end{gathered}$	䂴
66-70	--	--	--	--	--	--	--	--	--	--	--	--	--	-	--	--	--	--	\cdots	--	--	--	--	--	--	1	1
75	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	1
80	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	1	1	--	--	--	2	5
85	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	1	--	4
90	--	--	--	--	1	1	2	--	--	2	--	2	--	--	--	--	--	--	--	--	--	--	--	--	2	1	11
95	1	--	--	--	--	--	1	1	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	5
100	--	--	--	--	--	--	2	--	2	--	1	--	--	--	2	1	2	--	--	--	1	--	--	--	--	--	11
105	--	--	--	--	--	--	6	--	1	--	--	--	--	--	--	1	1	3	--	1	--	--	--	--	--	1	14
110	--	--	--	--	--	2	3	--	--	--	--	--	1	--	2	--	--	--	--	--	--	--	--	--	--	--	8
115	--	--	--	--	--	1	4	--	--	--	1	--	--	--	2	2	1	2	1	--	--	--	--	--	--	--	14
120	--	--	--	--	--	2	5	--	--	--	1	--	--	--	--	1	1	1	--	--	--	--	--	--	--	--	11
125	--	--	--	--	--	--	3	1	1	1	--	--	--	1	--	--	1	1	3	--	1	--	--	--	--	--	13
130	--	--	--	--	--	--	7	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	2	--	--	--	10
135	--	--	--	--	--	--	2	--	1	1	--	--	1	--	1	--	--	--	1	--	--	1	--	--	--	--	8
140	--	--	--	--	--	2	5	--	--	1	--	--	--	--	--	1	--	--	1	1	--	2	--	--	--	--	13
145	--	--	--	--	1	--	5	--	--	1	1	--	--	1	--	--	--	--	1	1	--	9	--	--	--	--	20
150	--	--	--	--	--	--	6	1	--	--	--	--	--	--	--	--	--	--	--	--	--	10	1	--	--	--	18
155	--	--	1	--	--	--	3	1	--	--	1	--	--	--	1	--	--	--	--	--	--	12	--	--	--	--	19
160	--	--	2	--	--	1	2	1	--	--	--	--	--	--	--	--	--	--	--	--	--	22	--	--	--	--	28
165	--	--	--	--	1	--	2	--	--	1	--	--	--	--	--	--	--	--	--	--	--	6	--	--	1	--	11
170	--	--	1	--	--	--	2	--	--	--	--	--	--	--	--	--	--	--	--	1	--	7	--	--	--	--	11
175	--	--	1	--	2	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	1	1	--	--	--	--	6
180	--	--	1	--	2	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	4
185	--	1	--	--	--	2	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	5
190	--	--	--	--	--	3	3	1	1	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	10
195	--	1	--	--	1	1	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	5
200	--	--	--	--	1	--	3	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	5
205	--	--	3	--	2	4	2	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	12
210	--	1	2	--	--	3	4	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	11
215	--	--	2	--	1	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	5
220	--	--	--	--	1	6	3	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	10
225	--	--	1	--	--	6	6	1	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	15
230	--	--	--	--	--	7	5	--	--	--	1	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	14
235	--	--	--	--	--	7	3	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	11
240	--	--	--	--	--	6	5	2	--	1	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	15
245	--	--	--	--	--	4	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	6
250	--	--	--	--	--	2	9	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	12
255	--	--	--	--	--	2	3	1	--	1	--	--	--	--	--	--	--	--	--	--	--	--	-	--	--	--	7
260	--	--	1	--	--	4	3	1	--	1	--	1	--	--	--	--	--	--	--	1	--	--	--	--	--	--	12
265	--	--	--	--	--	3	3	--	1	2	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	9
270	--	--	--	--	--	3	2	--	1	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	7
275	--	--	--	--	--	2	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	
280	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	3
285	--	--	1	--	--	2	3	--	--	1	--	--	--	--	--	--	-	--	--	--	--	--	--	--	--	--	7
290	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
295	--	--	--	--	--	1	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	3
300	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
305	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
310	--	--	--	--	--	--	$1(33 \mathrm{~cm})$	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
Totals	1	3	16	--	13	80	129	16	11	15	7	5	2	2	10	6	8	8	8	7	4	71	3	--	5	5	435

TABLE A-36

Length in mm .	$\text { Oct } 1-$ 14	$\begin{array}{\|c} \text { Oct } 15- \\ 28 \end{array}$	$\begin{array}{\|l\|} \text { Oct } 29- \\ \text { Nov } 11 \end{array}$	$\begin{gathered} \text { Nov } \\ 12-25 \end{gathered}$	$\begin{array}{\|c} \begin{array}{c} \text { Nov } \\ 26-D e c ~ \end{array} \\ 9 \end{array}$	$\begin{gathered} \text { Dec } \\ 10-23 \end{gathered}$	$\begin{gathered} \text { Dec } \\ \text { 24-Jan } \\ 6 \end{gathered}$	$\begin{aligned} & \text { Jan } 7- \\ & 20 \end{aligned}$	$\begin{array}{\|c} \hline \text { Jan 21- } \\ \text { Feb } 3 \end{array}$	Feb 417	Feb 18Mar 3	Mar 417	$\begin{gathered} \text { Mar } \\ 18-31 \end{gathered}$	$\begin{gathered} \text { Apr } 1- \\ 14 \end{gathered}$	$\begin{array}{\|c} \text { Apr } 15- \\ 28 \end{array}$	Apr 29- May 12	$\begin{gathered} \text { May } \\ 13-26 \end{gathered}$	$\begin{array}{\|c\|} \text { May } \\ \text { 27-June } \\ 9 \end{array}$	$\begin{gathered} \text { June } \\ 10-23 \end{gathered}$	$\begin{array}{\|l\|l} \hline \text { Jun 24- } \\ \text { July } 7 \end{array}$	$\begin{array}{\|c} \text { July } 8 \text { - } \\ 21 \end{array}$	$\begin{array}{\|c} \text { July } \\ 22-A u g \\ 4 \end{array}$	Aug 5- 18	$\begin{array}{\|c} \text { Aug } \\ \text { 19-Sept } \\ 1 \end{array}$	$\begin{array}{\|c} \text { Sept 2- } \\ 15 \end{array}$	$\begin{gathered} \text { Sept } \\ 16-30 \end{gathered}$	
66-70	--	--	--	--	--	1	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
75	--	--	--	--	--	14	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	15
80	--	--	--	--	--	30	1	--	--	1	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	33
85	--	--	--	--	1	54	1	--	1	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	58
90	--	--	--	1	--	61	2	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	1	--	66
95	4	--	1	--	--	55	2	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	63
100	1	--	--	1	--	57	1	--	1	1	--	1	--	--	--	--	--	--	--	--	1	--	--	--	--	--	64
105	--	--	--	--	4	46	2	--	--	1	--	--	--	1	--	--	--	1	--	--	--	--	--	--	--	--	55
110	--	--	1	--	2	33	1	--	5	1	--	--	--	1	1	--	--	--	--	--	--	--	--	--	--	--	45
115	2	1	--	--	--	33	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	37
120	--	--	--	1	1	26	1	1	1	--	--	1	--	--	--	--	--	1	--	--	--	--	--	--	--	--	33
125	--	--	--	1	--	23	2	2	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	1	30
130	--	--	--	--	--	19	6	--	1	1	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	28
135	1	--	--	--	1	11	1	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	15
140	--	--	--	--	1	11	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	12
145	--	1	--	--	2	16	7	3	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	31
150	--	--	1	--	1	21	10	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	33
155	--	--	2	--	1	30	29	5	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	68
160	--	--	--	1	--	32	18	3	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	55
165	--	--	1	--	--	40	29	6	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	77
170	--	1	--	--	--	38	30	9	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	80
175	1	--	--	--	--	37	31	10	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	80
180	--	--	--	1	2	31	28	10	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	72
185	--	--	--	--	2	30	30	6	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	68
190	2	--	--	--	2	23	23	9	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	59
195	--	--	--	--	--	10	13	3	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	27
200	--	--	1	--	--	6	4	4	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	16
205	--	--	--	--	1	9	6	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	17
210	--	--	--	--	2	3	4	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	10
215	--	--	--	--	--	1	2	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	5
220	--	--	--	--	--	3	2	1	--	--	--	-.	--	--	--	--	--	--	--	--	--	--	--	--	--	--	6
225	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
230	--	--	--	--	1	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
235	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	1
240	--	--	--	--	--	1	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	2
245	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
250	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
255	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
260	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
265	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
270	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	1	--	--	--	--	--	--	--	--	2
275	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
280	--	--	--	--	1	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	1
285	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
290	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
295	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
300	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
305	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
310	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--
Totals	11	3	7	6	26	806	290	74	16	8	--	4	--	3	1	--	2	3	--	2	2	2	--	--	2	3	1,271

TABLE A-37
Waddell Creek: Numbers of Cottus asper Checked Through Downstream Trap, by Four-week Periods

Period	1935 -36	1936 -37	1937 -38	1938 -39	1939 -40	1940 -41	1941 -42	Total
Oct. 1-Oct. 28	--	--	--	--	--	--	--	--
Oct. 29-Nov. 25	--	--	--	--	--	--	--	--
Nov. 26-Dec. 23	--	--	21	--	--	--	--	21
Dec. 24-Jan. 20	189	25	32	10	2	10	1	269
Jan. 21-Feb. 17	254	160	37	19	19	18	15	522
Feb. 18-Mar. 17	81	83	23	19	8	7	5	226
Mar. 18- Apr. 14	38	43	8	15	4	13	4	125
Apr. 15-May 12	28	11	12	--	7	4	1	63
May 13-June 9	3	--	1	4	1	1	1	11
June 10-July 7	2	1	--	4	--	--	--	7
July 8- Aug. 4	2	--	12	2	--	3	--	19
Aug. 5-Sept. 1	--	--	1	1	--	4	--	6
Sept. 2-Sept. 30	2	--	1	--	--	--	--	3
Totals	599	323	148	74	41	60	27	1,272

TABLE A-38

Waddell Creek: Numbers of Cottus aleuticus Checked Through Downstream Trap, by Four-week Periods

