APPENDIX P

U.S. EPA WARM MODEL OUTPUT

Waste Reduction Model (WARM) -- Inputs
Use this worksheet to describe the baseline and alternative MSW management scenarios that you want to compare. The blue shaded areas indicate where you need to enter information.

Describe the baseline generation and management for the MSW materials listed below.
it blank or enter 0 . Make sure that the total quantity generated equals the total quantity managed.

Material	$\begin{gathered} \text { Tons } \\ \text { Recycled } \\ \hline \end{gathered}$	$\begin{gathered} \text { Tons } \\ \text { Landfilled } \end{gathered}$	$\begin{gathered} \text { Tons } \\ \text { Combusted } \end{gathered}$	$\begin{gathered} \text { Tons } \\ \text { Composted } \end{gathered}$
Aluminum Cans		291.00		NA
Aluminum Ingot				NA
Steel Cans		862.00		NA
Copper Wire				NA
Glass		4,641.00		NA
HDPE		1,463.25		NA
LDPE	NA			NA
PET		712.00		NA
LLDPE	NA	-		NA
PP	NA	-		NA
PS	NA			NA
PVC	NA	-		NA
PLA	NA	-		
Corrugated Containers				NA
Magazines/Third-class Mail				NA
Newspaper				NA
Office Paper				NA
Phonebooks				NA
Textbooks				NA
Dimensional Lumber				NA
Medium-density Fiberboard				NA
Food Scraps	NA			
Yard Trimmings	NA			
Grass	NA			
Leaves	NA	-		
Branches	NA			
Mixed Paper (general)				NA
Mixed Paper (primarily residential)				NA
Mixed Paper (primarily from offices)		-		NA
Mixed Metals		10,660.84		NA
Mixed Plastics		12,960.23		NA
Mixed Recyclables		-		NA
Mixed Organics	NA	-		
Mixed MSW	NA	19,440.35		NA
Carpet		3,344.58		NA
Personal Computers		1,881.32		NA
Clay Bricks	NA	-	NA	NA
Concrete ${ }^{1}$		19,649.38	NA	NA
Fly Ash ${ }^{2}$			NA	NA
Tires ${ }^{3}$				NA
Asphalt Concrete		209.04	NA	NA
Asphalt Shingles		4,389.76		NA
Drywall Fiberglass Insulation			NA	NA
Fiberglass Insulation Vinyl Flooring	NA	1,045.18	NA	NA
Vinyl Flooring Wood Flooring	NA	-		NA

Tood Flooring
,
,
Recycled fly ash is utilized to displace portland cement in concrete production.
is defined in this analysis as using tires for crumb rubber applications and tire-derived aggregate uses in civ1 engineering applications

Describe the alternative management scenario for the MSW materials generated in the baseline Any decrease in generation should be entered in the Source Reduction column.
Any increase in generation should be entered in the Source Reduction column as a negative value (Make sure that the total quantity generated equals the total quantity managed.)

$\begin{gathered} \text { Tons } \\ \text { Generated } \end{gathered}$	Tons Source Reduced	$\begin{gathered} \text { Tons } \\ \text { Recycled } \end{gathered}$	$\begin{gathered} \text { Tons } \\ \text { Landfilled } \\ \hline \end{gathered}$	Tons Combusted	Tons Composted
291.0		261.90	29.10		NA
0.0		-			NA
862.0		818.90	43.10		NA
0.0		-	-		NA
4641.0		3,759.21	881.79		NA
1463.3		1,243.76	219.49		NA
0.0		NA			NA
712.0		605	106.80		NA
0.0		NA	-		NA
0.0		NA	.		NA
0.0		NA	-		NA
0.0		NA			NA
0.0		NA	-		
0.0					NA
0.0					NA
0.0					NA
0.0					NA
0.0					NA
0.0					NA
0.0					NA
0.0					NA
0.0		NA	-		
0.0		NA	-		
0.0		NA	-		
0.0 0.0		$\begin{aligned} & \text { NA } \\ & \text { NA } \end{aligned}$	\cdots		
0.0	NA				NA
0.0	NA	-	-		NA
0.0	NA	-	-		NA
10660.8	NA	9,594.75	1,066.08		NA
12960.2	NA	10,368.19	2,592.05		NA
0.0	NA				NA
0.0	NA	NA	-		-
19440.3	NA	NA	19,440.35		NA
3344.6		3,177.35	167.23		NA
1881.3		1,693.19	188.13		NA
0.0		NA		NA	NA
19649.4	NA	9,825	9,824.69	NA	NA
0.0	NA	-	-	NA	NA
0.0					NA
209.0		105	104.52	NA	NA
4389.8		2,195	2,194.88		NA
0.0				NA	NA
1045.2 0.0		NA	1,045.18	NA	NA
0.0		NA			NA

