4.9 TRANSPORTATION/CIRCULATION

The following assessment of the impacts of the proposed project on traffic and circulation is based on the Traffic and Circulation Study prepared for the project by Associated Transportation Engineers, revised 2014 (see Appendix K).

4.9.1 Setting

1 2

The quality of traffic service provided by a roadway system can be described through the Level of Service (LOS) concept. LOS is a standardized means of describing traffic conditions by comparing traffic volumes in a roadway system with the system's capacity. An LOS rating of A, B or C indicates that the roadway is operating efficiently. Minor delays are possible on an arterial with a LOS of D. Level E represents traffic volumes at or near the capacity of the highway, resulting in possible delays and unstable flow.

4.9.1.1 Previous Analysis

The Tajiguas Landfill has been in operation since 1967. An expansion of the landfill (Tajiguas Landfill Expansion Project) was last approved in 2002. The traffic analysis prepared for the Expansion Project was based on a maximum of 1,500 tons of waste per day with a corresponding traffic level of a maximum of 234 vehicles per day (184 waste haul vehicles per day + 50 other vehicles per day). The EIR (01-EIR-05) prepared for the Expansion Project which was based on the traffic study prepared for the project by ATE; found that proposed landfill expansion would not generate significant traffic impacts. No change to the impact determination occurred in association with CEQA review of the Tajiguas Landfill Reconfiguration and Baron Ranch Restoration Project since that project did not modify the permitted waste or traffic volumes. The Solid Waste Facility Permit issued to the County is consistent with waste and traffic volumes analyzed in the prior Tajiguas Landfill Environmental Documents and allows for a maximum of 1,500 tons of waste per day with a maximum of 184 waste haul vehicles and 50 other vehicles per day.

4.9.1.2 Existing Street Network

U.S. Highway 101 is a divided four-lane facility within the vicinity of the project site. U.S. Highway 101 is the principal route between the cities of Goleta, Santa Barbara, Carpinteria, and Ventura to the south; and the cities of Buellton and Santa Maria to the north. Access to the landfill is provided by an at-grade intersection that connects the landfill access road to U.S. Highway 101 (see Figure 4.9-1). Turn lanes are provided at the intersection for traffic inbound and outbound from the landfill access road. There is a median opening on U.S. Highway 101 at the U.S. Highway 101/landfill access road intersection that provides full access to U.S. Highway 101.

4.9.1.3 U.S. Highway 101 Operations

Existing traffic volumes were collected on U.S. Highway 101 adjacent to the project site in December 2012 and January 2013 for this project. Pursuant to County and Caltrans policies, existing LOS were calculated for U.S. Highway 101 using the operations methodology outlined in the Highway Capacity Manual (Transportation Research Board, 2010). The LOS calculations also follow the Caltrans recommendation to analyze operations for the peak 15 minutes within the a.m. and p.m. peak hour periods (whereas the County focuses on operations for the peak 1-hour period). "Peak Hour Factors" are applied to the hourly volumes collected in the field to simulate traffic flows and operations experienced during the highest 15-minute period within each peak hour. The traffic counts collected in the field show that the peak hour factor is 0.92 for the a.m. peak period and 0.91 for the p.m. peak period. The LOS analyses also account for the number of trucks using the facility. About 6 percent of the existing traffic flow on U.S. Highway 101 is comprised of trucks with 3 or more axles. Table 4.9-1 shows the existing LOS for U.S. Highway 101 adjacent to the project site for the a.m. and p.m. peak periods.

Table 4.9-1. U.S. Highway 101: Existing Levels of Service

Time Period	Direction	LOS
a.m. Peak	Northbound	LOS A LOS B
	Southbound	LOS B
p.m. Peak	Northbound	LOS B
p.m. r eak	Southbound	LOS A

19

1

2

3

4

5

6

7

8 9

10

11

12

13

14

15

16 17

18

20212223

2526

27

24

As shown in Table 4.9-1, U.S. Highway 101 currently operates at LOS A to B adjacent to the project site during the a.m. and p.m. peak periods. In addition to carrying through traffic, U.S. Highway 101 is used by commuters traveling to Santa Barbara-Goleta work places from north county areas during the a.m. peak period and then return home to the north county areas during the p.m. peak period. Therefore, the predominate flow is southbound during the a.m. peak period and northbound during the p.m. peak period.

4.9.1.4 U.S. Highway 101/Landfill Access Road Operations

The U.S. Highway 101/landfill access road intersection forms a "T" configuration. There is a median opening on U.S. Highway 101 that provides full access for turning into and out of the landfill access road. There are also turn lanes on both directions of U.S. Highway 101 for turning into and out of the landfill access road. The intersection is controlled by a stop sign on the outbound approach from the landfill access road. Outbound traffic turning left from the landfill access road cross the northbound U.S. Highway 101 traffic stream when a gap is available and then merge into the southbound U.S. Highway 101 traffic stream in the existing acceleration lane. Similarly, inbound traffic from southbound U.S. Highway 101 cross the northbound U.S. Highway 101 traffic stream when a gap is available and then turn into the landfill access road. Outbound right turns are not required to wait for gaps in the northbound U.S. Highway 101 traffic stream since there is an acceleration lane for merging into the northbound U.S. Highway 101 traffic stream.

Levels of Service

Pursuant to County and Caltrans policies, LOS was calculated for the U.S. Highway 101/landfill access road intersection using the methodology outlined in the Highway Capacity Manual. Existing a.m. and p.m. peak hour traffic volumes were collected at the U.S. Highway 101/landfill access road intersection in January 2013 for this project. Fifteen vehicles were observed turning at the intersection during the a.m. peak period and 4 vehicles were observed turning at the intersection during the p.m. peak period. Delays and LOS were calculated for the intersection for the a.m. and p.m. peak commuter periods. The LOS calculations follow the Caltrans recommendation to analyze operations for the peak 15 minutes within the a.m. and p.m. peak hour periods using peak hour factors measured in the field (peak hour factors are 0.92 for a.m. peak period and 0.91 for p.m. peak period). Table 4.9-2 shows the existing a.m. and p.m. peak period LOS for the U.S. Highway 101/landfill access road intersection.

Table 4.9-2. U.S. Highway 101/Landfill Access Road: Existing Levels of Service

Movement	Delay/LOS ¹				
Movement	a.m. Peak p.m. Pea				
Inbound left turn	9.4 Sec./LOS A	17.2 Sec./LOS C			
Inbound right turn	0.0 Sec./LOS A	0.0 Sec./LOS A			
Outbound left & right turns ²	13.1 Sec./LOS B	13.8 Sec./LOS B			

¹ LOS based on average number of seconds of delay per vehicle pursuant to the Highway Capacity Manual.

² Single lane approach. Average delay for combined left + right turns.

 The data presented in Table 4.9-2 indicate that the delays for traffic entering and exiting the landfill access road equate to LOS A to B during the a.m. peak period and LOS A to C during the p.m. peak period. These operations are considered acceptable based on the County's LOS C operating standard and Caltrans' desire to maintain operations at LOS C or better.

Gap Analysis

A field study was conducted to determine the minimum gap required in the northbound U.S. Highway 101 traffic stream for trucks to cross when entering/exiting the landfill access road. The County provided an 18-wheel semi-tractor trailer and truck driver for the study. The truck was fully loaded, and was observed turning to/from the landfill access road to determine the minimum gap typically used by trucks when crossing the northbound U.S. Highway 101 traffic stream. The minimum gap used by trucks is about 7-8 seconds (truck driver waited for traffic gap of 7-8 seconds before crossing the northbound U.S. Highway 101 traffic stream). It is noted that passenger vehicles use shorter gaps - as short as 5 seconds.

A gap study was also conducted in December 2012 to ascertain the number of gaps that are available in the northbound U.S. Highway 101 traffic stream that are sufficient in length for landfill trucks to cross the northbound U.S. Highway 101 traffic stream when entering/exiting the landfill access road. Gaps were measured throughout the day between 7 a.m. and 5 p.m., the hours of operations for the landfill. Table 4.9-3 shows the number of gaps per hour in the northbound U.S. Highway 101 traffic stream that are 8 seconds or longer - the minimum assumed for vehicles to cross the northbound U.S. Highway 101 traffic stream. The available gaps shown in Table 4.9-3 were calculated by assuming an 8 second gap plus a 7 second follow-up time for gaps measured at more than 8 seconds (the 7 second follow-up time is the time that it takes for the second vehicle in queue to move up to the stop bar after the first vehicle has departed from the stop bar). Table 4.9-3 also provides the number of vehicles per hour entering/exiting the landfill access road observed on the same day that the gap study was performed.