Period	1935 -36	1936 -37	1937 -38	1938 -39	1939 -40	1940 -41	1941 -42	Total
Oct. 1-Oct. 28	--	--	--	--	--	--	--	--
Oct. 29-Nov. 25	--	--	--	--	--	--	--	--
Nov. 26-Dec. 23	--	--	--	--	--	--	--	--
Dec. 24-Jan. 20	10	1	2	1	--	--	--	14
Jan. 21-Feb. 17	7	3	1	1	--	1	--	13
Feb. 18-Mar. 17	26	3	2	7	--	--	--	38
Mar. 18-Apr. 14	3	--	1	1	1	--	2	8
Apr. 15-May 12	9	--	--	1	1	--	1	12
May 13-June 9	1	1	--	3	--	--	--	5
June 10-July 7	--	--	--	2	--	--	--	2
July 8-Aug. 4	--	--	--	--	--	--	--	--
Aug. 5-Sept. 1	--	--	--	1	1	--	--	2
Sept. 2-Sept. 30	--	--	1	--	--	--	--	1
Totals	8	7	17	3	1	3	95	

TABLE A-39
Waddell Creek: Sculpins Taken in Upstream Trap, by Four-week Periods

Period	$1933-$ 34	$1934-$ 35	$1935-$ 36	$1936-$ 37	$1937-$ 38	$1938-$ 39	$1939-$ 40	$1940-$ 41	$1941-$ 42	Total
Oct. 1-Oct. 28	--	--	--	--	--	--	1	--	--	1
Oct. 29-Nov. 25	--	--	--	--	--	3	1	--	--	4
Nov. 26-Dec. 23	--	--	--	--	--	1	--	4	1	6
Dec. 24- Jan. 20	--	--	49	--	--	--	5	22	--	76
Jan. 21-Feb. 17	--	--	46	--	--	--	--	21	9	76
Feb. 18-Mar. 17	4	--	7	3	--	--	--	1	--	15
Mar. 18-Apr. 14	5	68	--	5	1	--	--	4	--	83
Apr. 15-May 12	36	17	231	3	--	--	1	1	--	289
May 13-June 9	2	19	108	15	--	--	--	1	--	145
June 10-July 7	--	4	16	18	--	1	2	1	--	42
July 8-Aug. 4	--	--	--	5	--	--	6	2	--	13
Aug. 5-Sept. 1	--	--	--	3	--	--	3	1	--	7
Sept. 2-Sept. 30	--	--	--	--	--	--	3	--	--	3
Totals	-27	108	457	52	1	5	22	58	10	760

TABLE A-40
Waddell Creek: Garter Snakes Checked Through Downstream Trap,
by Four-week Periods

Period	$\begin{gathered} 1933- \\ 34 \end{gathered}$	$\begin{gathered} 1934- \\ 35 \end{gathered}$	$\begin{gathered} 1935- \\ 36 \end{gathered}$	$\begin{gathered} 1936- \\ 37 \end{gathered}$	$\begin{gathered} 1937- \\ 38 \end{gathered}$	$\begin{gathered} 1938- \\ 39 \end{gathered}$	$\begin{gathered} 1939- \\ 40 \end{gathered}$	$\begin{gathered} 1940- \\ 41 \end{gathered}$	$\begin{gathered} 1941- \\ 42 \end{gathered}$	Total
Oct. 1-Oct. 28	--	--	--	--	--	1	--	--	--	1
Oct. 29-Nov. 25	--	--	--	--	--	--	--	--	--	--
Nov. 26-Dec. 23	--	--	--	--	--	--	--	--	--	--
Dec. 24-Jan. 20	--	--	--	--	--	--	--	--	--	--
Jan. 21-Feb. 17	--	--	--	--	--	--	--	--	--	--
Feb. 18-Mar. 17	--	--	--	--	--	--	--	--	--	--
Mar. 18-Apr. 14	1	--	--	--	--	2	--	--	--	3
Apr. 15-May 12	--	2	9	3	2	7	--	--	--	23
May 13-June 9	--	16	15	5	5	10	1	2	--	54
June 10- July 7	--	7	9	7	3	8	1	--	1	36
July 8-Aug. 4	--	--	5	5	1	8	2	--	--	21
Aug. 5-Sept. 1	--	--	1	2	4	4	--	--	--	11
Sept. 2-Sept. 30	--	--	2	--	2	5	1	1	--	11
Totals	1	25	41	22	17	45	5	3	1	160

TABLE A-41

Waddell Creek: Crayfish Checked Through Downstream Trap, by Four-week Periods

Period	1938-39	1939-40	1940-41	1941-42	Total
Oct. 1-Oct. 28	1	--	10	11	22
Oct. 29-Nov. 25	--	--	2	20	22
Nov. 26-Dec. 23	--	--	1	4	5
Dec. 24-Jan. 20	--	--	4	4	8
Jan. 21-Feb. 17	--	--	1	6	7
Feb. 18-Mar. 17	1	--	6	28	35
Mar. 18- Apr. 14	--	--	10	29	39
Apr. 15-May 12	--	1	11	49	61
May 13-June 9	--	3	13	103	119
June 10-July 7	--	11	68	42	121
July 8-Aug. 4	--	20	77	85	182
Aug. 5-Sept. 1	--	9	28	33	70
Sept. 2-Sept. 30	1	35	45	54	135
Totals	3	79	276	468	826

TABLE A-42

Waddell Creek: Giant Water Bugs Checked Through Downstream Trap, by Four-week Periods

Period	$1933-$ 34	$1934-$ 35	$1935-$ 36	$1936-$ 37	$1937-$ 38	$1938-$ 39	$1939-$ 40	$1940-$ 41	$1941-$ 42	Total
Oct. 1-Oct. 28	--	--	--	--	1	1	2	1	--	5
Oct. 29-Nov. 25	--	--	--	6	1	1	--	--	--	8
Nov. 26-Dec. 23	--	--	--	--	--	1	--	--	1	2
Dec. 24-Jan. 20	2	2	3	--	1	--	--	--	--	8
Jan. 21-Feb. 17	--	--	1	--	2	1	--	--	--	4
Feb. 18-Mar. 17	--	--	--	4	1	4	2	--	--	11
Mar. 18-Apr. 14	--	3	1	3	1	3	--	--	--	11
Apr. 15-May 12	--	58	16	7	4	6	2	--	--	93
May 13-June 9	--	106	33	62	28	14	9	1	--	253
June 10-July 7	--	73	33	58	22	12	23	1	--	222
July 8-Aug. 4	--	--	1	14	10	1	24	--	--	50
Aug. 5-Sept. 1	--	--	--	6	7	4	8	1	--	26
Sept. 2-Sept. 30	--	--	3	8	--	1	1	--	--	13
Totals	2	242	91	168	78	49	71	4	1	706

Table A-43
Conversion Table: Inches to Millimeters

Inches	Mm.	Inches	Mm.
1/8	3	$61 / 8$	156
1/4	6	$61 / 4$	159
3/8	10	$63 / 8$	162
1/2	13	$61 / 2$	165
5/8	16	$65 / 8$	168
3/4	19	$63 / 4$	171
7/8	22	$67 / 8$	175
1	25	7	178
$11 / 8$	29	$71 / 8$	181
$11 / 4$	32	$71 / 4$	184
$13 / 8$	35	$73 / 8$	187
$11 / 2$	38	$71 / 2$	191
$15 / 8$	41	$75 / 8$	194
$13 / 4$	44	$73 / 4$	197
$17 / 8$	48	7	200
2	51	8	203
$21 / 8$	54	$81 / 8$	206
2 1/4	57	81/4	210
$23 / 8$	60	$83 / 8$	213
$21 / 2$	64	$81 / 2$	216
$25 / 8$	67	$85 / 8$	219
$23 / 4$	70	83/4	222
$27 / 8$	73	$87 / 8$	225
3	76	9	229
$31 / 8$	79	9 1/8	232
$31 / 4$	83	$91 / 4$	235
$33 / 8$	86	$93 / 8$	238
$31 / 2$	89	$91 / 2$	241
$35 / 8$	92	95/8	244
$33 / 4$	95	$93 / 4$	248
$37 / 8$	98	$97 / 8$	251
4	102	10	254
4 1/8	105	$101 / 8$	257
4 1/4	108	$101 / 4$	260
$43 / 8$	111	$103 / 8$	264
$41 / 2$	114	$101 / 2$	267
$45 / 8$	117	$105 / 8$	270
4 3/4	121	$103 / 4$	273
$47 / 8$	124	$107 / 8$	276
5	127	11	279
$51 / 8$	130	$111 / 8$	283
$51 / 4$	133	$111 / 4$	286
$53 / 8$	137	$113 / 8$	289
$51 / 2$	140	$111 / 2$	292
$55 / 8$	143	$115 / 8$	295
$53 / 4$	146	$113 / 4$	298
$57 / 8$	149	$117 / 8$	302
6	152	12	305