3. In order to account for the avoided electricity-related emissions in the landfilling and combustion pathways, EPA assigns the appropriate regional "marginal" electricity grid mix emission factor based on your location Select state for which you are conducting this analysis

Please select state or select national average:	California
Region Location:	Pacific

4. To estimate the benefits from source reduction, EPA usually assumes that the material that is source reduced would have been manufactured from the current mix of virgin and recycled inputs. However, you may choose to estimate the emission reductions from source reduction under the assumption that the material would have been manufactured from 100% virgin inputs in order to obtain an upper or is not a common practice; EPA assumes that the current mix is comprised of 100% virgin inputs. Consequently, the source reduction benefits of both the "Current mix" and " 100% virgin" inputs are the same. unavailable
\square
0 100\% Virgin

5a. The emissions from landfilling depends on whether the landfill where your waste is disposed has a landfill gas (LFG) control system. If you do not know whether your landfill has LFG control, selec "National Average" to calculate emissions based on the estimated proportions of landills with LFG contro in 2009 and go to question 7 . If your lan does not have a LFG system, select "No LFG Recovery" and go to question 7. If a LFG system is in place at your landfill, select "LFG Recovery" and click one of the indented buttons in 5 b to indicate whether LFG is recovered for energy or flared.

O National Average
O LFG Recovery
O No LFG Recovery

5b. If your landfill has gas recovery, does it recover the methane for energy or flare it?

O Recover for energy
O Flare
O Not Appicable

6a. Which of the following moisture conditions and associated bulk MSW decay rate (k) most accurately describes the average conditions at the landfill?
The decay rates, also referred to as k values, describe the rate of cho Dry landfills typically receive less than 25 inches of rain annually while Average landfills receive more than 25 inches of rain annually. Wet landfills are assumed to represent a landfill that receives relatively high water infiltration. Bioreactor landfills include landfills to which water is added until the moisture content reaches 40 percent moisture on a wet weight basis.

O Dry $(k=0.02)$
O Average $(k=0.04)$ - DEFAULT
O Wet $(k=0.08)$
O Bioreactor $(k=0.12)$

6b. For landfills that recover landfill gas, the landfill gas collection efficiency will vary throughout the life of the landfill. Based on literature and field study measurements for different landfill scenarios, the typical operation landfills represent the current practice at most landfills that capture landfill gas in the United States. The worst-cast collection represent landfills that are just barely in compliance with EPA's New Source Performance Standards (NSPS). The aggressive gas
in order to achieve decomposition as quickly as possible and to collect gas aggressively.

O Typical operation - DEFAULT
O Worst-case collection
O Aggressive gas collection