As shown, the number of available gaps are highest during the morning period when commuter traffic is predominately using southbound U.S. Highway 101 (240 available gaps during 7-8 a.m. peak commuter period) and lowest during the afternoon period when commuter traffic is predominately using northbound U.S. Highway 101 (83 available gaps during the 4-5 p.m. beginning of the evening peak commuter period). The gap analysis indicates there are ample gaps for traffic to enter/exit the landfill access road. For example, there were 240 available gaps during 7-8 a.m. peak commuter period and there were 22 vehicles entering/exiting the landfill access road during that hour.

2

3

5

6

7 8

9

10

11

Table 4.9-3. U.S. Highway 101/Landfill Access Road: Available Gaps

Hour	Available Northbound Gaps ¹	Landfill Traffic ²
7-8 a.m.	240	22
8-9 a.m.	220	18
9-10 a.m.	221	16
10-11 a.m.	180	29
11 a.m 12 Noon	178	20
12 Noon - 1 p.m.	169	29
1-2 p.m.	162	18
2-3 p.m.	135	16
3-4 p.m.	116	28
4-5 p.m.	83	O ³

¹ Number of available gaps (≥ 8 seconds + 7 seconds follow-up time).

Turn Lanes

As noted, the intersection contains turn lanes for all movements turning to and from the landfill access road. While not required at such intersections, turn lanes are beneficial to the safety and efficiency of the intersection. Traffic entering and leaving the main stream of traffic merges and diverges most efficiently with the through traffic when speed differentials are minimized by turn lanes. The length of the turn lanes at the U.S. Highway 101/landfill access road intersection are listed in Table 4.9-4, along with the lengths recommended in the Caltrans Highway Design Manual (2006).

Table 4.9-4. U.S. Highway 101/Landfill Access Road: Turn Lanes

		Recommended ¹		
Turn Lane	Actual Length	Standard Vehicles	Trucks	
U.S. Highway 101 NB Deceleration Lane	180 Feet	580 Feet	485 Feet	
U.S. Highway 101 NB Acceleration Lane	825 Feet	1,350 Feet	1,350 Feet	
U.S. Highway 101 SB Deceleration Lane	400 Feet	630 Feet	535 Feet	
U.S. Highway 101 SB Acceleration Lane	380 Feet	1,350 Feet	1,350 Feet	

Recommended truck distances for deceleration are shorter because they are based on 55 mph truck speed limit.

² Number of vehicles entering/exiting landfill access road (trucks + other vehicles).

³ Landfill closed at 4 p.m. on day of gap study.

As shown in Table 4.9-4, the turn lanes are shorter than those recommended by Caltrans. While the turn lanes do not meet the distances recommended by Caltrans, they are beneficial to the safety and efficiency of the intersection. Most notably, the deceleration lane for right turns entering the landfill access road from the U.S. Highway 101 northbound is relatively short (about 180 feet). Santa Barbara County has submitted an encroachment permit to Caltrans to lengthen this lane to 380 feet.

Field review was conducted to determine if landfill trucks properly utilize the dedicated turn lanes. A County-owned 18-wheel semi-tractor trailer was used for the analysis. The field review found that semi-tractor trailer truck wheels track within the turn lanes provided. It is noted that trucks use the paved shoulder just prior to the 180-foot turn lanes when turning right from northbound U.S. Highway 101 onto the landfill access road.

Sight Distances

Drivers of vehicles departing the landfill access road should have an unobstructed view along U.S. Highway 101 sufficient in length to permit them to anticipate and avoid potential collisions. Caltrans sight distance standards were used to determine minimum sight distance requirements at the landfill access road. The Caltrans minimum sight distance standard is 770 feet for a 70 mph design speed. The sight distance looking to the south from the driveway was measured at more than 1,450 feet, which exceeds the Caltrans minimum standard of 770 feet for crossing a stream of traffic traveling at 70 mph. Therefore, the sight distances present at the intersection exceed the Caltrans minimum standard.

Accident Data

Accident data was provided by Caltrans for the area within 1/2 mile of the U.S. Highway 101/landfill access road intersection (includes intersection and highway within 1/4 mile of intersection). The data encompasses the 10-year period from January 1, 2001 through December 31, 2010, and indicates 8 accidents occurred over this period (0.07 accidents per million vehicles). In comparison, the State average is 0.30 accidents per million vehicles. None of the accidents involved landfill vehicles. The accident data indicate the rate of accidents at the intersection is well below the statewide average for similar intersections, which is expected given the intersection's configuration and environment (low delays, ample gaps, provision of turn lanes and good sight distances).

4.9.1.5 Traffic Baseline

Landfill Traffic Volumes

As noted above, traffic counts were collected in the vicinity of the Tajiguas Landfill in December 2012 and January 2013. Review of County scale-house records at the Tajiguas Landfill show that disposal of material in 2012 was relatively low when compared to previous years. The relatively low levels of waste disposal at the landfill can be attributed to the downturn in the economy which has resulted in lower housing starts (less C&D waste) and less residential and commercial waste. Table 4.9-5 provides the number of vehicles weighed at the scale-house on peak days, peak day disposal volumes and annual waste disposal volumes between 2004 and 2012.

Table 4.9-5. Historical Landfill Activity

Year	Trucks Per Peak Day	Peak Day Waste Receipt (Tons)	Total Landfilled (Tons, LEA reporting)
2004	129	1,457	248,072
2005	128	1,583	250,925
2006	120	1,363	222,248
2007	127	1,642	218,992
2008	132	1,388	215,628
2009	114	1,475	192,219
2010	115	1,490	178,804
2011	109	1,405	173,138
2012	97	1,297	165,847

The data shows that disposal levels and peak day truck trips were somewhat constant between 2004 and 2008; and then slowly declined between the peak in 2008 and the low recorded in 2012. It is noted that the peak of 132 trucks per day recorded in 2008 is well below the permitted level of 184 trucks per day. Furthermore, the number of other vehicles (employee and miscellaneous vehicles) in 2012 was 32 and the number of other vehicles in 2008 was 35, which are also below the permitted level of 50 other vehicles per day. Therefore, traffic from landfill operations is well below what was identified and analyzed in the prior landfill environmental documents. Also note that the number of peak day trucks and peak day waste receipt are not closely correlated.

The peak year of 2008 was selected to represent "baseline" traffic conditions for assessing traffic operations and project impacts since the landfill generated significantly less traffic in 2012 due to poor economic conditions and it is reasonable to assume that MSW tonnage received will rebound as the economy improves. Permitted levels were not used as the baseline since the recorded scale-house data show historic traffic volumes are well below the permitted levels.