Waddell Creek: Water Analyses/Chemical Data

Locality	Date	Temp. water ${ }^{\circ} \mathrm{F}$ *	$\begin{gathered} \text { Oxygen } \\ \text { p.p.m. } \end{gathered}$	$\begin{aligned} & \text { Oxygen } \\ & \text { percent } \\ & \text { saturation } \end{aligned}$	M.O. alk. p.p.m. CaCO_{3}	$\begin{aligned} & \text { Chlorides } \\ & \text { p.p.m. } \end{aligned}$	$\begin{aligned} & \mathrm{Ca} \text { and } \mathrm{Mg} \\ & \text { p.p.m } \end{aligned}$	$\begin{aligned} & \mathrm{CO}_{2} \mathrm{cc} / 1 \\ & \text { (approx.) } \end{aligned}$	pH	Sulphates \ddagger	Observer
West Branch	11/27/33	48.2	9.5	82	168	36	46	2.2	7.6	Fairly high	P. A. Shaw
West Branch	1/30/34	46.4	10.3	87	108	26	38	---	7.6	---	P. A. Shaw
West Branch	3/24/34	55.4	9.3	88	90	22	34	---	7.6	---	P. A. Shaw
West Branch	4/30/34	56.3	8.5	81	116	26	37	---	7.7	---	P. A. Shaw
West Branch	1/28/41	51.0	15.4	---	32	---	---	---	7.4	---	M. Moore
West Branch	2/1/41	53.0	11.2	---	40	---	---	---	7.4	---	M. Moore
West Branch	2/5/41	---	11.4	---	52	---	---	---	7.5	---	M. Moore
West Branch	2/6/41	---	10.2	---	44	---	---	---	7.4	---	M. Moore
West Branch	4/19/41	53.5	9.5	---	44	---	---	---	7.1	---	M. Moore
West Branch	5/2/41	54.5	11.5	---	48	---	---	---	7.3	---	M. Moore
West Branch	5/9/41	60.0	9.2	---	52	---	---	---	7.1	---	M. Moore
West Branch	5/24/41	60.5	9.4	---	60	---	---	---	7.3	---	M. Moore
West Branch	6/14/41	60.5	10.4	---	68	---	---	---	7.3	---	M. Moore
East Branch	11/27/33	49.1	9.6	84	156	33	54	1.9	7.6	Fairly high	P. A. Shaw
East Branch	1/30/34	44.6	11.5	94	90	22	40	---	7.7	---	P. A. Shaw
East Branch	3/24/34	55.4	9.8	92.5	84	20	39	---	7.8	---	P. A. Shaw
East Branch	4/30/34	56.3	9.2	87.6	100	23	44	---	7.9	---	P. A. Shaw
East Branch	1/28/41	---	12.4	---	48	---	---	---	7.4	---	M. Moore
East Branch	2/1/41	---	13.0	---	52	---	---	---	7.3	---	M. Moore
East Branch	2/5/41	---	11.2	---	60	---	---	---	7.2	---	M. Moore
East Branch	2/6/41	---	11.2	---	40	---	---	---	7.5	---	M. Moore
East Branch	4/19/41	53.0	9.6	---	32	---	---	---	7.4	---	M. Moore
East Branch	5/2/41	54.5	11.9	---	68	---	---	---	7.3	---	M. Moore
East Branch	5/9/41	60.5	9.0	---	72	---	---	---	7.2	---	M. Moore
East Branch	5/24/41	61.5	9.0	---	80	---	---	---	7.3	---	M. Moore
East Branch	6/14/41	61.5	10.0	---	88	---	---	---	7.5	---	M. Moore
Main Stream at Dam	11/27/33	50.0	8.5	75	148	35	43	2.6	7.5	Fairly high	P. A. Shaw
Main Stream at Dam	1/30/34	46.4	10.7	90	98	25	39	---	7.5	---	P. A. Shaw
Main Stream at Dam	3/24/34	57.2	9.6	92	86	21	38	---	7.6	---	P. A. Shaw
Main Stream at Dam	4/30/34	59.0	8.4	82.7	105	25	39	---	7.5	---	P. A. Shaw
Main Stream at Dam	3/2/36	52.0	---	---	56.5	---	---	---	---	---	M. Hanavan
Main Stream at Dam	3/9/36	55.0	8.96	---	59.5	---	---	---	---	---	M. Hanavan
Main Stream at Dam	3/31/36	51.5	11.01	---	56.5	---	---	---	---	---	M. Hanavan
Main Stream at Dam	4/15/36	57.0	10.18	---	69.8	---	---	---	---	---	M. Hanavan
Main Stream at Dam	5/18/36	58.0	9.72	---	71.0	---	---	---	---	---	M. Hanavan
Main Stream at Dam	6/2/36	57.0	10.64	---	70.5	---	---	---	---	---	M. Hanavan
Main Stream at Dam	12/18/40	---	9.0	---	176	---	---	---	7.5	---	Leo Shapovalov
Main Stream at Dam	1/28/41	---	15.0	---	36	---	---	---	7.6	---	M. Moore
Main Stream at Dam	2/1/41	---	14.0	---	42	---	---	---	7.6	---	M. Moore
Main Stream at Dam	2/5/41	51.0	12.8	---	52	---	---	--	7.4	---	M. Moore
Main Stream at Dam	2/6/41	52.0	12.4	---	44	---	---	---	7.5	---	M. Moore
Main Stream at Dam	4/19/41	55.5	9.6	---	48	---	---	---	7.3	---	M. Moore
Main Stream at Dam	5/2/41	55.5	11.8	---	60	---	---	---	7.3	---	M. Moore
Main Stream at Dam	5/9/41	64.5	9.8	---	60	---	---	---	7.4	---	M. Moore
Main Stream at Dam	5/24/41	66.0	9.8	---	72	---	---	---	7.2	---	M. Moore
Main Stream at Dam	6/14/41	65.0	9.4	---	72	---	---	---	7.4	---	M.Moore
Lagoon	2/5/41	---	11.2	---	56	---	---	---	7.4	---	M. Moore
Lagoon	2/6/41	---	13.6	---	48	---	---	---	7.3	---	M. Moore
Lagoon	4/19/41	57.5	9.2	---	52	---	---	---	7.3	---	M. Moore
Lagoon	5/2/41	52.0	11.5	---	56	---	---	---	7.3	---	M. Moore
Lagoon	5/9/41	67.0	10.6	---	60	---	---	---	7.6	---	M. Moore
Lagoon	5/24/41	68.5	9.6	---	64	---	---	---	7.3	---	M. Moore
Lagoon	6/14/41	69.5	10.0	---	80	---	---	---	7.3	---	M. Moore

[^49]
Department Of Fish And Game Of California Fish Bulletins

* No. 1. Report on Fish Conditions. 1913; 48 pp., 3 figs.
* No. 2. The Scientific Investigation of Marine Fisheries, as Related to the Work of the Fish and Game Commission in Southern California. By Will F. Thompson. 1919 ; 27 pp., 4 figs.
* No. 3. The Spawning of the Grunion (Leuresthes tenuis.). By Will F. Thompson, assisted by Julia Bell Thompson. 1919 ; 29 pp., 9 figs.
* No. 4. The Edible Clams, Mussels and Scallops of California. By Frank W. Weymouth. 1921 ; 74 pp., 19 pls., 26 figs.
* No. 5. A Key to the Families of Marine Fishes of the West Coast. By Edwin C. Starks. $1921 ; 16$ pp., 4 figs.
* No. 6. A History of California Shore Whaling. By Edwin C. Starks. 1922; 38 pp., 22 figs.
* No. 7. The Life-History and Growth of the Pismo Clam (Tivela stultorum Mawe). By Frank W. Weymouth. 1923; 120 pp., 15 figs., 18 graphs.
* No. 8. Racial and Seasonal Variation in the Pacific Herring, California Sardine and California Anchovy. By Carl L. Hubbs. 1925 ; 23 pp., 4 pls.
* No. 9. Preliminary Investigation of the Purse Seine Industry of Southern California. By Tage Skogsberg. 1925 ; 95 pp., 23 figs.
* No. 10. The Life History of Leuresthes Tenuis, an Atherine Fish with Tide Controlled Spawning Habits. By Frances N. Clark. 1925; 51 pp., 6 graphs, 7 pls., front.
* No. 11. The California Sardine. By the Staff of the California State Fisheries Laboratory. $1926 ; 221 \mathrm{pp}$. , 74 figs.
* No. 12. The Weight-Length Relationship of the California Sardine (Sardina caerulea) at San Pedro By Frances N. Clark. 1928; 58 pp., 11 figs.
* No. 13. Seasonal Average Length Trends at Monterey of the California Sardine (Sardina caerulea). By Carroll B. Andrews. 1928; 12 pp., 6 figs.
* No. 14. Report on the Seals and Sea Lions of California: 1928. By Paul Bonnot. 1929 ; 61 pp., 38 figs.
* No. 15. The Commercial Fish Catch of California for the Years 1926 and 1927. By the Bureau of Commercial Fisheries. 1929 ; 93 pp., 52 figs.
* No. 16. The Life History of the California Jack Smelt, Atherinopsis californi-ensis By Frances N. Clark. 1929; 22 pp., 12 figs., front.
* No. 17. Sacramento-San Joaquin Salmon (Oncorhynchus tschaiwytscha) Fishery of California. By G. H. Clark. 1929 ; 73 pp., 32 figs.
* No. 18. The Pismo Clam : Further Studies of Its Life History and Depletion. By William C. Herrington. 1930; 67 pp., 16 figs.
* No. 19. Sardine Fishing Methods at Monterey, California. By W. L. Scofield. 1929 ; 61 pp., 27 figs.
* No. 20. The Commercial Fish Catch of California for the Year 1928. By the Staff of the Bureau of Commercial Fisheries. 1930 ; 109 pp., 62 figs.
* No. 21. Analysis of Boat Catches of White Sea Bass (Cynoscion nobilis) at San Pedro, California. By S. S. Whitehead. 1930; 26 pp., 20 figs.
* No. 22. A Bibliography of the Tunas. By Genevieve Corwin. 1930; 103 pp .
* No. 23. Success of the Purse Seine Boat in the Sardine Fishery at Monterey, California (1929-1930 Fishing Season). By J. B. Phillips. 1930; 28 pp., 19 figs.
* No. 24. An Analysis of the Catch Statistics of the Striped Bass (Roccus lineatus) Fishery of California. By J. A. Craig. 1930; 41 pp., 22 figs., front.
* Out of print.
* No. 25. Fishing Areas Along the California Coast for the Sardine (Sardina caerulea). By the California State Fisheries Laboratory. 1930; 44 pp., 25 figs.
* No. 26. Seasonal Changes in the Daily Average Length of the California Sardine, Sardina caerulea. By Frances N. Clark. 1930; 20 pp., 11 figs.
* No. 27. The Ring Net, Half Ring Net, or Purse Lampara in the Fisheries of California. By Donald H. Fry, Jr. 1931; 65 pp., 28 figs.
* No. 28. Handbook of Common Commercial and Game Fishes of California. By Lionel A. Walford. 1931 ; 181 pp., 137 figs., front.
* No. 29. The Striped Bass of California (Roccus lineatus). By Eugene C. Sco-field. 1931; 82 pp., 47 figs.
* No. 30. The Commercial Fish Catch of California for the Year 1929. By the Staff of the Bureau of Commercial Fisheries. 1931; 133 pp., 75 figs.
* No. 31. Studies of the Length Frequencies of the California Sardine (Sardina caerulea). By the California State Fisheries Laboratory. 1931; 53 pp., 24 figs.
* No. 32. The California Halibut (Paralichthys Californicus) and an Analysis of the Boat Catches. By G. H. Clark. $1931 ; 52$ pp., 25 figs., front.
* No. 33. Fishing Methods for the Bluefin Tuna (Thunnus thynnus) and an Analysis of the Catches. By S. S. Whitehead. 1931; 32 pp., 22 figs.
* No. 34. Salmon of the Klamath River, California. By John O. Snyder. 1931; 130 pp., 44 figs.
* No. 35. A Distributional List of the Species of Freshwater Fishes Known to Occur in California. By Barton Warren Evermann and Howard Walton Clark. 1931; 67 pp.
* No. 36. A Bibliography of the Sardines. By Genevieve C. Wheeler. [1932] ; 133 pp., front.
* No. 37. The California Barracuda (Sphyraena argentea). By Lionel A. Walford. 1932; 120 pp., 32 figs., 6 pls., front.
* No. 38. The California Shrimp Industry. By Paul Bonnot. 1932 ; 20 pp., 11 figs.
* No. 39. Fluctuations in the Abundance of Striped Bass (Roccus lineatus) in California. By G. H. Clark. 1933; 18 pp., 7 figs.
* No. 40. The California Mackerel Fishery. By Richard S. Croker. 1933; 149 pp., 73 figs.
* No. 41. Early Life History of the California Sardine (Sardina caerulea), with Special Reference to Distribution of Eggs and Larvae. By Eugene C. Scofield. 1934; 48 pp., 24 figs.