[^0]```
7a. Emissions that occur during transport of materials to the management facility are included in this model. You may use default transport distances, indicated in the table below, or provide information on the
 O Use Default Distances
```

7b. If you have chosen to provide information, please fill in the table below. Distances should be from the curb to the landfill, combustor, or material recovery facility (MRF). *Please note that if you chose to provide information, you must provide distances for both the baseline and the alternative scenarios,

| Management Option | Default <br> Distance <br> (Miles) | Distance <br> (Miles) |
| :--- | ---: | ---: |
| Landfill | 20 |  |
| Combustion | 20 |  |
| Recycling | 20 |  |
| Composting | 20 |  |

8. If you wish to personalize your results report, input your name \& organization, and also specify the project period corresponding to the data you entered above.


Congratulations! You have finished all the inputs.
A summary of your results awaits you on the sheet(s) titled "Summary Report."
For more detailed analyses of GHG emissions, see the sheet(s) titled "Analysis Results."

# GHG Emissions Analysis -- Summary Report 

Version 12
ns Waste Management Analysis for
Prepared by:
Project Period for this Analysis: 01/00/00 to 01/00/00
Note: If you wish to save these results, rename this file (e.g., WARM-MN1) and save it. Then the "Analysis Inputs" sheet of the "WARM" file
will be blank when you are ready to make another model run.

| GHG Emissions from Baseline Waste Management (MTCO2E): 747 |  |  |  |  |  | GHG Emissions from Alternative Waste Management Scenario (MTCO2E): |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Commodity | $\begin{aligned} & \text { Tons } \\ & \text { Recycled } \end{aligned}$ | Tons Landfilled | Tons Combusted | Tons Composted | $\begin{gathered} \text { Total } \\ \mathrm{MTCO}_{2} \mathrm{E} \end{gathered}$ | Commodity | Tons Source Reduced | Tons Recycled | Tons Landfilled | Tons Combusted | Tons Composted | Total MTCO ${ }_{2} \mathrm{E}$ | $\begin{gathered} \text { Change } \\ \text { (Alt - Base) } \\ \mathrm{MTCO}_{2} \mathrm{E} \\ \hline \end{gathered}$ |
| Aluminum Cans | . | 291.0 | - | NA | 11 | Aluminum Cans | - | 261.9 | 29.1 | - | NA | $(2,327)$ | $(2,339)$ |
| Steel Cans | - | 862.0 | - | NA | 33 | Steel Cans | - | 818.9 | 43.1 | - | NA | $(1,474)$ | $(1,508)$ |
| Glass | . | 4,641.0 | - | NA | 180 | Glass | - | 3,759.2 | 881.8 | - | NA | $(1,011)$ | $(1,191)$ |
| HDPE | - | 1,463.3 | . | NA | 57 | HDPE | - | 1,243.8 | 219.5 | - | NA | $(1,058)$ | $(1,114)$ |
| PET | - | 712.0 | - | NA | 28 | PET | - | 605.2 | 106.8 | - | NA | (667) | (694) |
| Mixed Metals | - | 10,660.8 | - | NA | 414 | Mixed Metals | NA | 9,594.8 | 1,066.1 | - | NA | (38,082) | (38,496) |
| Mixed Plastics | - | 12,960.2 | - | NA | 503 | Mixed Plastics | NA | 10,368.2 | 2,592.0 | - | NA | $(10,077)$ | (10,580) |
| Mixed MSW | NA | 19,440.3 | - | NA | (1,664) | Mixed MSW | NA | NA | 19,440.3 | - | NA | $(1,664)$ | 0 |
| Carpet | - | 3,344.6 | - | NA | 130 | Carpet | - | 3,177.3 | 167.2 | - | NA | (7,521) | $(7,651)$ |
| Personal Computers | - | 1,881.3 | - | NA | 73 | Personal Computers | - | 1,693.2 | 188.1 | - | NA | $(3,966)$ | $(4,039)$ |
| Concrete | - | 19,649.4 | NA | NA | 763 | Concrete | NA | 9,824.7 | 9,824.7 | NA | NA | 303 | (459) |
| Asphalt Concrete | - | 209.0 | NA | NA | 8 | Asphalt Concrete |  | 104.5 | 104.5 | NA | NA | (5) | (13) |
| Asphalt Shingles | - | 4,389.8 | - | NA | 170 | Asphalt Shingles | - | 2,194.9 | 2,194.9 | - | NA | (114) | (285) |
| Fiberglass Insulation | NA | 1,045.2 | NA | NA | 41 | Fiberglass Insulation | - | NA | 1,045.2 | NA | NA | 41 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 |  |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  |  | 0 |
|  |  |  |  |  | - |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |