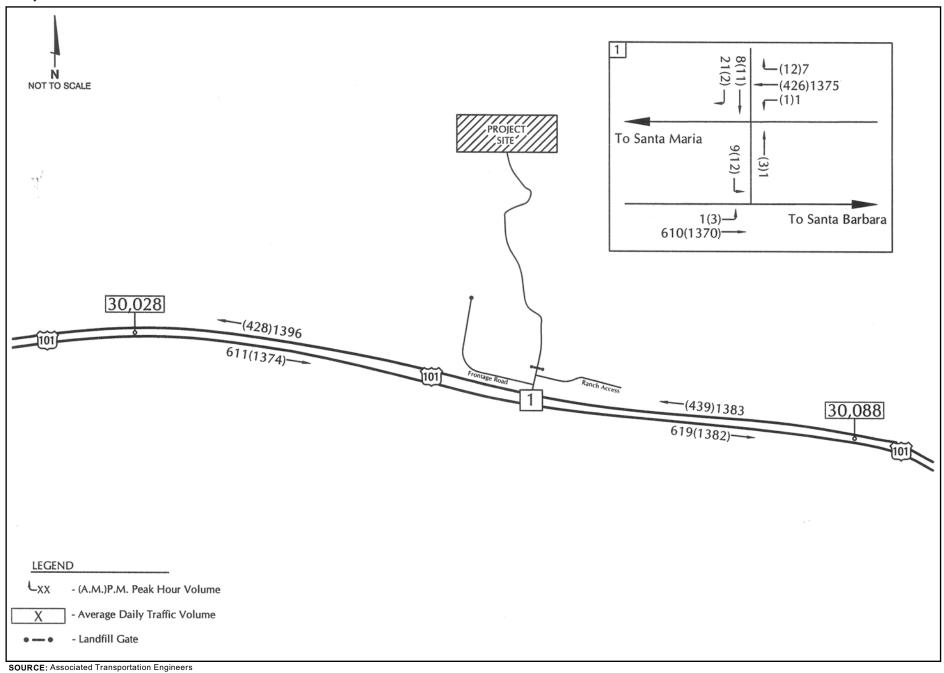
Traffic on U.S. Highway 101 adjacent to the site was about the same in 2008 as in 2012 (2008 = 29,500 average daily trips [ADT]; 2012 = 30,000 ADT). Therefore, the traffic levels recorded for U.S. Highway 101 in 2012, with 2008 landfill traffic using the landfill access road (turning to/from U.S. Highway 101) is considered the baseline in this analysis.

U.S. Highway 101 - Baseline Operations

Baseline traffic operations for U.S. Highway 101 are the same as shown for existing conditions since the 2012 traffic volumes are used for the Baseline analysis. As shown in Table 4.9-1, U.S. Highway 101 operates at LOS A to B adjacent to the project site during the a.m. and p.m. peak hour periods.

U.S. Highway 101/Landfill Access Road - Baseline Operations

Figure 4.9-1 shows the baseline traffic volumes for the U.S. Highway 101/landfill access road intersection. Delays and LOS were calculated for the a.m. and p.m. peak commuter periods using the baseline traffic volumes. Table 4.9-6 compares the existing and baseline operations at the intersection.


Table 4.9-6. U.S. Highway 101/Landfill Access Road: Baseline Levels of Service

	Delay/LOS ¹				
Movement	a.m.	Peak	p.m.	Peak	
	Existing	Baseline	Existing	Baseline	
Inbound left turn	9.4 Sec./LOS A	10.0 Sec./LOS A	17.2 Sec./LOS C	19.9 Sec./LOS C	
Inbound right turn	0.0 Sec./LOS A	0.0 Sec./LOS A	0.0 Sec./LOS A	0.0 Sec./LOS A	
Outbound left & right turns ²	13.1 Sec./LOS B	12.6 Sec./LOS B	13.8 Sec./LOS B	23.3 Sec./LOS C	

¹ LOS based on average number of seconds of delay per vehicle pursuant to the Highway Capacity Manual.

As shown, the delays for traffic entering and exiting the landfill access road during the a.m. peak period at the U.S. Highway 101 intersection equate to LOS A to B, the same LOS at shown for existing conditions. The delays and LOS are also about the same for the p.m. peak period, however, the delays for traffic outbound from the landfill equate to LOS C whereas they are LOS B for existing conditions.

² Single lane approach. Average delay for combined left + right turns.

4.9.2 Impact Analysis and Mitigation Measures

4.9.2.1 Thresholds of Significance

Caltrans Standards

U.S. Highway 101 falls under the jurisdiction of Caltrans. Caltrans District 5 has established LOS goals for U.S. Highway 101 in their Transportation Concept Report (Caltrans, 2001), which indicates LOS C is the minimum operating standard for the segment of U.S. Highway 101 between Santa Barbara and Santa Maria.

Santa Barbara County

The County of Santa Barbara CEQA impact thresholds are also used to assess the project's potential to generate project-specific and/or cumulative traffic impacts. The County's thresholds are listed below.

a. An impact is considered significant if the addition of project traffic to an intersection increases the volume to capacity (V/C) ratio by the following values:

Intersection Level of Service (Including Project)	Increase in V/C or Trips Greater Than
LOS A	0.20
LOS B	0.15
LOS C	0.10
LOS D	15 Trips
LOS E	10 Trips
LOS F	5 Trips

17 18

1

2

3

4

5

6 7

8

9

10

11 12

13

14

15

16

19 20

212223

24

252627

28

293031

- b. The project's access to a major road or arterial road would require a driveway that would create an unsafe situation, a new traffic signal or major revisions to an existing traffic signal.
- c. The project adds traffic to a roadway that has design features (e.g., narrow width, road-side ditches, sharp curves, poor sight distance, inadequate pavement structure) that would become a potential safety problem with the addition of project traffic.
- d. Project traffic would utilize a substantial portion of an intersections capacity where the intersection is currently operating at an acceptable LOS (A-C) but with cumulative traffic would degrade, or approach LOS D (V/C 0.80) or lower. Substantial is defined as a minimum change of 0.03 for an intersection which would operate from 0.80 to 0.85, a change of 0.02 for an intersection which would operate greater than 0.90.

Congestion Management Program (CMP)

The Santa Barbara County Association of Governments (SBCAG) has developed a set of traffic impact thresholds to assess the impacts of land use decisions made by local jurisdictions on regional transportation facilities located within the CMP roadway system. U.S. Highway 101 is part of the CMP system. According to CMP criteria, projects that generate less than 500 ADT and less than 50 peak hour trips do not require detailed traffic analyses and are considered compliant with CMP criteria.

4.9.2.2 Approved Tajiguas Landfill Expansion Project

01-EIR-05 for the Tajiguas Landfill Expansion Project (see Section 3.10.3) identified the following traffic impacts:

- 1. The contribution of landfill-related traffic to total traffic volumes on U.S. Highway 101 was considered less than significant (Class III);
- 2. Due to the schedule of landfill operations, landfill-related traffic was identified as having a less than significant impact to the operation of U.S. Highway 101 and the landfill access road intersection (Class III);
- 3. The traffic safety impact associated with landfill vehicles merging onto U.S. Highway 101 from the landfill access road was considered significant but mitigable (Class II) with implementation of measures TRAF-1 (installation of a permanent stop sign and speed dots) and TRAF-2 ("Caution Trucks Entering the Highway" sign)¹;
- 4. Traffic safety impacts associated with stopping sight distance at the U.S. Highway 101/access road intersection and traffic gaps were considered less than significant (Class III) and further reduced by the implementation of measures TRAF-1 and TRAF-2.

4.9.2.3 Approved Tajiguas Landfill Reconfiguration and Baron Ranch Restoration Project

08EIR-00000-00007 determined that landfill reconfiguration would not modify any permitted operational parameters (e.g., hours of operation, trips, maximum daily tonnage, total waste disposal capacity) that would affect traffic volumes or safety issues associated with the approved Expansion Project. Therefore, no new or additional traffic impacts were identified as a result of landfill reconfiguration.

_

¹ Measure TRAF-2 was subsequently determined to not be necessary by Caltrans (Letter to Mark Schleich dated November 14, 2003).

4.9.2.4 Proposed Tajiquas Resource Recovery Project

Construction Impacts

Construction of the Tajiguas Resource Recovery Project is anticipated to begin in summer 2015 and end in approximately December 2016. Construction is proposed 8 hours per day, 5 days per week. Preliminary information indicates there would be up to 70 employees required and up to 60-70 trucks for import of materials and equipment on peak days when concrete is poured (employee and truck levels would be lower on other days). The following impact analysis is based on peak day construction traffic. Table 4.9-7 provides estimated trip generation rates for peak construction days. As shown, construction traffic would peak with a total of 252 ADT, with 18 trips occurring during the a.m. peak hour and 6 trips occurring during the p.m. peak hour.

Table 4.9-7. Trip Generation: Project Construction

				Trip Generation ¹			
Component	Number	Shift	AVO	ADT	a.m. Peak²	p.m. Peak²	
Employees	70	7:00 0:00	1.25	112	6(6/0)	6(0/6)	
Trucks	70	7:00 a.m3:30 p.m.	NA	140	12(6/6)	0(0/0)	
Total				252	18(12/6)	6(0/6)	

¹ Trip generation based on construction information provided by A.J. Diani Construction.