No. 42. Maturity of the California Sardine (Sardina caerulea), Determined by Ova Diameter Measurements. By Frances N. Clark. 1934 ; 49 pp., 19 figs.
No. 43. The Sizes of California Sardines Caught by the Different Fishing Gear and in the Different Localities of the Monterey and San Pedro Regions. By the California State Fisheries Laboratory. 1935 ; 59 pp., 27 figs.

* No. 44. The Commercial Fish Catch of California for the Years 1930-1934, Inclusive.

By the Staff of the Bureau of Commercial Fisheries. 1935; 124 pp., 19 figs.

* No. 45. The Sharks and Rays of California. By Lionel A. Walford. 1935; 66 pp., 58 figs.
* No. 46. A Contribution toward the Life Histories of Two California Shrimps, Crago franciscorum (Stimpson) and Crago nigricauda (Stimpson). By Hugh R. Israel. 1936; 28 pp., 9 figs.

No. 47. Interseasonal and Intraseasonal Changes in Size of the California Sardine (Sardinops caerulea). By Frances N. Clark. [1937] ; 28 pp., 11 figs.
No. 48. Fishing Localities for the California Sardine, Sardinops caerulea, 1928-1936.
By Frances N. Clark. 1937; 11 pp., 5 figs.

* Out of print.
* No. 49. The Commercial Fish Catch of California for the Year 1935. By the Staff of the Bureau of Commercial Fisheries. 1937; 170 pp., 120 figs.
No. 50. Sizes of California Sardines Caught in the Different Areas of the Monterey and San Pedro Regions. By J. B. Phillips. 1937; 31 pp., 12 figs.
* No. 51. The High Seas Tuna Fishery of California. By H. C. Godsil. 1938; 41 pp., 20 figs.
* No. 52. Historical Account of the Los Angeles Mackerel Fishery. By Richard S. Croker. 1938; 62 pp., 37 figs.
No. 53. Measures of Abundance of the Sardine, Sardinop caerulea in California Waters. By Frances N. Clark. 1939; 45 pp., 19 figs.
No. 54. The Fishes of the Family Sciaenidae (Croakers) of California. By Tage Skogsberg. 1939 ; 62 pp., 16 figs.
No. 55. Report on Returns of Drift Bottles Released off Southern California, 1937. By Richard B. Tibby, 1939; 36 pp., 22 figs.
* No. 56. Development of the Eggs and Early Larvae of Six California Fishes. By Paul L. Budd. 1940; 50 pp., 13 pls.
No. 57. The Commercial Fish Catch of California for the Years 1936-1939, Inclusive. By the Staff of the Bureau of Marine Fisheries. $1940 ; 100$ pp., 9 figs.
No. 58, The Commercial Fish Catch of California for the Year 1940. By the Staff of the Bureau of Marine Fisheries. 1942; 47 pp., 7 figs.
No. 59. The Commercial Fish Catch of California for the Years 1941 and 1942. By the Staff of the Bureau of Marine Fisheries. 1944 ; 68 pp., 8 figs.
* No. 60. A Systematic Study of the Pacific Tunas. By H. C. Godsil and Robert D. Byers. 1944 ; 131 pp., 76 figs.
* No. 61. Results of Tagging Experiments in California Waters on the Sardine (Sardinops caerulea). 1945; 90 pp., 15 figs.
* No. 62. Catch per-Unit-of-Effort in California Waters of the Sardine (Sardinops caerulea) 1932-42, By Ralph P. Silliman and Frances N. Clark. 1945; 76 pp., 22 figs.

No. 63. The Commercial Fish Catch of California for the Years 1943 and 1944. By the Staff of the Bureau of Marine Fisheries. 1946 ; 81 pp., 6 figs.

* No. 64. The Biology of the Soupfin, Galeorhinus zyopterus, and Biochemical Studies of the Liver. 1946 ; 93 pp., 41 figs., front.
No. 65. Analysis of Populations of the Pacific Sardine on the Basis of Vertebral Counts. By Frances N. Clark. 1947 ; 26 pp., 3 figs.

No. 66. Drift and Set Line Fishing Gear in California. By W. L. Scofield. 1947; 38 pp., 16 figs.
No. 67. The Commercial Fish Catch of California for the Years 1945 and 1946. By the Staff of the Bureau of Marine Fisheries. 1947 ; 80 pp., 7 figs.

* No. 68. Common Marine Fishes of California. By Phil M. Roedel. 1948 ; 150 pp., 111 figs., front.
* No. 69. Age and Length Composition of the Sardine Catch off the Pacific Coast of the United States and Canada, 1941-42 through 1946-47. By Frances E. Felin and Julius B. Phillips. 1948; 122 pp.
* No. 70. A Preliminary Population Study of the Yellowfin Tuna and the Albacore. By H. C. Godsil. 1948; 90 pp., 22 figs.
* No. 71. Growth of the Sardine, Sardinops caerulea, 1941-42 through 1946-47. By Julius B. Phillips. 1948; 33 pp., 12 figs.
No. 72. Trawling Gear in California. By W. L. Scofield. 1948; 60 pp., 24 figs.

No. 73. Tagging Experiments on the Pacific Mackerel (Pneumatophorus diego) . By Donald H. Fry, Jr. and Phil M. Roedel. 1949 ; 64 pp., 15 figs., front.

No. 74. The Commercial Fish Catch of California for the Year 1947 With an Historical Review, 1916-1947. By the Staff of the Bureau of Marine Fisheries. 1949; 267 pp., 99 figs.
No. 75. California Sharks and Rays. By Phil M. Roedel and Wm. Ellis Ripley. 1950; 88 pp., 65 figs.

* Out of print.

No. 76. Average Lunar Month Catch by California Sardine Fishermen, 1932-33 through 1948-49. By Frances N. Clark and Anita E. Daugherty. 1950; 28 pp., 0 figs.
No. 77. A Comparison of the Bluefin Tunas, Genus Thunnus, from New England, Australia and California. By H. C. Godsil and Edwin K. Holmberg. 1950; 55 pp., 15 figs.
No. 78. The Life History of the Starry Flounder, Platichthys stellatus (Pallas). By Harold George Orcutt. 1950; 04 pp., 52 figs., front,
No. 79. A Key to Some Southern California Fishes Based on Vertebral Characters. By Charles R. Clothier. [1951]; 83 pp., 22 figs., 23 pls.
No. 80. The Commercial Fish Catch of California for the Years 1948-1949 with Yield per Area of the California Sardine Fishing Grounds 1937-1949. By the Staff of the Bureau of Marine Fisheries. 1951; 87 pp., 9 figs.
No. 81. Purse Seines and Other Roundhaul Nets in California. By W. L. Scofield. 1951; 83 pp., 37 figs.
No. 82, A Comparison of the Populations of the Yellowfin Tuna, Neothunnus macropterus, from the Eastern and Central Pacific. By H. C. Godsil and E. C. Greenhood. 1951; 33 pp., 0 figs.
No. 83. Age Composition of the Southern California Catch of Pacific Mackerel 1939-40 through 1950-51. By John E. Fitch. 1951; 73 pp., 17 figs., front.
No. 84. A Racial Study of the Pacific Mackerel, Pneumatophorus diego. By Phil M. Roedel. 1952; 53 pp., 5 figs.
No. 85. The Biology of the Dover Sole, Microstomus pacificus (Lockington). By Frederick B. Hagerman. 1952 ; 48 pp., 28 figs., front.
No. 86. The Commercial Fish Catch of California for the Year 1950 with a Description of Methods Used in Collecting and Compiling the Statistics. By the Staff of the Bureau of Marine Fisheries. 1952; 120 pp., 43 figs.
No. 87. Surveys Through 1951 of the Distribution and Abundance of Young Sardines (Sardinops caerulea). By Julius B. Phillips and John Radovich. 1952; 03 pp., 20 figs., front.
No. 88. A Revision of the Family Embiotocidae (The Surfperches). By Fred Harald Tarp. 1952 ; 99 pp., 32 figs.
No. 89. The Commercial Fish Catch of California for the Year 1951, with an Evaluation of the Existing Anchovy Case Pack Requirements. By the Staff of the Bureau of Marine Fisheries. $1953 ; 68$ pp., 4 figs.
No. 90. Common Marine Bivalves of California. By John E. Fitch. 1953; 102 pp., 63 figs., front.
No. 91. Common Ocean Fishes of the California Coast. By Phil M. Roedel. 1953; 184 pp., 175 figs., front.
No. 92. Studies on Fish Preservation at the Contra Costa Steam Plant of the Pacific Gas and Electric Company. By James E. Kerr. 1953 ; 00 pp., 30 figs.
No. 93. The Life History of the Cabezon, Scorpaenichthys marmoratus (Ayres). By Charles P.O'Connell. 1953 ; 70 pp., 40 figs., front.
No. 94. The Behavior and Reproduction of Salmonid Fishes in a Small Coastal Stream. By John C. Briggs. 1953; 02 pp., 5 figs.
No. 95. The Commercial Fish Catch of California for the Year 1952 with Proportion of King and Silver Salmon in California's 1952 Landings. By the Staff of the Marine Fisheries Branch. 1954; 04 pp., 7 figs.
No. 96. California Fishing Ports, By W. L. Scofield. 1954 ; 159 pp., 88 figs.
No. 97. A Descriptive Study of Certain Tuna-like Fishes. By H. C. Godsil. 1954; 185 pp., 93 figs.
No. 98. The Life Histories of the Steelhead Rainbow Trout (Salmo gairdneri gairdneri) and Silver Salmon (Oncorhynchus kisutch) : with Special Reference to Waddell Creek, California, and Recommendations Regarding Their Management. By Leo Shapovalov and Alan C. Taft. 1954; 375 pp., 32 figs.