|  |  |  |  |  | 0 |  |  |  |  |  |  | 0 | 0 |

Note: a negative value (i.e., a value in parentheses) indicates an emission reduction; a positive value indicates an emission increase.

## a) For explanation of methodology, see the EPA report:

Solid Waste Management and Greenhouse Gases: A Life-Cycle Assessment of Emissions and Sinks (EPA530-R-06-004)

- available on the Internet at http://epa.gov/climatechange/wycd/waste/downloads/fulireport.pdf (5.6 Mb PDF file).
b) Emissions estimates provided by this model are intended to support voluntary GHG measuremen and reporting initiatives.
c) The GHG emissions results estimated in WARM indicate the full life-cycle benefits waste management alternatives. Due to the timing of the GHG emissions from the waste management pathways, (e.g., avoided landfilling and increased recycling), the actual GHG implications may accrue over the long-term. Therefore, one should not interpret the GHG emissions implications as occurring all in one year, but rather through time.

| This is equivalent to... |  |
| :--- | :---: |
| Removing annual emissions | $\mathbf{1 3 , 2 7 0}$ Passenger Vehicles |
| from | $\mathbf{7 , 5 8 6 , 8 2 8}$ Gallons of Gasoline |
| Conserving | $\mathbf{2 , 8 1 9 , 7 7 1}$ Cylinders of Propane Used for Home Barbeques |
| Conserving | $\mathbf{3 6 8}$ Railway Cars of Coal |
| Conserving | $\mathbf{0 . 0 0 3 9 4 \%}$ Annual $\mathrm{CO}_{2}$ emissions from the U.S. transportation sector |
|  | $\mathbf{0 . 0 0 3 1 4 \%}$ Annual $\mathrm{CO}_{2}$ emissions from the U.S. electricity sector |

## Waste Reduction Model (WARM) -- Results

| Total GHG Emissions from Baseline MSW Generation and Management $(\mathbf{M T C O}$ |  |
| :--- | ---: |
| 2 | $\mathrm{E}):$ |
| Total GHG Emissions from Alternative $\mathbf{M S W}$ Generation and Management $\left(\mathbf{M T C O}_{2} \mathrm{E}\right):$ | 747 |
| Incremental GHG Emissions $\left(\mathrm{MTCO}_{2} \mathrm{E}\right):$ | $(67,621)$ |
| $\mathbf{M T C O}$ | $(67,675)$ |

Incremental GHG Emissions $\left(\mathrm{MTCO}_{2} \mathrm{E}\right.$ ):
$\mathrm{MTCO}_{2} \mathrm{E}=$ metric tons of carbon dioxide equivalent

| Material | GHG <br> Emissions per <br> Ton of Material <br> Source <br> Reduced <br> (MTCO | GHG <br> Emissions per <br> Ton of Material <br> Reccycled <br> $\left(\mathrm{MCCO}_{2} \mathrm{E}\right)$ | per Ton of Material Landfilled ( $\mathrm{MTCO}_{2} \mathrm{E}$ ) | GHG <br> Emissions per <br> Ton of Material <br> Combusted <br> (MTCO | $\begin{gathered} \text { GHG Emissions } \\ \text { per Ton of Material } \\ \text { Composted } \\ \left(\mathrm{MTCO}_{2} \mathrm{E}\right) \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminum Cans | (4.94) | (8.89) | 0.04 | 0.05 | NA |
| Aluminum Ingot | (7.27) | (6.97) | 0.04 | 0.05 | NA |
| Steel Cans | (3.18) | (1.80) | 0.04 | (1.55) | NA |
| Copper Wire | (7.26) | (4.89) | 0.04 | 0.04 | NA |
| Glass | (0.53) | (0.28) | 0.04 | 0.04 | NA |
| HDPE | (1.47) | (0.86) | 0.04 | 1.69 | A |
| LDPE | (1.79) | NA | 0.04 | 1.70 | NA |
| PET | (2.22) | (1.11) | 0.04 | 1.47 | NA |
| LLDPE | (1.57) | NA | 0.04 | 1.70 | NA |
| PP | (1.55) | NA | 0.04 | 1.70 | NA |
| PS | (2.50) | NA | 0.04 | 2.02 | NA |
| PVC | (1.98) | NA | 0.04 | 0.84 | NA |
| PLA | (2.18) | NA | (1.62) | (0.44) | (0.20) |
| Corrugated Containers | (5.59) | (3.11) | (0.76) | (0.33) | NA |
| Magazinesthird-class mail | (8.64) | (3.07) | (0.76) | (0.23) | NA |
| Newspaper | (4.85) | (2.78) | (1.27) | (0.38) | NA |
| Office Paper | (7.99) | (2.85) | (0.05) | (0.32) | NA |
| Phonebooks | (6.27) | (2.65) | (1.27) | (0.38) | NA |
| Textbooks | (9.11) | (3.11) | (0.05) | (0.32) | NA |
| Dimensional Lumber | (2.02) | (2.46) | (1.09) | (0.4) | NA |
| Medium-density Fiberboard | (2.22) | (2.47) | (1.09) | (0.40) | NA |
| Food Scraps | 0.00 | NA | 0.17 | (0.07) | (0.20) |
| Yard Trimmings | 0.00 | NA | (0.44) | (0.09) | (0.20) |