Traffic generated on peak construction days was distributed onto the study area street network assuming 70 percent of employee traffic would be to/from the north and 30 percent to/from the south. The distribution pattern for trucks assumes that 100 percent of the truck trips would be to/from the south.

Impact TRRP T-1: Implementation of the proposed project would generate construction-related traffic which could result in an adverse but less than significant impact to traffic operations on U.S. Highway 101 and the U.S. Highway 101/landfill access road – Class III Impact.

Levels of service were calculated for U.S. Highway 101 and for the U.S. Highway 101/landfill access road intersection assuming the Existing + Construction traffic volumes. As indicated by Tables 4.9-8 and 4.9-9, the construction phase of the Resource Recovery Project would not significantly impact U.S. Highway 101 or the U.S. Highway 101/landfill access road intersection.

² Total trips (inbound/outbound)

2

3

4

5

6

7

8

9

10

11

12

13 14

Table 4.9-8. U.S. Highway 101: Existing + Construction Traffic

Time Period	Direction	Direction LOS		Impact?
U.S. Higl	nway 101 North o	f Landfill Ac	cess Road	
a m. Dook	Northbound	LOS A	0	No
a.m. Peak	Southbound	LOS B	0	No
n m. Dook	Northbound	LOS B	4	No
p.m. Peak	Southbound	LOS A	0	No
U.S. High	nway 101 South o	of Landfill Ac	cess Road	
a.m. Peak	Northbound	LOS A	8	No
a.m. Peak	Southbound	LOS B	6	No
n m. Dook	Northbound	LOS B	0	No
p.m. Peak	Southbound	LOS A	2	No

Table 4.9-9. U.S. Highway 101/Landfill Access Road: Existing + Construction Traffic

	a.m. Peak			p.m. Peak		
Movement	LOS¹	Project Added Trips	Impact?	LOS¹	Project Added Trips	Impact?
Inbound left turn	9.4 Sec./LOS A	4	No	17.2 Sec./LOS C	0	No
Inbound right turn	0.0 Sec./LOS A	8	No	0.0 Sec./LOS A	0	No
Outbound left & right turns ²	13.3 Sec./LOS B	6	No	21.1 Sec./LOS C	6	No

¹ LOS based on average number of seconds of delay per vehicle pursuant to the Highway Capacity Manual.

Project Trip Generation

Trip generation estimates were calculated for the project based on the number of employees and trucks required to operate the MRF and AD Facility (see Table 4.9-10). The following text describes the number of new employees and trucks assumed in the trip generation analysis. Note that trip generation associated with existing landfill facilities to be relocated as part of the project (maintenance building, operations trailers) was considered part of the baseline.

Employees

The MRF would be staffed by 7 administration employees working one shift per day; 24 full-time employees per 8-hour shift with 2 shifts per day; and 7 maintenance/cleaning employees working one shift per day. The AD Facility would be operated by 4 employees working 1 shift per day.

² Single lane approach. Average delay for combined left + right turns.

For the MRF, the applicant has set the shift for the administration staff and the first employee group at 7:00 a.m. to 3:30 p.m.; and the second employee shift at 3:00 p.m. to 11:30 p.m. Therefore, those employees would arrive and depart the site outside of the a.m. and p.m. peak commuter periods (a.m. peak commuter period = 7-9 a.m. and p.m. peak commuter period = 4-6 p.m.). The shift schedule for the 7 maintenance/cleaning employees is from 11:00 p.m. to 7:30 a.m. Therefore, those employees would arrive outside of the peak periods, but would depart during the a.m. peak period.

For the AD Facility, the shift schedule is 7:00 a.m. to 3:30 p.m. Therefore, those employees would arrive and depart the site outside of the a.m. and p.m. peak commuter periods. The project would also result in the elimination of 6 existing employees at the Tajiguas Landfill due to the reduced volume of waste to be buried at the landfill. These employees work 6:30 a.m. to 4:00 p.m., and arrive and depart outside of the a.m. and p.m. peak periods.

The County's proposed vendor (Mustang) is proposing to implement a vanpool program for the new employees working at the MRF and AD Facility (excluding the administrative staff) to reduce traffic generation as well as provide an employment incentive. The location of the site is well suited for ridesharing, given its isolation and distance from the population centers where employees live. Employee surveys were used at the existing landfill to ascertain the current level of ridesharing as well as where employees live. The surveys show that most employees carpool to and from work; and that most employees live north of the site (Buellton, Lompoc, Santa Maria).

The Average Vehicle Occupancy (AVO) for the existing employees was measured at 1.6 employees per vehicle when commuting to and from work.² The surveys also show that most employees do not leave the site during the day; whereas employees in work places within population centers typically leave during their shift to run errands, visit the doctor, etc. Therefore, the existing employee commute information shows that a successful vanpool program could be developed for the new employees. The proposed vanpool program is anticipated to achieve an AVO of 2.5 (average of 2.5 employees per vehicle) for the MRF and AD Facility employees (excluding the administrative staff). The trip generation analysis assumes full implementation of the proposed vanpool program.

² Note: This vehicle occupancy rate occurs without a formal vanpool program.

Export Trucks

The project would not result in additional trucks for import of waste materials since the waste to be processed would be delivered to the site without the proposed project. The project would, however, result in an additional 17 trucks per day for export of processed materials from the MRF (13 trucks) and AD Facility (4 trucks) to market. The truck schedules for export of materials would be controlled such that trucks would depart to market and return to the site outside of the a.m. and p.m. peak periods. Table 4.9-10 provides trip generation estimates for the Resource Recovery Project, within and without the CSSR Option.

Table 4.9-10 indicates the project would result in a net increase of 84 ADT, with 3 trips occurring during the a.m. peak hour and 0 trips during the p.m. peak hour. The CSSR option would increase ADT by 40, and add one a.m. and one p.m. peak hour trip. The proposed vanpool program and scheduling employee shifts and trucking outside of the a.m. and p.m. peak hours would reduce traffic additions to the project-area street network during the a.m. and p.m. peak commuter periods.

Project Trip Distribution

It is assumed that project traffic would be distributed onto the project-area street network based on the percentages shown in Table 4.9-11. The trip distribution pattern for employees is based on a survey of the existing employees at the landfill. That survey shows that about 90 percent of the employees commute from the north (Buellton-Santa Ynez, Lompoc, and Santa Maria); and the remaining 10 percent commute from the south (Santa Barbara-Goleta). The trip distribution pattern for trucks exporting material to market is based on the market destination. Recovered recyclables from the MRF are anticipated to be exported by truck to the Port of Los Angeles and finished compost from the AD Facility is anticipated to be exported to the Santa Ynez Valley, Lompoc and Santa Maria. Figure 4.9-2 illustrates the distribution and assignment of project-generated traffic.

1

Table 4.9-10. Project Trip Generation

				Trip G	eneration	1		
Component	Number Shift	AVO	ADT	a.m. Peak	p.m. Peak			
Project w/o CSSR Option								
MRF								
Administrative staff	7	7:00 a.m3:30 p.m.	1.6	8	0(0/0)	0(0/0)		
Employees	24	7:00 a.m3:30 p.m.	2.5	20	0(0/0)	0(0/0)		
Employees	24	3:00 p.m11:30 p.m.	2.5	20	0(0/0)	0(0/0)		
Employees	7	11:00 p.m7:30 a.m.	2.5	6	3(0/3)	0(0/0)		
Trucks	13	NA	NA	26	0(0/0)	0(0/0)		
Subtotal	75			80	3(0/3)	0(0/0)		
AD Facility								
Employees	4	7:00 a.m3:30 p.m.	2.5	4	0(0/0)	0(0/0)		
Trucks	4	NA	NA	8	0(0/0)	0(0/0)		
Subtotal	8			12	0(0/0)	0(0/0)		
Existing Landfill								
Employees	-6	6:30 a.m4:00 p.m.	1.6	-8	0(0/0)	0(0/0)		
Total Project				84	3(0/3)	0(0/0)		
		CSSR Option						
Employees	20		2.5	16	0(0/0)	0(0/0)		
Trucks (import)	7	7 a.m1:30 p.m.	NA	14	1(1/0)	1(0/1)		
Trucks (export)	5		NA	10	0(0/0)	0(0/0)		
Subtotal	32			40	1(1/0)	1(0/1)		
Total Project + CSSR Option				124	4(1/3)	1(0/1)		

¹ ADT = 1 inbound and 1 outbound trip for each employee vehicle and each truck. a.m. and p.m. peak hour trips also show inbound/outbound splits (inbound/outbound).