My name is Jim Edmondson This is my testimony regarding the State Water Resources Control Board (SWRCB) for Phase 2 of the hearing regarding the U.S. Bureau of Reclamation Water Rights Permits 11308 and 11310 (Applications 11331 and 11332) for the Cachuma Project on the Santa Ynez River in Santa Barbara County.

Qualifications

1 serve as an executive for California Trout (CalTrout) presently employed as their Southern California Manager. For the past 20 years I have a growing list of responsibilities and conservation accomplishments on behalf of the public fisheries of the state. A list these responsibilities, experiences, and accomplishments are listed in Exhibit CT 91. In carrying out these actions, I have received local, state, and national honors and awards.

Among these actions are numerous involvements with wild trout and native steelhead resources throughout California including: stream restoration; fishery management; environmental protection; regulatory agency interactions; legislation; litigation; implementation of court orders; state fishery and water codes sections; environmental impact review and comment; and multiple party planning, negotiations and resolution.

I am familiar with numerous California Administrative Codes including California Department of Fish and Game (DFG) Code Sections 5937 and 5946, as well as related Title 23 Water Codes.

I have been called upon by the SWRCB as a member of their contractor selection review team for the preparation of an environmental impact report to review the City of Los Angeles Mono Basin Water Rights.

I represented CalTrout before the El Dorado County Superior Court in the implementation of its "Order Setting Interim Flows" regarding streams tributary to Mono Lake and the operations of the City of Los Angeles Department of Water and Power facilities to divert water from the Mono Basin to the Owens River. This participation was continuous from the Court's June 14, 1990 order, and the conclusion of this matter in 1998. During these proceedings I have been called on as an expert witness before the court.

I have represented CalTrout in its concern regarding Bear Creek (San Bernardino Co.) from 1986 to the present. This effort has included hundreds of hours of research, document review, written conrespondence, and evaluation of DFG fishery information, District environmental impact reports, SWRCB records, court rulings, District consultant reports and the preparation of several CalTrout State Water Resources Control Board Protest and/or Complaints leading up to a hearing before the SWRCB. I was an expert witness before the State Water Resources Control Board in those proceedings, including testimony on hydraulic modeling for reservoir operations and downstream releases for the reservoir, fishery implications from these releases, and economic
benefits from the hydraulic simulations presented. My direct and rebuttal testimony was accepted into the record of these proceedings and utilized by the SWRCB in developing its subsequent order.

I serve as the Southern California representative on both the Citizens Advisory Committee to the California Legislature on Salmon and Steelhead, as well as the California Coastal Salmon Recovery Program Advisory Committee. In addition I am the co-founder and chairman of the Southern California Steelhead Coalition, California's largest coalition dedicated to steelhead recovery representing over 225,000 Californian's who are members of this group's 36 organization.

CaITrout Background and Standing before SWRCB

California Trout, Inc. is a California non-profit corporation organized under the laws of the State of California. CalTrout, founded in 1971, is a statewide conservation organization supported by sports fisherman and fisherwomen with approximately 5,600 individual members and fifty. affiliated local angling clubs representing another 5,000 persons. The purposes of CalTrout are: "to protect and restore wild trout, native steelhead and the waters that nurture them."

In carrying out its purposes, CalTrout has been a party to or has come before the State Water Resources Control Board many times in the past, including; Complaint by California Trout, Inc v. Walker River Irrigation District License 9407 (SWRCB Order W 90-18); California Trout, Inc. v. State Water Resources Control Board, 207 Cal . App. 3d, 255 Cal. Rptr. 184 (1989) (CaITrout 1), and Califomia Trout, Inc. v. Superior Court, 218 Cal. App. 3d, 266 Cal. Rptr. 788 (1990) (CalTrout II).

CalTrout has been called upon by the SWRCB on several occasions to share its expertise on the needs of aquatic ecosystems impacted by water right applications, permits and licenses (see SWRCB Permit For Diversion and Use of Water, Temporary Permit \#20250, article 11 (a)(C))

Members of CalTrout and its affiliate clubs use the waters of Santa Ynez River, its tributaries and Lake Cachuma for sportfishing. CalTrout members and affiliate clubs include customers of the Carpinteria County Water District, Summerland Water district, Montecito Water District. City of Santa Barbara, Goleta Water District, as well as members residing in the communities of the Santa Ynez Valley including the towns of Santa Ynez, Solvang, Lompoc and Buellton, who utilize the water of the Santa Ynez River for municipal water supplies. CalTrout members and affiliate clubs include residents of Santa Barbara County.

As an organization dedicated to important social values, public resources and public policy matters, CalTrout's participation in these SWRCB proceedings will be in the public interest.

Historic Santa Ynez Steelhead Abundance

The range of steelhead abundance historically occurring within the Santa Ynez watershed has been described in documents utilized by the U.S. Bureau of Reclamation (Bureau) in their efforts
before Congress seeking authorization for the Cachuma Project. These historic accounts describe the abundance beginning in the 1940s after the construction of Gibraltar Dam, which eliminated steelhead access to a segment of the upper Santa Ynez watershed. Even with Gibralter Dam impairing steelhead access, the Santa Ynez River was the largest run of steelhead in Southern California ranging from greater then 9,000 up to 30,000 adult fish annual. The accounts identify the average annual adult steelhead abundance at 20,000 fish.
"Santa Ynez River is of major importance as a spawning ground and nursery stream for the largest steelhead trout run in southern California. The average size of the spawning run of steelhead in Santa Ynez River is' estimated by competent personnel of the California State Division of Fish and Game at 20,000. The size of individual runs range between 13,000 and 25,000 fish."
"The Santa Ynez River is the best steelhead river in southern California. The run of adult steelhead, providing splendid fishing in the lower 34 miles of river, is estimated to average 20,000 annually." ${ }^{2}$

Both the U.S. Fish and Wildlife Service and NOAA Fisheries have relied on these historic estimates in their reports of historic steelhead abundance.
"Historically, the Santa Ynez River was of major importance as a spawning ground and nursery stream for trout, supporting the largest run of steelhead trout in southern California. Personnel from the California Division of Fish and Game (1945) estimated the average adult steelhead run entering the drainage at 20,000 fish, ranging each year between 13,000 and 25,000 spawners. ${ }^{13}$
"Historically, steelhead occurred naturally south into Baja California. Estimates of historical (pre-1960s) abundance for several rivers in this ESU are available: Santa Ynez River, before 1950, 20,000 to 30,000 (Shapovalov and Taft, 1954; CDFG, 1982; Reaves, 1991; Titus et al., in press): Ventura River. Pre-1960, 4,000 to 6,000 (Clanton \& Jarvis, 1946; CDFG, 1982; AFS, 1991; Hunt et al., 1992; Henke, 1994; Titus et al., in press); Santa Clara River, pre-1960, 7,000 to 9,000 (Moore, 1980;

[^50]Comstock, 1992; Henke, 1994); Malibu Creek, pre-1960, 1,000 (Nehlsen et al., 1991: Reaves 1991)., ${ }^{45}$

As part of the listing process under the federal Endangered Species Act, on August 9, 1996, NOAA Fisheries (formerly the National Marine Fisheries Service) published a federal register notice describing 15 evolutionary significant units (ESUs) for west coast steelhead. The Santa Ynez River was contained in one of these ESUs.

Steelhead Historic Use Of The River

Upon their winter spawning runs to the Santa Ynez River, adult steelhead utilized the main river and its tributaries. The major portions of the run spawned above Cachuma Dam and formerly ascended to the upper most portion of the watershed prior to the impassable barrier created by Gibraltar Dam. ${ }^{6}$ The amount of the watershed spawning and rearing habitat, which would become unavailable to steelhead with the construction of the Cachuma Project, was estimated at approximately $2 / 3$ rds. ${ }^{7}$

Historic Recreational Fishing Qualities

Historic accounts describe the quality of fishing in the Santa Ynez River, during the steethead fishing season as "splendid" with "fine angling." ${ }^{8}$ The U.S. Bureau of Reclamation determined sportfishing for steelhead was of "considerable importance." 9

The quality of the historic steelhead fishing from an angler's perspective has been described as the "most productive" of all steelhead river in Southern California, with "several" winter runs of steelhead taken in "great numbers" with bag limit catches between late December until the season closed at the end of February, and "splendid" steelhead up to ten pounds being caught. Steelhead angling in the Santa Ynez took place from surf fishing, "boats in the mile-long lagoon" and within the lower river where winter steelhead fishing was allowed. ${ }^{10}$

[^51]Statistics compiled by the California Division of Fish and Game for Santa Barbara County 1941 to 1943 determined thousands of anglers frequented the area, with the majority using the Santa Ynez. ${ }^{11}$ Those anglers who pursued Santa Ynez River steelhead are included in these statistics, but could not be segregated by the California Division of Fish and Game.