| Grass | 0.00 | NA | 0.01 | (0.09) | (0.20) |
| Leaves | 0.00 | NA | (0.76) | (0.09) | (0.20) |
| Branches | 0.00 | NA | (1.09) | (0.09) | (0.20) |
| Mixed Paper (general) | NA | (3.52) | (0.72) | (0.34) | NA |
| Mixed Paper (primarily residential) | NA | (3.52) | (0.76) | (0.33) | NA |
| Mixed Paper (primarily from offices) | NA | (3.59) | (0.53) | (0.30) | NA |
| Mixed Metals | NA | (3.97) | 0.04 | (1.06) | A |
| Mixed Plastics | NA | (0.98) | 0.04 | 1.58 | NA |
| Mixed Recyclables | NA | (2.80) | (0.63) | (0.29) | NA |
| Mixed Organics | NA | NA | (0.12) | (0.08) | (0.20) |
| Mixed MSW |  | NA | (0.09) | 0.07 | NA |
| Carpet | (3.96) | (2.37) | 0.04 | 1.26 | NA |
| Personal Computers | (54.15) | (2.35) | 0.04 | (0.13) | NA |
| Clay Bricks | (0.28) | NA | 0.04 | NA | NA |
| Concrete |  | (0.01) | 0.04 | NA | NA |
| Fly Ash |  | (0.87) | 0.04 | NA | NA |
| Tires | (4.32) | (0.39) | 0.04 | 0.51 | NA |
| Asphalt Concrete | (0.11) | (0.08) | 0.04 | NA | NA |
| Asphalt Shingles | (0.20) | (0.09) | 0.04 | (0.34) | NA |



| Material | Baseline Generation of Material (Tons) | Estimated Recycling (Tons) | $\begin{array}{\|c\|} \text { Annual GHG } \\ \text { Emisisins from } \\ \text { Recycling } \\ \text { (MTCO } \end{array}$ | Estimated Landfilling (Tons) | $\underset{\substack{\text { Aniual } \mathrm{GH} \\ \text { Emisising from } \\ \text { Landfiling } \\ \text { (MTCO } \\ \text { E) }}}{ }$ | Estimated Combustion (Tons) | Annual GHG Emissions from Combustion ( $\mathrm{MTCO}_{2} \mathrm{E}$ ) | $\left.\begin{array}{c}\text { Estimated } \\ \text { Composting } \\ \text { (Tons) }\end{array}\right)$ | Annual GHg Emissions from Composting ( $\mathrm{MTCO}_{2} \mathrm{E}$ ) | Total Annual GHG Emissions ( $\mathrm{MTCO}_{2} \mathrm{E}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminum Cans | 291.0 | 0.0 | 0.0 | 291.0 | 11.3 | 0.0 | 0.0 | NA | NA | 11.3 |
| Aluminum Ingot | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Steel Cans | 862.0 | 0.0 | 0.0 | 862.0 | 33.5 | 0.0 | 0.0 | NA | NA | 33.5 |
| Copper Wire | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Glass | 4,641.0 | 0.0 | 0.0 | 4,641.0 | 180.1 | 0.0 | 0.0 | NA | NA | 180.1 |
| HDPE | 1,463.3 | 0.0 | 0.0 | 1,463.3 | 56.8 | 0.0 | 0.0 | NA | NA | 56.8 |
| LDPE | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| PET | 712.0 | 0.0 | 0.0 | 712.0 | 27.6 | 0.0 | 0.0 | NA | NA | 27.6 |
| LLDPE | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| PP | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| PS | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| PVC | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| PLA | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Corrugated Containers | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Magazinesththird-class mail | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Newspaper | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Office Paper | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Phonebooks | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Textbooks | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Dimensional Lumber | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Medium-density Fiberboard | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Food Scraps | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Yard Trimmings | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Grass | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Leaves | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Branches | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Mixed Paper (general) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Mixed Paper (primarily residential) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Mixed Paper (primarily from offices) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Mixed Metals | 10,660.8 | 0.0 | 0.0 | 10,660.8 | 413.8 | 0.0 | 0.0 | NA | NA | 413.8 |