Table 4.9-11. Project Trip Distribution

Origin/Destination	Direction Project w/o CSSR Option		CSSR Option
Employee Trips			
U.S. Highway 101	North	90%	90%
U.S. Highway 101	South	10%	10%
Truck Trips			
U.S. Highway 101	North	24%	0%
U.S. Highway 101	South	76%	100%

Impact TRRP T-2: Operation of the proposed project would generate additional traffic which could result in an adverse but less than significant impact on U.S. Highway 101 traffic operations (level of service) – Class III Impact.

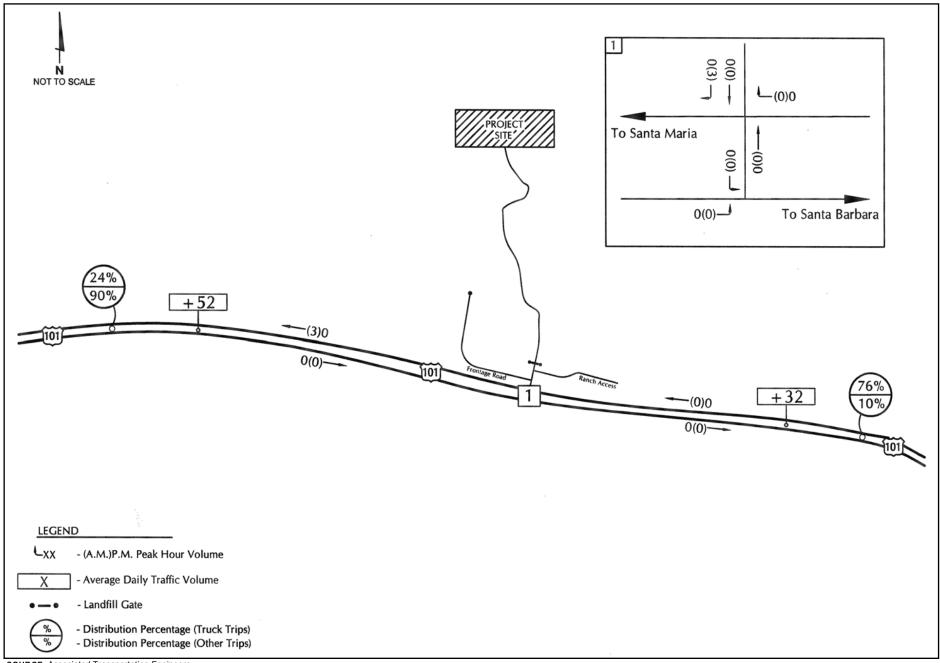
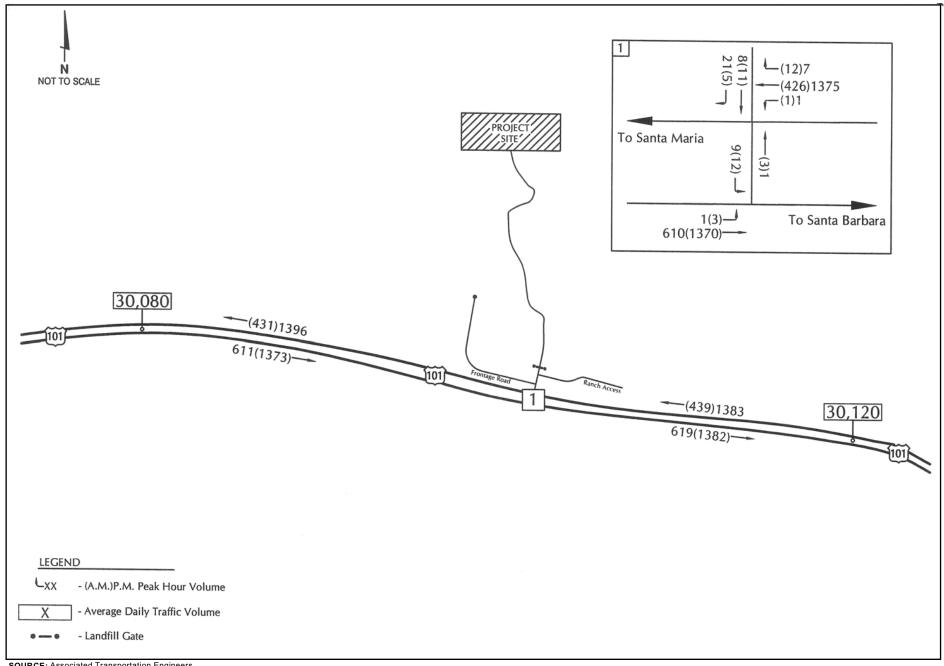

Levels of service were calculated for U.S. Highway 101 using the Baseline + Project volumes shown on Figure 4.9-3. Table 4.9-12 shows the Baseline + Project (with and without the CSSR Option) LOS forecasts along with the significance of project-added traffic based on Caltrans and County criteria. As shown, U.S. Highway 101 is forecast to operate at LOS A-B adjacent to the project site during the a.m. and p.m. peak hour periods with Baseline + Project traffic, which meets both Caltrans and County standards. The Resource Recovery Project (with or without the CSSR Option) would not generate significant impacts to U.S. Highway 101 operations.

Table 4.9-12. U.S. Highway 101: Baseline + Project Levels of Service

			Pro	oject	Project + CSSR				
Time Period	Direction	LOS	Added Trips	Impact?	Added Trips	Impact?			
U.S. Highway 101 North of Landfill Access Road									
a.m. Peak	Northbound	LOS A	3	No	3	No			
a.m. Peak	Southbound	LOS B	0	No	0	No			
a va Daale	Northbound	LOS B	0	No	0	No			
p.m. Peak	Southbound	LOS A	0	No	0	No			
U.S. Highway 101 South of Landfill Access Road									
a.m. Peak	Northbound	LOS A	0	No	1	No			
a.m. Peak	Southbound	LOS B	0	No	0	No			
n m Doole	Northbound	LOS B	0	No	0	No			
p.m. Peak	Southbound	LOS A	0	No	1	No			


Impact TRRP T-3: Implementation of the proposed project would generate additional traffic which could result in an adverse but less than significant impact on the landfill access road/U.S. Highway 101 intersection level of service – Class III Impact.

Levels of service were calculated for the U.S. Highway 101/landfill access road intersection using the Baseline + Project peak period volumes shown on Figure 4.9-3. Table 4.9-13 shows the Baseline + Project (with and without the CSSR Option) LOS forecasts along with the significance of project-added traffic based on Caltrans and County criteria.

SOURCE: Associated Transportation Engineers

SOURCE: Associated Transportation Engineers

Table 4.9-13. U.S. Highway 101/Landfill Access Road Baseline + Project Levels of Service

	Project				Project + CSSR			
Movement	Seconds delay/ LOS ¹ a.m.	Impact?	Seconds delay/ LOS ¹ p.m.	Impact	Seconds delay/ LOS ¹ a.m.	Impact?	Seconds delay/ LOS ¹ p.m.	Impact
Inbound left turn	10.0/A	No	19.9/C	No	10.0/A	No	19.9/C	No
Inbound right turn	0.0/A	No	0.0/A	No	0.0/A	No	0.0/A	No
Outbound left & right turns ²	12.0/B	No	23.3/C	No	12.0/B	No	24.6/C	No

¹ LOS based on average number of seconds of delay per vehicle pursuant to the Highway Capacity Manual.

As shown, the Baseline + Project delays for traffic entering and exiting the landfill access road during the a.m. peak period equate to LOS A-B and the delays during the p.m. peak period equate to LOS A-C, which meet both Caltrans and County standards. The Resource Recovery Project (with or without the CSSR Option) would not significantly impact traffic operations at the U.S. Highway 101/landfill access road intersection.