Pre Cachuma Project Steelhead Protection Measures

In the Cachuma Dam planning process, as early as 1948, the Bureau stated that "the section of Santa Ynez River below the dam is insufficient to support the present steelhead populations." ${ }^{12}$ The Bureau consulted with the U.S. Fish and Wildlife Service (Service) to determine both the Project's steelhead fishery impacts and their recommendations to maintain the fishery. The Service determined in its June 1945 report that "particular emphasis on the needs for fish protection" throughout the entire watershed was necessary to maintain the fishery. The Service stated that the proposed dam height would not allow for a functional fishway, and thus, to maintain the historic steelhead run fishery, maintenance efforts must be attempted in that portion of the river below the proposed dam. In its 1945 report to the Bureau, the Service made a recommendation for a minimum continuous release of 15 cubic feet per second from the Cachuma Reservoir and a fish hatchery. The Service's initial 1945 instream flow recommendation was subsequently amended, the hatchery recommendation withdrawn, and a final list of recommendations was provided in 1948. These steelhead maintenance recommendations included: ${ }^{13}$

- Water be released from Cachuma Dam as measured below the mouth of Santa Agueda Creek ranging from 5 tol5 cubic feet per second (cfs) but never less then an absolute minimum of 2 cts .
- Downstream water rights release should be done to benefit fish whenever possible.
- Surplus water over present and future contractual needs should be reserved by enabling legislation to the State for use in fishery maintenance until contracted for by water users.
- A trapping and holding facility be provided below the dam for the salvage of adult steelhead and subsequent transfer of these fish above the dam.
- Outlet tunnel be screened.

The Service concluded that, even with implementation of these steelhead fishery maintenance actions, the proposed project would result in losses of "approximately 50% " of the steelhead population as a result of the Cachuma Project. ${ }^{14}$ The Bureau did not dispute this loss estimate.

[^52]
Bureau's Cachuma Project 1948 Balancing Decision

To gain Congressional approval for the Cachuma Project, the Secretary of the Interior, on behalf of the Bureau, filed its report. While the Bureau recognized the importance of maintaining the pre-Cachuma Project steelhead resources, and that the fishery would be reduced by approximately 50% due to its eliminating steelhead access to habitat above the dam, on April 1 , 1948 they recommended discarding the entire list of the Service's fish maintenance recommendations, as the water needs for irrigation and municipal uses took exclusive priority. Nevertheless the Bureau stated, "Every effort will be made to provide water and to operate Cachuma Reservoir as to maintain the existing spawning grounds below the proposed Cachuma Dam." ${ }^{15}$

Bureau's Cachuma Project 1995 Balancing Decision

On December 12, 1995 the Bureau produced a Final Environmental Impact Statement/Report Cachuma Project Contract Renewal ("Contract Renewal EIS/EIR"). The goal of this document was to conduct a comprehensive environmental analysis of the Cachuma Project as a basis for renewing long-term water contracts with Cachuma Project members, i.e., local water interests. The project purpose included, "To continue the operation of the Cachuma Project for beneficial uses, with a reasonable balance among competing demand ... including existing Project contractors, downstream water rights holders, fish and wildlife, and recreation." Contract Renewal EIS/EIR at 2-2 [Staff Ex. 5].

Eighteen alternatives were identified and compared in this document. One of these alternatives, Alternative 3A2, was identified as having the greatest benefit to steelhead below the dam: "In general, of all the alternatives not screened out, Alternative 3A2 . . . has the greatest likelihood of resulting in a self-sustaining steelhead population at significantly greater numbers than are now present in the Santa Ynez River." Contract Renewal EIS/EIR at 6.4-21 [Staff Ex. 5]. Although Alternative 3A2 was identified as the "biologically preferable/superior alternative," it was dismissed due to a purportedly "significant reduction in water supply, which is the primary purpose of the project. Id. at ES-26. [Staff Ex. 5].

Thus, although the stated purpose of the project was to strike a "reasonable balance" among competing needs, the Bureau ultimately prioritized water supply and selected its contract/preferred alternative. This essentially was that "operations of the Project would continue unchanged. . ." Id. at ES-25. [Staff Ex. 5].

Therefore it is my opinion the Bureau's 1995 "balancing" through the contract renewal process, was simply a replication of its prior 1948 project authorization balancing decision that water supply was more important than those for public trust uses.

[^53]
Public Trust Balancing - What Can Be Done

The construction of the Cachuma Project four decades ago has today created an imbalance. The Bureau has operated the project to maximize the water supply available for consumption to such an extent that the public's trust in the Santa Ynez River has been harmed. Santa Ynez River steelhead have dwindled to approximately 100 adults -1 or 2% of the steelhead population abundance the Bureau predicted would survive once the Cachuma Project was constructed without fishery maintenance measures.

I congratulate the Bureau for their recent stewardship working with the local water interest to develop the Lower Santa. Ynez River Management Plan. And I appreciate the Bureau's commitment to the Biological Opinion provided by NOAA Fisheries. Yet, these documents are not designed to restore the river's biological integrity, nor to restore a "fishable" river. These documents do not even identify a discernable management structure with measurable success criteria for the Board to judge if and when public trust resources are progressing towards success.

I believe measures can be implemented that will restore steelhead in the Santa Ynez River, and that this can be done in a manner that truly balances public trust and other beneficial uses. The comprehensive "re-balancing" struck by the SWRCB in their D-1631 and D-98-07 Orders provides the basis for my opinion.

CalTrout's expert witnesses will identify measures that are capable of restoring steelhead, and will describe how the potential impacts of these measures on other beneficial uses can be minimized. Based on these experts' analysis, CalTrout respectfully requests the following:

1. The Cachuma Project permits should be modified to protect steelhead as a public trust resource. Specifically, measures should be implemented now that are capable of restoring the public trust in steelhead in the Santa Ynez and are capable of restoring and maintaining fish in good condition.
2. Flow requirements of the following magnitude and duration should be required:

- 48 cfs February 15 to April I4 for spawning, then
- 20 cfs to June 1 for incubation and rearing, then
- 25 cfs for one week for emigration, then
- ramp releases to 10 cfs by June 30 , then
- hold at 10 cfs to October 1 , then
- 5 cfs until February 14 for resident fish.

These are the flow requirements identified in Alternative 3A2 in the Bureau's Cachuma Contract Renewal EIS/EIR. [Staff Ex. 5]. Based on my calculations (explained in Appendix 1 of this testimony), implementation of Alternative 3A2 over the long term would require approximately 7,056 acre-feet per year (AFY). According to the SWRCB DEIR, implementation of Alternative 3 A would require on average $2,600 \mathrm{AFY}$ and would not result in [significant, unmitigable impacts]. SWRCB DEIR at 3-9 [Staff Ex. 10]. CalTrout's water conservation expert has determined that it is reasonable and feasible to save from 5,000 to $7,000 \mathrm{AFY}$ with the use of
existing and proven water conservation methods and technologies. Written Testimony of Dana Haasz and Peter Gleick [Ex. CT 50]. Therefore, implementation of the above flow requirements is not expected to significantly impact available water supply.
3. The timely implementation of additional studies should be incorporated into the permits. These studies should include at a minimum an evaluation of passage around Bradbury Dam, a focused study of each lifestage for which flows are being provided to verify and refine instream flow requirements, and an examination of alternative release schedules for downstream water rights. These studies should be prepared by a fully independent, qualified consultant under the direction of the Board. The regulatory and trustee agencies (e.g. Bureau of Reclamation, California Department of Fish and Game, U.S. Forest Service, NOAA Fisheries) and other interested parties could provide input through a technical review process.
4. An Adaptive Management Plan, with measurable success criteria, and a schedule to achieve these criteria, should be incorporated into the permits. This plan should be consistent with the Plan identified in the Battle Creek Salmon and Steelhead Restoration Project Draft Environmental Impact Statement/Environmental Impact Report. [Ex. CT 42]
5. A review of permit conditions by the Board at such milestones as the release of the studies identified above, NOAA Fisheries pending recovery plan, or other milestones identified in the final adaptive management program. These milestones should be explicitly incorporated into the permits.

Appendix 1

The final Cachuma Contract Renewal EIR/EIS provides tables, graphs, and charts that allow for succinct comparisons. [Staff Ex. 5]. For example, Table 6.4-2 illustrates the "Average Steelhead Habitat Scores For Each Life History Stage" for each alternative, and Alternative 3A2 scored highest. Table 6.4-3 provides "Number of Low Score Years Over 75 Year Period of Record" for each alternative, and Alternative 3A2 scored highest. Table 6.4-4 illustrates "Resident Fish Analysis At San Lucas Bridge For 75 Year Period of Record", and Alternative 3A2 scored highest. These tables provide an objective means to compare relative benefits amongst environmental impact studies/reports.

According to the hydrologic modeling done, dry conditions were anticipated to occur 20% of the time. SWRCB DEIR, Appendix C, Table 4-1 [Staff Ex. 10]. Under these dry conditions there may be insufficient high flows to allow lagoon breaching and thus the need for adult steelhead migration and spawning flows, but a need to maintain flows for resident fish at 5 cfs . In addition, downstream water rights releases of 50 cfs or more are expected to continue. Id. at 2-7. Under WR 89-18, these downstream releases have occurred in 92% of the years examined. Id. at Table 2-3). These releases may occur between May to October with the majority of these releases occurring July to September. Id., Appendix D, p. 11). Finally, spills from the dam occur in 37% of the years 1953 to 2001, traditionally during the February through mid-April steelhead migration and spawning periods. Id. at Table 2-2). Accordingly it is my opinion the implementation of Alternative 3A2 over the long term would require approximately 7,056 acre-feet (AF). The underlying assumptions and calculations that support my opinion are on Table 1 and Table 2 below.

Table 1. Alternative 3A2 Annual Requirements

Period	$\begin{gathered} \text { 3A2 Normal } \\ \text { AF } \end{gathered}$	3A2 Dry AF	Assumptions
	Column A	Column B	
January 1-31	295	295	Continuous resident fish release of 5 cfs as per 3A2
February 1-14	133	133	Continuous resident fish release of 5 cfs as per 3A2
February 15-28	804	133	Column A equals continuous release of 48 cfs as per 3A2 implemented 63% of time when spills are not occurring cover balance for period and flow requirements. Column B equals continuous release of 5 cfs as per 3A2.
March 1-31	1,781	295	Column A equals continuous release of 48 cts as per 3A2 implemented 63% of time when spills are not occurring cover balance for period and flow requirements. Column B equals continuous release of 5 cfs as per 3A2.
April 1-14	804	133	Column A equals continuous release of 48 cts as per 3A2 implemented 63% of time when spills are not occurring cover balanice for period and flow requirements. Columni B equals continuous release of 5 cfs as per 3A2.