| Mixed Plastics | 12,960.2 | 0.0 | 0.0 | 12,960.2 | 503.1 | 0.0 | 0.0 | NA | NA | 503.1 |
| Mixed Recyclables | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Mixed Organics | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Mixed Msw | 19,440.3 | NA | NA | 19,440.3 | $(1,663.5)$ | 0.0 | 0.0 | NA | NA | $(1,663.5)$ |
| Carpet | 3,344.6 | 0.0 | 0.0 | 3,344.6 | 129.8 | 0.0 | 0.0 | NA | NA | 129.8 |
| Personal Computers | 1,881.3 | 0.0 | 0.0 | 1,881.3 | 73.0 | 0.0 | 0.0 | NA | NA | 73.0 |
| Clay Bricks | 0.0 | NA | NA | 0.0 | 0.0 | NA | NA | NA | NA | 0.0 |
| Concrete | 19,649.4 | 0.0 | 0.0 | 19,649.4 | 762.7 | NA | NA | NA | NA | 762.7 |
| Fly Ash | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | NA | NA | 0.0 |
| Tires | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Asphalt Concrete | 209.0 | 0.0 | 0.0 | 209.0 | 8.1 | NA | NA | NA | NA | 8.1 |
| Asphalt Shingles | 4,389.8 | 0.0 | 0.0 | 4,389.8 | 170.4 | 0.0 | 0.0 | NA | NA | 170.4 |
| Drywall | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | NA | NA | 0.0 |
| Fiberglass Insulation | 1,045.2 | NA | NA | 1,045.2 | 40.6 | NA | NA | NA | NA | 40.6 |
| Vinyl Flooring | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Wood Flooring | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Total | 81,549.9 | 0.0 | 0.0 | 81,549.9 | 747.3 | 0.0 | 0.0 | 0.0 | 0.0 | 747.3 |


| Material | Baseline Generation of Material (Tons) | $\begin{aligned} & \text { Projected } \\ & \text { Source } \\ & \text { Reduction } \\ & \text { (Tons) } \end{aligned}$ | Annual GHG <br> Emissions from <br> Source <br> Reduction <br> (MTCO $_{2} \mathrm{E}$ ) | Projected Recycling (Tons) | $\begin{aligned} & \text { Annual GHG } \\ & \text { Emissions from } \\ & \text { Recycling } \\ & \text { (MTCO,E) } \end{aligned}$ | Projected Landfiling (Tons) | $\underset{\substack{\text { Annual } G H G E \text { Emissions } \\ \text { from Landiliting } \\\left(\text { MTCO }_{2} \mathrm{E}\right)}}{ }$ | Projected Combustion (Tons) | Annual GHG Emissions from Combustion ( $\mathrm{MTCO}_{2} \mathrm{E}$ ) | Projected Composting (Tons) | Annual GHG Emissions from Composting ( $\mathrm{MTCO}_{2} \mathrm{E}$ ) | Total Annual $\mathrm{GHG}^{2}$ Emissions $\left(\mathrm{MTCO}_{2} \mathrm{E}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminum Cans | 291.0 | 0.0 | 0.0 | 261.9 | $(2,328.4)$ | 29.1 | 1.1 | 0.0 | 0.0 | NA | NA | $(2,327.3)$ |
| Aluminum Ingot | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Steel Cans | 862.0 | 0.0 | 0.0 | 818.9 | $(1,475.8)$ | 43.1 | 1.7 | 0.0 | 0.0 | NA | NA | (1,474.1) |
| Copper Wire | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Glass | 4,641.0 | 0.0 | 0.0 | 3,759.2 | $(1,045.6)$ | 881.8 | 34.2 | 0.0 | 0.0 | NA | NA | (1,011.3) |
| HDPE | 1,463.3 | 0.0 | 0.0 | 1,243.8 | $(1,066.1)$ | 219.5 | 8.5 | 0.0 | 0.0 | NA | NA | $(1,057.6)$ |
| LDPE | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| PET | 712.0 | 0.0 | 0.0 | 605.2 | (670.8) | 106.8 | 4.1 | 0.0 | 0.0 | NA | NA | (666.6) |
| LLDPE | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| PP | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| PS | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| PVC | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| PLA | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Corrugated Containers | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Magazines/third-class mail | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Newspaper | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| office Paper | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Phonebooks | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Textbooks | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Dimensional Lumber | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Medium-density Fiberboard | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Food