Impact TRRP T-4: Implementation of the proposed project would generate additional traffic at the existing U.S. Highway 101/landfill access road intersection which could result in adverse but less than significant traffic safety impacts – Class III Impact.

As noted above, trucks/vehicles exiting the landfill to go southbound on U.S. Highway 101 or trucks/vehicles entering the landfill from southbound U.S. Highway 101 must use the existing at-grade intersection, and cross highway traffic lanes. As noted previously, Caltrans accident data show that the rate of accidents at the intersection is well below the statewide average for similar intersections and none of the accidents within the 10-year period involved landfill vehicles. Based on the results of the traffic analysis (Appendix K), there are adequate traffic gaps and sight distances for the additional project-generated traffic. In addition, the existing intersection contains turn lanes for all movements, which although less than Caltrans recommended lengths, are beneficial to the safety and efficiency of the intersections. Therefore, the Resource Recovery Project would not significantly impact traffic safety at the U.S. Highway 101/landfill access road at-grade intersection.

² Single lane approach.

Solid Waste Facility Permit Traffic Volumes

The existing Solid Waste Facility Permit for the landfill allows for 184 trucks per day and 50 other vehicles per day (234 total vehicles). As discussed above, to date, the landfill has generated less traffic than originally analyzed and permitted. Historical data (see Table 4.9-5) shows that landfill traffic peaked in 2008 when there were a total of 132 trucks per day recorded and 35 other vehicles per day (167 total vehicles). The 167 total vehicles represents the generally existing landfill traffic conditions (baseline) against which project changes were measured. From a permitting standpoint, traffic generated under the Resource Recovery Project + CSSR Option scenario (229 total vehicles), which includes the generally existing landfill traffic volumes, would be essentially the same volume of traffic that is allowed under the existing permit. Table 4.9-14 compares the permitted trip generation with the trip generation estimates for the Resource Recovery Project + CSSR Option scenario.

Table 4.9-14. Permitted Traffic Levels

Connexio	Veh	ADT1		
Scenario	Trucks	Other	Total	ADT ¹
Existing Solid Waste Facility Permit	184	50	234	468
Landfill Baseline + Proposed Project + CSSR Option	161	68	229	458

¹ ADT = 1 inbound and 1 outbound trip for each truck and each other vehicle.

As shown, the existing permit allows for 234 vehicles per day (184 trucks + 50 others) and the proposed project (Resource Recovery Project + CSSR Option) would result in 229 vehicles per day (161 trucks + 68 others). Therefore, traffic levels (234 vehicles per day) allowed under the existing permit would be essentially the same as those analyzed under the Landfill Baseline + Resource Recovery Project + CSSR Option.

However, the number of truck trips anticipated to be generated under the Resource Recovery Project + CSSR Option would be less than allowed under the existing permit and the number of other vehicles would be higher. Therefore, the mix of traffic generated at the landfill would include fewer trucks and more other vehicles than what is included in landfill's existing Solid Waste Facility Permit.

Circulation Changes due to Potential Future U.S. Highway 101 Median Closure

Caltrans is considering closing at-grade intersections along the Gaviota Coast including the median at the U.S. Highway 101/landfill access road intersection, which would eliminate left turns into and out of the landfill. Median closure would prevent landfill traffic from crossing U.S. Highway 101 traffic lanes, reduce the potential for collisions and improve traffic safety. It is unknown if, and when, these improvements would occur; however, extending the landfill life would increase the potential for median closure to occur during the active life of the landfill. Median closure would require inbound landfill traffic from the north to utilize the Refugio State Beach interchange, and outbound traffic to the south to utilize the Mariposa Reina interchange. These interchanges are anticipated to operate at LOS A under existing and future conditions, and landfill traffic circulation changes associated with median closure would not substantially reduce LOS.

4.9.2.5 Proposed Tajiguas Resource Recovery Project with Optional Comingled Source Separated Recyclables (CSSR) Component

The optional CSSR element would add an additional 10,000 square feet of sorting facilities to the proposed MRF building (see Figure 3-8). All other project facilities would be the same. Additionally, the number of employees on the site would increase by 20 during the day and there would be additional deliveries of recyclable materials and transport of sorted materials off-site after processing. As indicated in Tables 4.9-12, 4.9-13, 4.9-15, 4.9-16 and 4.9-17, the addition of the CSSR Option would have a minimal effect on project traffic impacts, and would not alter the significance of these operational impacts.

4.9.2.6 Extension of Landfill Life Impacts

Impact TRRP T-5: Project-related extension of the life of the Tajiguas Landfill would extend the duration of less than significant traffic level of service and safety impacts at the U.S. Highway 101/landfill access road intersection associated with landfill operations – Class III Impact.

The proposed Tajiguas Resource Recovery Project is expected to extend the life of the landfill by approximately 10 years. Impacts associated with extension of life do not represent new impacts, but represent impacts that would be extended further in time. As discussed below, the proposed Tajiguas Resource Recovery Project would not significantly impact the project-area street network in the Year 2036 cumulative scenario. Therefore, the proposed Tajiguas Resource Recovery Project would extend the duration of time over which the insignificant (Class III) traffic impacts would occur.

4.9.2.7 Decommissioning Impacts

Impact TRRP T-6: Decommissioning activities would generate traffic which could result in an adverse but less than significant impact to traffic operations on U.S. Highway 101 and the U.S. Highway 101/landfill access road – Class III Impact.

Similar to project construction activities (see **Impact TRRP T-1**), dismantling and removing project facilities would generate vehicle traffic associated with transporting workers, equipment and materials. However, the intensity and total amount of decommissioning activity would be less than associated with construction, such that peak hour traffic volumes would likely be less. As shown in Tables 4.9-17 and 4.9-18, future (2036) levels of service near the Landfill would remain acceptable. Therefore, similar to construction, traffic impacts associated with decommissioning are considered less than significant.

4.9.2.8 Cumulative Impacts of Tajiguas Resource Recovery Project

Two cumulative scenarios are analyzed for the proposed project. The first scenario, termed "Cumulative", includes traffic generated by approved and pending projects in the region (see Section 3.6), which represents a short-term scenario that coincides with the time period when the project would become operational (~2017). The second cumulative scenario, termed "Year 2036", includes the traffic generated by approved and pending projects plus background growth to the year 2036, which represents conditions near the end of life for the proposed project.

Cumulative Traffic Forecasts

Cumulative traffic volumes were forecast for the project-area facilities assuming traffic generated by approved and pending projects (see Section 3.6) plus application of a 1/2 percent per year background growth factor. The background growth factor was applied to the existing traffic counts to account for traffic growth not generated by the cumulative projects, since U.S. Highway 101 is a regional route that is affected by growth beyond the Gaviota coast area.

Historical counts show that U.S. Highway 101 traffic has increased at a rate of less than 1/2 percent per year adjacent to the project site over the past 20 years. A 1/2 percent per year background growth factor was selected to provide a conservative analysis. Cumulative and Cumulative + Project traffic forecasts are shown on Figures 4.9-4 and 4.9-5.

Year 2036 Traffic Forecasts

Year 2036 traffic volumes were forecast for the project-area facilities assuming the cumulative traffic forecasts plus application of a 1/2 percent per year background growth factor to the year 2036. Traffic volumes estimated for Year 2036 and Year 2036 + Project conditions are provided in Figures 4.9-6 and 4.9-7.

Impact TRRP T-CUM-1: Traffic generated as a result of implementation of the proposed project combined with traffic generated by the cumulative projects and background growth could result in an adverse but less than significant impact on U.S. Highway 101 traffic operations (level of service) - Class III Cumulative Impact; Project Contribution - Not Considerable (Class III).

LOS was calculated for U.S. Highway 101 using the Cumulative and Cumulative + Project volumes shown on Figures 4.9-4 and 4.9-5. Table 4.9-15 provides LOS forecasts for the project with and without the CSSR Option, along with the significance of project-added traffic based on Caltrans and County criteria.

As shown, U.S. Highway 101 is forecast to operate at LOS A to B adjacent to the project site during the a.m. and p.m. peak periods under Cumulative and Cumulative + Project conditions (with and without the CSSR Option), which meets both Caltrans and County standards. The cumulative impact on U.S. Highway 101 roadway operations would be less than significant and the incremental contribution of the Resource Recovery Project to cumulative traffic impacts on U.S. Highway 101 roadway operations would not be considerable.