April 15-30	532	133	Column A equals continuous release of 20 cfs as per 3 A 2 . Column B equals continuous resident fish release of 5 cfs as per 3A2.
May 1-31	1,178	295	Column A equals continuous release of 20 cts as per 3 A 2 . Column B equals continuous resident fish release of 5 cfs as per 3A2.
June 1-7	333	333	Continuous seven day emigration release of 25 cfs as per 3A2
June 8	33	33	One day of 17.5 cfs ramping from 25 to 10 cfs as per 3 A 2 .
June 9-30	418	418	Continuous release of 10 cfs as per 3A2.
July 1-31	47	47	Continuous release of 10 cfs as per 3 A 2 implemented 8% of time as 89-18 releases cover balance for period and flow requirements
August 1-31	47	47	Continuous release of 10 cfs as per 3 A 2 implemented 8% of time as $89-18$ releases cover balance for period and flow requirements
September 1-30	589	589	Continuous resident fish release of 10 cfs as per 3A2
October 1-31	295	295	Continuous resident fish release of 5 cfs as per 3A2
November 1-30	295	295	Continuous resident fish release of 5 cfs as per 3A2
December 1-31	295	295	Continuous resident fish release of 5 cfs as per 3A2
Total	7,878	3,766	

Table 2. $\mathbf{3 A 2}$ Alternative 10 Year Average ($\mathbf{8 0} \%$ Normal and Above and $\mathbf{2 0 \%}$ Dry)

Table 1. Column A X 8	63,024
Table 1 Column B X 2	7,532
10 Year Avg. AF	7,056

[^0]: *As amended by P.L. 94-325, June 30, 1976; P.L. 94-359, July 12, 1976; P.L. 95-212, December 19, 1977; PL. 95-632, November 10, 1978; P.L. 96-159, December 28, 1979; P.L. 97-304, October 13, 1982; P.L. 98-327, June 25, 1984; and P.L. 100-478, October 7, 1988; P.L. 107-171, May 13, 2002; P.L. 108-136, November 24, 2003.

[^1]: ${ }^{1}$ Fish have been trapped moving downstream in San Miguelito Creek. However, they did not exhibit smolting characteristics during the three years sampled.

[^2]: ${ }^{2}$ In addition, resident rainbow trout from the reservoir may follow spill releases over/through the radial gates and into the lower Santa Ynez, although there is no direct evidence to substantiate this. These fish may be from hatchery stock, as CDFG has planted a variety of strains in the basin above the Dam for many years (U.S. Bureau of Reclamation 1999).

[^3]: ${ }^{3}$ Natural conditions are not necessarily the goal of resource management; rather an important reference point for gauging the effects of continued operations on listed species.
 ${ }^{4}$ The year providing only 9 days, 1966, follows two consecutive dry years and one normal year, likely reflecting a large amount of water impoundment associated with a low reservoir level.

[^4]: ${ }^{5}$ Reclamation has also analyzed the additional migration day provided using stream gauge data for the years 1958-1998. Because the gauged data includes the effects of the project under historical operating scenarios (different than the proposed operations) NMFS has used the model data for the analysis of proposed migration supplementation.

[^5]: ${ }^{6}$ The areas indicated in Table 10 above may or may not contain spawnable gravels and other appropriate spawning conditions. Data do not currently exist to further refine this information. Furthermore, the exceedance percentages do not allow for accurate cross comparison of years.
 ${ }^{7}$ Dry years are represented by an 80% exceedance for all years in the model (for example, under Historic conditions from the Dam to HWY 154, 80% of the time flows are greater than 1.6 cfs); Normal years are represented by a 50% exceedance and Wet years by a 20% excedance.
 ${ }^{8}$ Habitat estimated by Reclamation; flows exceed the predictive reliability of habitat-flow relationship.

[^6]: ${ }^{9}$ Reclamation is basing this conclusion on temperature monitoring near the dam, 3.5 miles downstream, and at several points farther downstream which appear to show that temperatures increase in the Santa Ynez the farther they are measured from the dam in the first ten miles downstream.

[^7]: ${ }^{10}$ Note the lack of access to much of the area within 3.5 miles of the dam discussed earlier. Thus, the $\%$ of the mainstem juvenile population in Alisal Reach may be over estimated.

[^8]: ${ }^{1}$ Chief, Bureau of Fish Conservation, California Department of Fish and Game (Retired).

[^9]: ${ }^{2}$ At Waddell Creek, the yearly period chosen for the purpose of the studies was that included from October 1st of a given year to September 30th of the following year. To avoid confusion with calendar years, such a period is called a "season." Thus, the season of 1937-1938 comprised the period from October 1, 1937, to September 30, 1938, inclusive. This season also coincides with the U. S. Geological Survey water year. The rainy season in California, which, together with its direct effect (water flows, etc.), under natural conditions is the dominating factor in the life history of the Pacific salmons and the steelhead, normally lasts from November into April, and so also falls within the season chosen. Thus, at Waddell Creek and in neighboring streams the spawning seasons, hatching seasons, periods of emergence from gravel, and principal upstream and downstream migrations of both juveniles and adults of the steelhead and silver salmon are completed within the period from October 1st of one year through September 30th of the next.

[^10]: 4
 A few males may attain precocious sexual maturity prior to their entry into the ocean, but such fish do not participate in the spawning

[^11]: ${ }^{5}$ In the Eel River and in some other streams, especially the larger ones, some steelhead apparently return to fresh water after a brief sojourn (less than one summer) at sea without having attained sexual maturity. Some of the "halfpounders" fall in this category. Such fish are not "sea-run fish" within the meaning of the definition used herein.
 ${ }^{6}$ The term "winter-run" is sometimes applied, especially in the case of the steelhead, to fish entering fresh water during the winter months, but fundamentally such fish are part of the "fall-run," in that they will not "summer over" before spawning. In the past, the terms "fall-run" and "spring-run" have been applied mainly to the King Salmon (Oncorhynchus tshawytscha), but they have application to other species as well.

[^12]: 7 In comparatively rare instances it happens that a fish makes no growth during a normal growing season or for other reasons fails to form an annulus. This may occur during the first normal growing season or in later seasons. In such cases the end of a year of life must be judged by the normal time of annulus formation or other criteria of the end of the growing season for the species in the particular locality.

[^13]: ${ }^{8}$ Marr concludes that "the samples are representative of that part of the commercial catch from which they were drawn, hut are not truly representative of the total run, inasmuch as there will be a tendency for the smaller and larger sizes to be inadequately represented, because of the selective action of the gill nets by which the fish were taken."

[^14]: 9
 Fish which had been checked through the upstream trap could be distinguished from unchecked fish, since in the former the adipose (one season) or anterior corner of the dorsal (remaining seasons) were clipped when the fish were checked. Estimates of the numbers of males and females, respectively, which jumped over the dam in each season were based on the proportions of clipped to unclipped fish seen spawning and found dead and on other field observations. The males estimated to have jumped over the dam were divided into $1 / 1$ and $1 / 2$ fish in accordance with the ratio of these age categories among the males checked through the trap during the periods that fish could jump over the dam.
 Estimates of the numbers of females which spawned below the dam in each season were based on the numbers seen spawning and found dead and on other field observations. The numbers of $1 / 1$ and $1 / 2$ males were estimated in proportion to the females, in accordance with the ratio of each age-sex category in the run above the dam in that season. Field observations and other data indicate that the composition of the run below the dam was essentially the same as that of the run above the dam in the same season.
 10
 There is no ready explanation for the dominance of males in the 1937-38 run, but mistaken sex identification may be ruled out with reasonable certainty. The small size of the run that season shows that something abnormal happened; whatever it was apparently affected one sex disproportionately.
 Also, there is no ready explanation for the shortage of males in the 1939-40 run, but again mistaken sex identification can be ruled out with reasonable certainty.

[^15]: ${ }^{11}$ The dividing line between silver salmon grilse and older fish was set at 24 inches (60.96 cm .). This limit is too high and if followed exactly would have included approximately 10 percent of two-year-ocean fish with the grilse. However, in practice the field observers were guided by the relative differences in size between grilse and two-year-ocean fish as much or more than by the actual lengths.

[^16]: 12
 While some bones increase their size and acquire new material, parts of others and of the scales are absorbed. The changes which take place in the skulls of breeding salmonids have been described in a series of papers by Tchernavin (1918, 1921, 1937a, 1937b, 1938a, 1938b, 1938c, 1938d).

[^17]: 13
 Counts of eggs were obtained from one Waddell Creek fish taken during the 1933-34 season, four Scott Creek fish spawned during the 1935-36 season, and 24 Scott Creek fish spawned during the 1937-38 season. Measurements of eggs were obtained from 36 fish spawned at Scott Creek in 1935-36. The spawning was done by the incision method (in which the fish is cut open and the eggs removed) by experienced hatchery personnel. The measurements of fish and eggs were made by the writers and various assistants. After the eggs were fertilized they were placed in two-quart glass jars.

[^18]: 14
 The volume factor will vary with (1) size and shape of graduate used, (2) amount of eggs in the graduate, (3) average size of eggs, (4) amount of water over the eggs, and (5) amount of shaking of eggs to settle them in the graduate. All Scott Creek silver salmon and steelhead eggs were measured in a 1,000 c.c. graduate and the eggs were shaken down. Inaccuracies resulting from the "packing effect," which increased with increasing volume of eggs, and the change in the relative amount of the loose "floating layer" of eggs on top with changes in the total volume, are not believed to be large enough to affect the results seriously. For Golden Trout (Salmo agua-bonita) eggs measured in a 100 c.c. graduate and not shaken down, Curtis (1934) obtained a volume factor of 0.59 .

[^19]: * Five hundred eggs buried in each nest.

[^20]: 15 In other California streams high temperatures, pollution, and lack of suitable food at times also cause losses, but may be eliminated from consideration in the case of Waddell Creek.

[^21]: ${ }^{16}$ The fish probably make use of backwater and eddies in maintaining their position in the stream. Even after the greatest floods, practically no fish have been found in the areas from which the water has receded.
 ${ }^{17}$ In 1933-34, the first season, the trap was not put into operation until the week of December 3-9.
 ${ }^{18}$ From May 29th through September 30th of the 1933-34 season and from October 1st through November 20th of the 1934-35 season the fish were measured only as three inches and under or over three inches (approximately 76 mm . and under or over 76 mm .). This system was in effect during a period when a regular observer was not available and the fish were checked by hatchery personnel. The demarcation line of three inches was chosen as the approximate line between fish of the season and older fish.