Scraps | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Yard Trimmings | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Grass | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Leaves | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Branches | 0.0 | 0.0 | 0.0 | NA | A | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Mixed Paper (general) | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Mixed Paper (primarily residential) | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Mixed Paper (primarily from offices) | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Mixed Metals | 10,660.8 | NA | NA | 9,594.8 | (38,123.4) | 1,066.1 | 41.4 | 0.0 | 0.0 | NA | NA | (38,082.0) |
| Mixed Plastics | 12,960.2 | NA | NA | 10,368.2 | (10,177.9) | 2,592.0 | 100.6 | 0.0 | 0.0 | NA | NA | (10,077.3) |
| Mixed Recyclables | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Mixed Organics | 0.0 | NA | NA | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Mixed MSW | 19,440.3 | NA | NA | NA | NA | 19,440.3 | $(1,663.5)$ | 0.0 | 0.0 | NA | NA | (1,663.5) |
| Carpet | 3,344.6 | 0.0 | 0.0 | 3,177.3 | (7,527.3) | 167.2 | 6.5 | 0.0 | 0.0 | NA | NA | (7,520.9) |
| Personal Computers | 1,881.3 | 0.0 | 0.0 | 1,693.2 | (3,973.4) | 188.1 | 7.3 | 0.0 | 0.0 | NA | NA | (3,966.1) |
| Clay Bricks | 0.0 | 0.0 | 0.0 | NA |  | 0.0 | 0.0 | NA | NA | NA | NA | 0.0 |
| Concrete | 19,649.4 | NA | NA | 9,824.7 | (78.0) | 9,824.7 | 381.3 | NA | NA | NA | NA | 303.4 |
| Fly Ash | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | NA | NA | 0.0 |
| Tires | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Asphat Concrete | 209.0 | 0.0 | 0.0 | 104.5 | (8.6) | 104.5 | 4.1 | NA | NA | NA | NA | (4.5) |
| Asphalt Shingles | 4,389.8 | 0.0 | 0.0 | 2,194.9 | (199.5) | 2,194.9 | 85.2 | 0.0 | 0.0 | NA | NA | (114.3) |
| Drywall | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | NA | NA | 0.0 |
| Fiberglass Insulation | 1,045.2 | 0.0 | 0.0 | NA | NA | 1,045.2 | 40.6 | NA | NA | NA | NA | 40.6 |
| Vinyl Flooring | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Wood Flooring | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Total | 81,549.9 | 0.0 | 0.0 | 43,646.5 | (66,674.6) | 37,903.4 | (946.9) | 0.0 | 0.0 | 0.0 | 0.0 | (67,621.5) |

Incremental GHG Emissions from Projected Alternative Management of Municipal Solid Wastes

| Material | $\begin{aligned} & \text { Source } \\ & \text { Reduction } \\ & \text { (Tons) } \end{aligned}$ | $\substack{\text { Incremental } \\ \text { EHG } \\ \text { Emissions from } \\ \text { Source } \\ \text { Reduction } \\ \text { RMTCO } \\ \text { (MTCO }}$ | Incremental Recycling (Tons) | Incremental GHG Emissions from Recycling (MTCO (MT) | $\begin{array}{\|c\|} \hline \text { Incremental } \\ \text { Landfilling (Tons) } \\ \hline \end{array}$ | $\begin{gathered} \text { Incremental GHG } \\ \text { Emissions from } \\ \text { Landfilling }\left(\mathrm{MTCO}_{2} \mathrm{E}\right) \\ \hline \end{gathered}$ | $\underset{\substack{\text { Incremental Combustion } \\ \text { (Tons) }}}{ }$ | Incremental <br> GHG Emissions <br> from <br> Combustion <br> (MTCO ${ }_{2} \mathrm{E}$ ) | Incremental Composting (Tons) | Incremental GHG <br> Emissions from Composting ( $\mathrm{MTCO}_{2} \mathrm{E}$ ) | Total Incremental GHG Emissions ( $\mathrm{MTCO}_{2} \mathrm{E}$ ) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Aluminum Cans | 0.0 | 0.0 | 261.9 | $(2,328.4)$ | (261.9) | (10.2) | 0.0 | 0.0 | NA | NA | $(2,338.6)$ |
| Aluminum Ingot | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Steel Cans | 0.0 | 0.0 | 818.9 | $(1,475.8)$ | (818.9) | (31.8) | 0.0 | 0.0 | NA | NA | (1,507.6) |
| Copper Wire | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Glass | 0.0 | 0.0 | 3,759.2 | $(1,045.6)$ | (3,759.2) | (145.9) | 0.0 | 0.0 | NA | NA | $(1,191.5)$ |