Table 4.9-15. U.S. Highway 101: Cumulative + Project Levels of Service

Time Period	Direction	LOS	0 0	lative + oject	Cumulative + Project + CSSR				
	Direction	103	Added Trips	Impact?	Added Trips	Impact?			
U.S. Highway 101 North of Landfill Access Road									
a.m. Peak	Northbound	LOS A	3	No	3	No			
	Southbound	LOS B	0	No	0	No			
a a Deel	Northbound	LOS B	0	No	0	No			
p.m. Peak	Southbound	LOS A	0	No	0	No			
U.S. Highway 101 South of Landfill Access Road									
a.m. Peak	Northbound	LOS A	0	No	1	No			
	Southbound	LOS B	0	No	0	No			
p.m. Peak	Northbound	LOS B	0	No	0	No			
	Southbound	LOS A	0	No	1	No			

3

4

5

6

7

8 9

10

11

12

13

14

15

16

17

18

19 20 21 Impact TRRP T-CUM-2: Traffic generated as a result of implementation of the proposed project combined with traffic generated by the cumulative projects and background growth could result in an adverse but less than significant impact on the landfill access road/U.S. Highway 101 intersection - Class III Cumulative Impact; Project Contribution - Not Considerable (Class III).

LOS was calculated for the U.S. Highway 101/landfill access road intersection using the Cumulative and Cumulative + Project peak hour volumes shown on Figures 4.9-4 and 4.9-5. The LOS forecasts for the a.m. and p.m. peak periods are provided in Table 4.9-16, along with the significance of project-added traffic based on Caltrans and County criteria. The cumulative impact on the landfill access road/U.S. Highway 101 intersection would be less than significant and the incremental contribution of the Resource Recovery Project to cumulative traffic impacts at the landfill access road/U.S. Highway 101 intersection would not be considerable.

Table 4.9-16. U.S. Highway 101/Landfill Access Road Cumulative + Project Peak Levels of Service

	Cumulative + Project				Cumulative + Project + CSSR			
Movement	Seconds delay/ LOS ¹ a.m.	Impact?	Seconds delay/ LOS¹ p.m.	Impact	Seconds delay/ LOS ¹ a.m.	Impact?	Seconds delay/ LOS ¹ p.m.	Impact
Inbound left turn	10.2/B	No	20.9/C	No	10.2/B	No	20.9/C	No
Inbound right turn	0.0/A	No	0.0/A	No	0.0/A	No	0.0/A	No
Outbound left & right turns ²	12.3/B	No	24.8/C	No	12.3/B	No	26.1/D	No

¹ LOS based on average number of seconds of delay per vehicle pursuant to the Highway Capacity Manual.

² Single lane approach.

Impact TRRP T-CUM-3: Traffic generated as a result of implementation of the proposed project combined with traffic generated by long-term growth (2036) could result in an adverse but less than significant impact on U.S. Highway 101 traffic operations (roadway level of service) - Class III Cumulative Impact; Project Contribution – Not Considerable (Class III).

Table 4.9-17 provides LOS forecasts for Year 2036 + Project conditions (with and without the CSSR Option), along with the significance of project-added traffic based on Caltrans and County criteria. As shown, U.S. Highway 101 is forecast to operate at LOS A to B adjacent to the project site during the a.m. and p.m. peak periods under Year 2036 and Year 2036 + Project conditions (with or without the CSSR Option), which meets both Caltrans and County standards. The cumulative impact on the U.S. Highway 101 operations would be less than significant and the incremental contribution of the Resource Recovery Project to cumulative traffic impacts on U.S. Highway 101 roadway operations would not be considerable.

Table 4.9-17. U.S. Highway 101: Year 2036 + Project Levels of Service

Time Period	Direction	LOS	2036 +	Project	2036 + Project + CSSR				
	Direction	LOS	Added Trips	Impact2		Impact?			
U.S. Highway 101 North of Landfill Access Road									
a.m. Peak	Northbound	LOS A	3	No	3	No			
	Southbound	LOS B	0	No	0	No			
n na Dank	Northbound	LOS B	0	No	0	No			
p.m. Peak	Southbound	LOS A	0	No	0	No			
	U.S. Highway 101 South of Landfill Access Road								
a m. Dook	Northbound	LOS A	0	No	1	No			
a.m. Peak	Southbound	LOS B	0	No	0	No			
p.m. Peak	Northbound	LOS B	0	No	0	No			
	Southbound	LOS A	0	No	1	No			

17

1 2

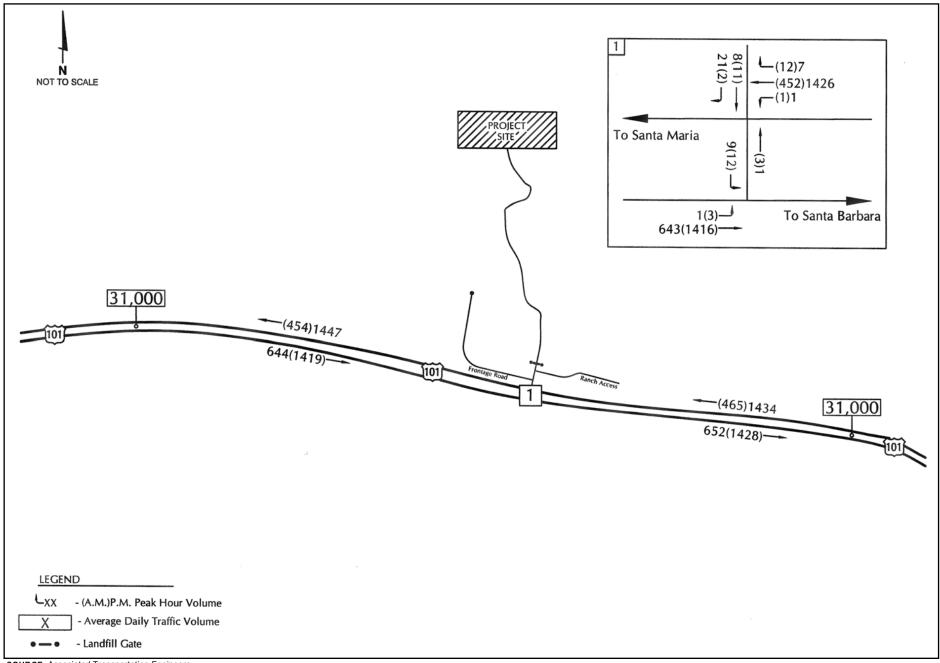
3

4 5

6 7

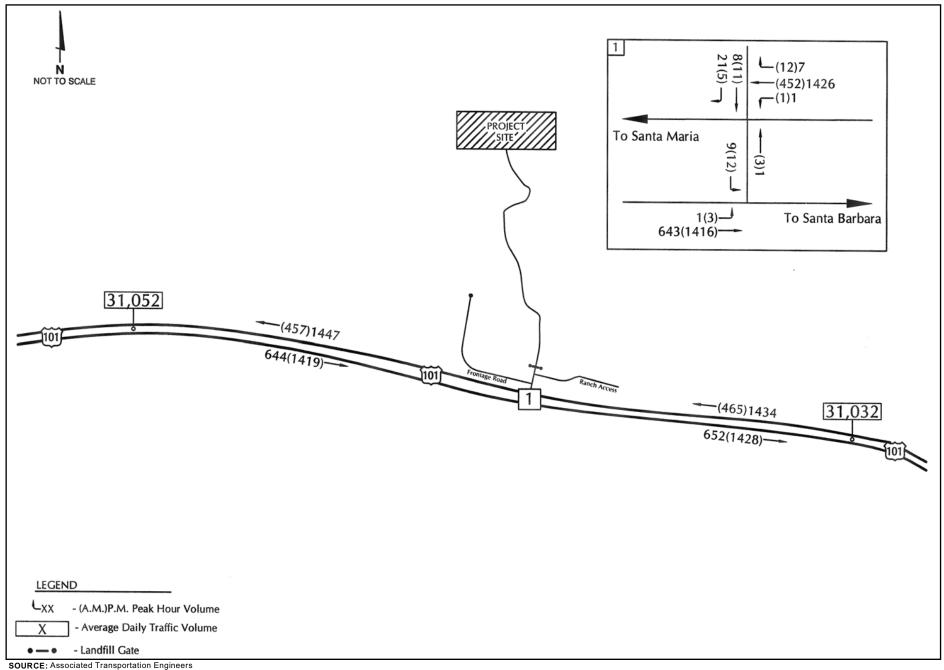
8

9


10

11

12


13 14

15

SOURCE: Associated Transportation Engineers

CUMULATIVE + PROJECT TRAFFIC VOLUMES FIGURE 4.9-5 Impact TRRP T-CUM-4: Traffic generated as a result of implementation of the proposed project combined with traffic generated by long-term growth (2036) could result in an adverse but less than significant impact on the landfill access road/U.S. Highway 101 intersection - Class III Cumulative Impact; Project Contribution – Not Considerable (Class III).