[^22]: Recorded only as 3 inches or under．Recorded only as over 3 inches．
 NOTE：In this and other length－frequency tables，the central figure of the three consecutive
 length frequencies representing the greatest total number of fish is printed in bold face type．

[^23]: 19 Chamberlain nevertheless believed that "the greater part seek the sea as soon as they become freeswimming", evidently basing his statement at least in part on a heavy migration of fry in Steelhead Creek on Naha Bay in 1904. Chamberlain reports over 1,100 fry taken on May 19, water temperature 48 degrees F., with the run reaching its maximum 10 days later, when over 3,000 fry were taken in a single night, and continuing "until sometime in July." Chamberlain reports that the fry taken in the trap from May to July 9 averaged between 37 and 40 mm . in length, with no appreciable increase in size. "The main movement was early in the evening, the lifting of the trap at $1.30 \mathrm{a} . \mathrm{m}$. and $9.30 \mathrm{a} . \mathrm{m}$. of the same day showing a catch of 2,015 between dusk (about $10 \mathrm{p} . \mathrm{m}$.) and $1.30 \mathrm{a} . \mathrm{m}$. and 50 during the morning twilight."

[^24]: 20
 Returns for marking done at Waddell Creek in 1931 and at Scott Creek during the 1932-33 season are omitted, because of incomplete records at Scott Creek in 1933-34 and 1934-35.
 21
 Excluding seven fish returning to Waddell Creek during the 1934-35 season, since strays to Scott Creek for that season were not available for comparison.

[^25]: ${ }^{22}$ The station is now abandoned.

[^26]: * Means of totals.
 \dagger Means of seasonal averages

[^27]: ＊Mean of totals．

[^28]: * Mean of totals. $\quad \dagger$ Mean of seasonal averages.

[^29]: 26
 Fish which had been checked through the upstream trap could be distinguished from unchecked fish, since in the former the anterior corner of the dorsal was clipped when the fish were checked. Estimates of the numbers of males and females, respectively, which jumped over the dam in each season were based on the proportions of clipped to unclipped fish seen spawning, found dead, and checked downstream after spawning and on other field observations. Estimates of the numbers of males and females which spawned below the dam in each season were based on the numbers seen spawning and on other field observations.

[^30]: 27
 While some bones increase their size and acquire new material, parts of others and of the scales are absorbed. The changes which take place in the skulls of breeding salmonids have been described in a series of papers by Tchernavin (1918, 1921, 1937a, 1937b, 1938a, 1938b, 1938c, 1938d).

[^31]: 28
 Normal hatchery spawning procedure was followed in obtaining the eggs: in spawning steelhead the fish are not killed and cut open, as is often the case with Pacific salmon, but are "stripped" by means of manual pressure applied to the sides and belly of the fish. This is known as the "expression" method. The stripping was carried out by experienced hatchery personnel. The measurements of fish and eggs were made by A. C. Taft, J. H. Wales, Leo Shapovalov, and various assistants. After the eggs were stripped from the fish and fertilized they were placed in two-quart glass jars.

[^32]: ${ }^{29}$ In 1933-34, the first season of operation, the trap was not put into operation until the week of December 3-9.
 ${ }^{30}$ From May 29th through September 30th of the 1933-34 season and from October 1st through November 20th of the 1934-35 season the fish were measured only as three inches or under or over three inches (approximately 76 mm . or under or over 76 mm .). This system was in effect during a period when a regular observer was not available and the fish were checked by hatchery personnel. The demarcation line of three inches was chosen as the approximate line between fish of the season, which made up the bulk of the fish taken during this period, and older fish.
 ${ }^{31}$ The major exceptions include the period May 28-September 30 in 1933-34, October 1-November 20 and July 4-September 30 in 1934-35, October 1-December 8, December 10-29, and July 1-September 30 in 193536, October 1-December 16 and July 17-September 30 in 1936-37, October 1-27 in 1937-38, and October 1-9 and June 14-September 30 in 1938-39. Also, scales were not taken from a number of fish under 80 mm . in length during other portions of these seasons, but were taken from samples of fish under 80 mm . at various times.

[^33]: 32 The fact that the age classes stand out sufficiently as modal groups to permit them to be picked out readily is shown by the fact that out of 19,688 fish in the five seasons for which two observers (Leo Shapovalov and E. S. Herald) assigned all of the fish to age classes, there was disagreement in the case of only 769 fish, or less than 4 percent. The disagreement was not greater than 6 percent in any one season. Since the disagreement was not all in one direction, the disagreement regarding numbers assigned to each age class is even less. Table 39 shows that the effect of these differences of opinion is practically negligible in showing the number of fish in any given age class expressed as a percentage of fish in all age classes.

[^34]: ${ }^{33}$ No record of rainfall at Waddell Creek is included in this publication. Such a record for a point at the dam would mean little, since the rainfall in different parts of the stream is greatly different, being approximately twice as heavy in the headwaters as at the mouth.

[^35]: ${ }^{34}$ In 1933-34, the first season of operation, the trap was not put into operation until the week of December 3-9 and was not operated from June 3 d to the end of the season.

[^36]: * The average seasonal total is based on 8.5 years, since 1933-34 was only a half year.

[^37]: * Recorded only as 31 cm .
 $\dagger 4$ at $33 \mathrm{~cm} . ; 4$ at $35 \mathrm{~cm} . ; 2$ at $39 \mathrm{~cm} . ; 1$ at $40 \mathrm{~cm} . ; 1$ at 44 cm

[^38]: * The average seasonal total is based on 8.5 years, since 1933-34 was only a half year.

[^39]: * One of these marked Ad + Both P (marked downstream both in 1934-35 and 1935-36).

[^40]: * Number of seasons for which returns were possible.

[^41]: Categories in boxes are those whose numbers are known. Plus, minus, and check signs show whether survival to stage in bold face type is too great, too small, or correct.

[^42]: 36
 Scales of various stream fish examined at Waddell Creek, including both upstream and downstream migrants, show that some of them spawn more than one time, but no attempt has been made to analyze these data.

[^43]: ${ }^{37}$ The author lists these fish by the scientific name "Salmo gairdneri," but by the common name "rainbow trout".

[^44]: * Average size of fish 3.4 inches; range 2.8 to 4.7 inches. Fish were removed for stomach examination between March 1st and March 10th.

[^45]: ${ }^{38}$ The author lists these fish by the scientific name "Salmo gairdneri," but by the common name "rainbow trout".

[^46]: ${ }^{39}$ In accordance with recent nomenclature, the generic name becomes Pacifastacus

[^47]: ${ }^{40}$ Two species of sea lions are found along the coast of California. The Steller Sea Lion (Eumetopias jubata) ranges from the Channel Islands of southern California northward to the Bering Sea, while the California Sea Lion (Zalophus californianus) occurs from Pt. Reyes and the Farallone Islands off San Francisco southward into Mexico. The former is by far the more abundant species off the California coast.

[^48]: * 1938 refers to counting year 1938-39, etc.

[^49]: \dagger Calcium and magnesium determined together and computed as calcium.

[^50]: ${ }^{1}$ James W. Moffett and Reed S. Nelson. U.S. Fish and Wildlife Service, Central Valley Investigators, Stanford University, Calif. 1948. Santa Barbara County Project - United States Bureau of Reclamation Recommendations for Fishery Maintenance, Santa Ynez River, Calif. Page 40 in Cachuma Unit of the Santa Barbara County Project, California. Letter from the Secretary of the Interior transmitting A Report and Findings on the Cachuma Unit of The Santa Barbara County Project, California. [Ex. DOI-lb]
 ${ }^{2}$ Drs. H. W. Rich and P. R. Needham of the U.S. Fish and Wildife Service and A.C. Taft and Dr. R. Van Cleve of the California Division of Fish and Game. 1948. Report of the Fish and Wildlife Service. Effect on Fish and Wildlife Resources of the Proposed Projects in Santa Barbara County, California. Page 118 in Cachuma Unit of the Santa Barbara County Project, California. Letter from the Secretary of the Interior transmitting A Report and Findings on the Cachuma unit of The Santa Barbara County Project, California. [Ex. DOI-1b]
 ${ }^{3}$ Brooks Harper and Nancy M. Kaufman. 1988. An Adult Steelhead Investigation of the Lower Santa Ynez River Drainage. A Report to the U.S. Bureau of Reclamation and California Department of Water Resources. U.S. Fish and Wildlife Service. Laguna Niguel, Calif. Pg.4. [Ex. CT 96]

[^51]: ${ }^{4}$ National Marine Fisheries Service. 1996. proposed rule; request for comments. - Endangered and Threatened Species: Proposed Endangered Status of Five ESUs of Steelhead and Proposed Threatened Status of Five ESUs of Steelhead in Washington, Oregon, Idaho, and California. Federal Register, Vo. 61. No. 155. 41553. [Ex. CT 93]
 ${ }^{5}$ National Marine Fisheries Service. 1997. Final Rule - Endangered and Threatened Species: Listing of Several Evolutionary Significant Units (ESUs) of West Coast Steelhead. Federal Register, Vo. 62. No. 159. 43949. [Ex. CT 94]
 ${ }^{6}$ Cachuma Unit of the Santa Barbara County Project, California. Letter from the Secretary of the Interior transmitting A Report and Findings on the Cachuma unit of The Santa Barbara County Project, California. Pg.I19. [Ex. DOI-Ib]
 ${ }^{7}$ Ibid \#1. pg 41.
 ${ }^{8}$ Ibid \#2.
 ${ }^{9}$ Ibid \#I. pg. 38.
 ${ }^{10}$ Krieder, C.M. 1948. Steelhead. G. Putham's Sons. Pg. 152. [Ex. CT 92]

[^52]: ${ }^{11}$ Ibid. \#1, pg 41.
 ${ }^{12}$ Ibid. \#1. pg. 42.
 ${ }^{13}$ Ibid \# 1. pg. 41-42.
 ${ }^{14}$ Ibid \#1, pg. 41.

[^53]: ${ }^{15}$ Ibid. \#1,pg 8.