| HDPE | 0.0 | 0.0 | 1,243.8 | $(1,066.1)$ | $(1,243.8)$ | (48.3) | 0.0 | 0.0 | NA | NA | $(1,114.4)$ |
| LDPE | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| PET | 0.0 | 0.0 | 605.2 | (670.8) | (605.2) | (23.5) | 0.0 | 0.0 | NA | NA | INPUT ERROR: Make |
| LLDPE | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| PP | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| PS | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| PVC | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| PLA | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Corrugated Containers | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Magazinesththirdclass mail | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Newspaper | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Office Paper | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Phonebooks | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Textbooks | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Dimensional Lumber | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Medium-density Fiberboard | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Food Scraps | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Yard Trimmings | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Grass | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Leaves | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Branches | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Mixed Paper (general) | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Mixed Paper (primarily residential) | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Mixed Paper (primarily from offices) | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Mixed Metals | NA | NA | 9,594.8 | (38,123.4) | $(9,594.8)$ | (372.4) | 0.0 | 0.0 | NA | NA | $(38,495.8)$ |
| Mixed Plastics | NA | NA | 10,368.2 | $(10,177.9)$ | (10,368.2) | (402.4) | 0.0 | 0.0 | NA | NA | (10,580.3) |
| Mixed Recyclables | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Mixed Organics | NA | NA | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| Mixed Msw | NA | NA | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Carpet | 0.0 | 0.0 | 3,177.3 | (7,527.3) | (3,177.3) | (123.3) | 0.0 | 0.0 | NA | NA | (7,650.7) |
| Personal Computers | 0.0 | 0.0 | 1,693.2 | (3,973.4) | $(1,693.2)$ | (65.7) | 0.0 | 0.0 | NA | NA | $(4,039.1)$ |
| Clay Bricks | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | NA | NA | NA | NA | 0.0 |
| Concrete | NA | NA | 9,824.7 | (78.0) | $(9,824.7)$ | (381.3) | NA | NA | NA | NA | (459.3) |
| Fly Ash | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | NA | NA | 0.0 |
| Tires | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Asphalt Concrete | 0.0 | 0.0 | 104.5 | (8.6) | (104.5) | (4.1) | NA | NA | NA | NA | (12.6) |
| Asphalt Shingles | 0.0 | 0.0 | 2,194.9 | (199.5) | $(2,194.9)$ | (85.2) | 0.0 | 0.0 | NA | NA | (284.7) |
| Drywall | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | NA | NA | 0.0 |
| Fiberglass Insulation | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | NA | NA | NA | NA | 0.0 |
| Vinyl Flooring | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Wood Flooring | 0.0 | 0.0 | NA | NA | 0.0 | 0.0 | 0.0 | 0.0 | NA | NA | 0.0 |
| Total | 0.0 | 0.0 | 43,646.5 | (66,674.6) | (43,646.5) | (1,694.1) | 0.0 | 0.0 | 0.0 | 0.0 | (67,674.5) |

a) For explanation of methodology, see the EPA report:
Solid Waste Management and Greenhouse Gases: A Life-Cycle Assessment of Emissions and Sinks (EPA530-R-06-004)

- -- available on the Internet at http://epa.gov/climatechange/wycd/waste/downloads/fullreport.pdf (5.6 Mb PDF file).
b) Emissions estimates provided by this model are intended to support voluntary GHG measurement
and reporting initiatives.


[^0]:    Typical Years 0-2: 0\%; Year 3: 500;; Year 4-7: 75\%; Years 8-100: 95\% Aggressive Year 1: $25 \%$; Years 2-3: $50 \%$; Years 4-7: 75\%; Years 8-100: 95\%