LOS was calculated for U.S. Highway 101/landfill access road intersection using the Year 2036 and Year 2036 + Project peak volumes shown on Figures 4.9-6 and 4.9-7. LOS forecasts for the a.m. and p.m. peak periods are shown in Table 4.9-18, along with the significance of project-added traffic based on Caltrans and County criteria.

Table 4.9-18. U.S. Highway 101/Landfill Access Road Year 2036 + Project Peak Levels of Service

	2036 + Project				2036 + Project + CSSR			
Movement	Seconds delay/ LOS¹ a.m.	Impact?	Seconds delay/ LOS¹ p.m.	Impact	Seconds delay/ LOS¹ a.m.	Impact?	Seconds delay/ LOS ¹ p.m.	Impact
Inbound left turn	10.4/B	No	24.0/C	No	10.4/B	No	24.0/C	No
Inbound right turn	0.0/A	No	0.0/A	No	0.0/A	No	0.0/A	No
Outbound left & right turns ²	12.8/B	No	29.9/D	No	12.8/B	No	31.8/D	No

¹ LOS based on average number of seconds of delay per vehicle pursuant to the Highway Capacity Manual.

As shown, the Year 2036 and Year 2036 + Project delays for traffic entering and exiting the landfill access road during the a.m. peak period equate to LOS A to B, which meets both Caltrans and County standards (with or without the CSSR Option). Delays for inbound traffic during the p.m. peak period equate to LOS A-C and delays for outbound traffic during the p.m. peak period equate to LOS D. While LOS D exceeds the Caltrans and County LOS C standard, the impact is considered less than significant because the project's traffic additions would not exceed the adopted significance thresholds (see Section 4.9.2.1).

2021

13

14

15

16 17

18

19

1 2

3

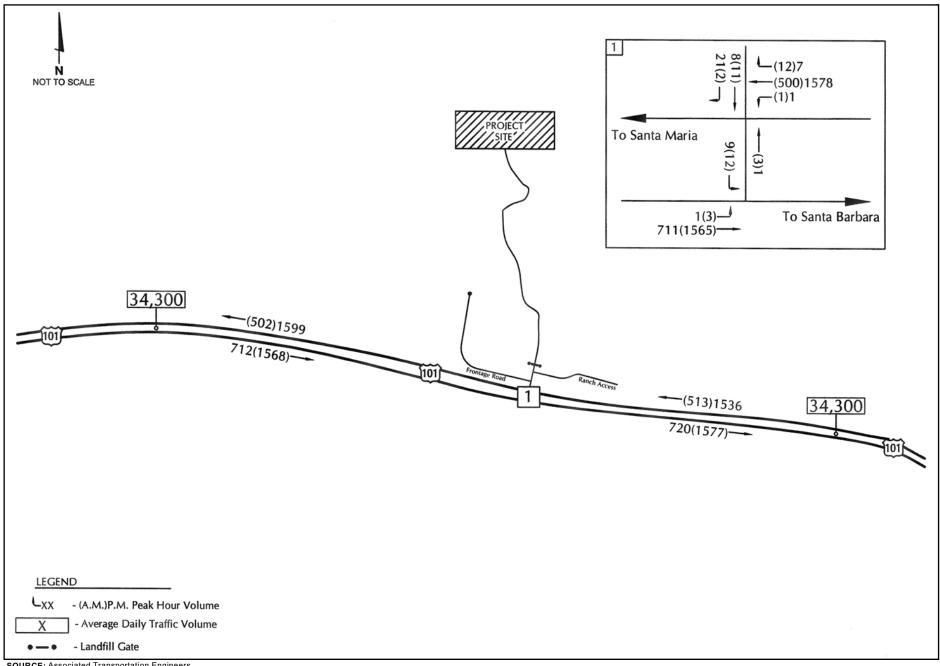
4 5

6

7

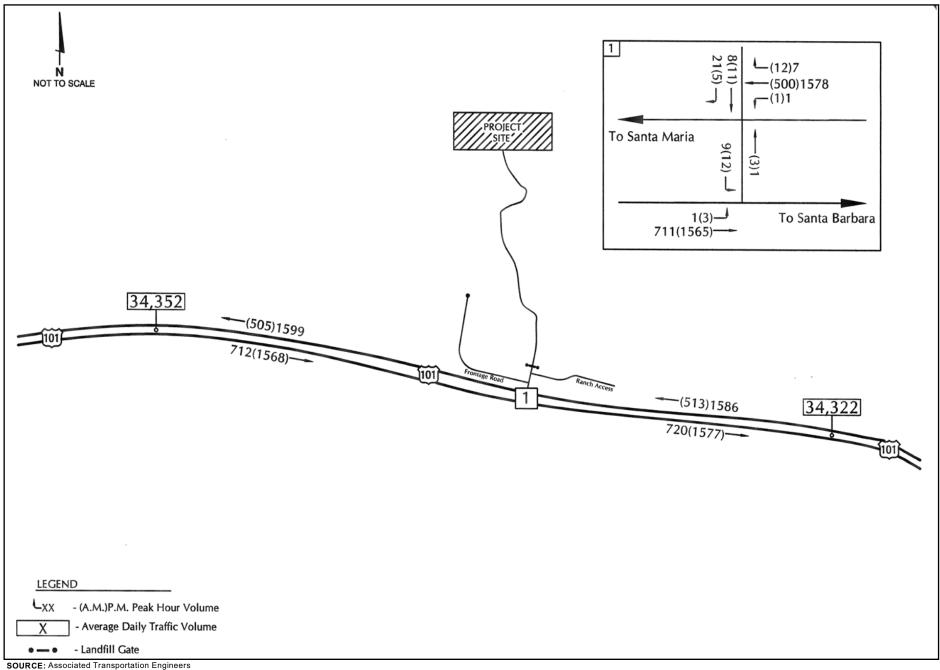
8

9


10

11

² Single lane approach.


The County's Environmental Thresholds and Guidelines Manual defines a significant cumulative impact (see d. in Section 4.9.2.1) as one that uses a substantial portion of an intersection's capacity for intersections that are forecast to operate at LOS D or worse. The impact of project traffic for intersections forecast to operate at LOS D is a change in the V/C ratio of 0.02 (or more). The Resource Recovery Project would add 0 trips to the intersection during the p.m. peak period and therefore would not contribute to significant impacts at the intersection in Year 2036. The Project + CSSR Option would also not exceed the County Threshold. The Project + CSSR Option would add 1 outbound trip from the landfill access road during the p.m. peak period, which would change the V/C ratio by less than 0.02.

It is also noted that the delays for outbound movements would be experienced predominately by landfill traffic (note that there is a proposed residence on the Hart parcel and access to Canada de la Huerta) and that traffic would not impede other flows at the intersection. The average delay of 29.9 seconds per vehicle (31.8 seconds per vehicle with the CSSR Option) is not significant given the intersection's configuration and environment (adequate gaps, provision of turn lanes and good sight distances). Therefore, the cumulative impact to the landfill access road/U.S. Highway 101 intersection would be less than significant and the incremental contribution of the Resource Recovery Project to cumulative traffic impacts on the landfill access road/U.S. Highway 101 intersection would not be considerable.

SOURCE: Associated Transportation Engineers

